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Abstract In many problems of geophysical interest,
when trying to segment images (i.e., to locate interfaces
between different regions on the images), one has to
deal with data that exhibit very complex structures.
This occurs, for instance, when describing complex
geophysical images (with layers, faults,...); in that case,
segmentation is very difficult. Moreover, the segmen-
tation process requires to take into account well data
to interpolate, which implies integrating interpolation
condition in the mathematical model.

More precisely, let I : � → � be a given bounded im-
age function, where � is an open and bounded domain
that belongs to �n. Let S = {xi}i ∈ � be a finite set of
given points (well data). The aim is to find a contour
� ⊂ � such that � is an object boundary interpolating
the points from S. To do that, we combine the ideas
of the geodesic active contour (Caselles et al., Int. J.
Comput. Vision 22-1:61-87, 1997) and of interpolation
of points (Zhao et al., Comput. Vis. Image Understand.
80:295-314, 1986) in a Level Set approach developed by
Osher and Sethian (J. Comput. Phys. 79:12-49, 1988).
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1 Introduction

From geophysical data, the general purpose of this
paper is to design segmentation models integrating geo-
metrical constraints while satisfying the classical criteria
of detection, with the regularity needed on the contour
(see Le Guyader [21] for more details). The segmen-
tation process has to locate layers and/or faults, but it
also needs to approximate interpolation conditions that
correspond to well data (see figures 1 and 2).

This kind of problem is of crucial interest in geo-
sciences, as it constitutes an important exploration
gap for reservoir characterization. Moreover, it is well
known that interpretation of faults in seismic data is
today a time-consuming manual task, and reducing
time from exploration to production of an oil field has
great economical benefits. In the exploration phase, the
geological interpretation of seismic data is one of the
most time-consuming tasks. This is usually done manu-
ally by interpreters, and much time could be saved by
an automatization of these tasks using a segmentation
process (see for instance Monsen et al. [27] and Randen
et al. [31]). More precisely, the fault extraction from 3D
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Figure 1 In geophysics (oil reservoir), it is necessary to de-
termine layers accurately for post-processing; moreover, some
interpolation conditions can be integrated in the model (well
data). (Image: USGS, www.usgs.gov/).

data is of key importance in reservoir characterization:
detailed knowledge of the fault system may provide
valuable information for production.

Let us note that in this work, we only focus on the
segmentation process and not in the reconstruction of
extracted surfaces (as done in Apprato et al. [2], Gout
[17], Gout and Komatitsch [20]) or inverse problems
([36])

We now introduce some classical tools used for seg-
mentation processes. Parametric deformable models,
originating from the active contour model introduced
by Kass et al. [28], explicitly represent the interface
as parameterized contours in a Lagrangian framework.
Active contour models use an energy-minimizing spline
that is guided by internal and external energies in such
a way that the spline is deformed by geometric shape
forces and influenced by image forces. By optimizing
the weights used in the internal energy and choosing
the proper image forces (edges), one can use active
contour models to evolve the curve toward the bound-
ary of objects being segmented. Geodesic active con-
tours basically consist in deforming an initial contour
towards the boundary of the object to be detected. The
deformation is obtained trying to minimize a functional
defined so that its local minimum is obtained at the
boundary of the object. This energy-like functional
minimization problem has led to many contributions
ever since. Caselles et al. [9] (see also Kichenassamy
et al. [25], Malladi et al. [26], and Siddiqi et al. [35])
have shown, for instance, that by setting one of the
regularization parameters to zero in the classical ac-

tive contour model, one gets a problem equivalent to
finding a geodesic curve in a Riemann space. The issue
was then no longer seen as an energy-like minimization
problem but as a curve evolution one.

With the introduction of the level set method devel-
oped by Osher and Sethian [30], geometric deformable
models allow automatic topological changes without
using any other procedures. The technique of level set
methods is to adopt an Eulerian approach to implic-
itly model the propagating interface using a level set
function �, whose zero-level set always corresponds to
the position of the interface �. The evolution of this
propagating interface is governed by a partial differen-
tial equation in a higher dimensional space. The level
set function can be constructed with high accuracy in
space and time. The position of the zero-level set is
evolved using a speed function that consists of a con-
stant term and a curvature deformation in its normal
direction (see [1, 30, 32–34] for more details). Image
stopping terms, such as regional and gradient forces, are
incorporated into this speed function for segmentation
purposes. This representation is intrinsic, parameter-
free, topology-free and allows for splits and merges.

The idea that governs the following model consists
in seeking a geodesic curve in a Riemann space whose
metric depends both on the image contents and on the
geometrical constraints.

Constraints will be mathematically defined by a set
of distinct points belonging to the edge, and the goal
will be defined as follows: “Localize the contour � at
the points of maximum gradient while fitting the model
on the given data points.” This work will be done in the
context of the level set method

In a first step (part 2), we define the shape optimiza-
tion problem and give its level set formulation. The
Euler–Lagrange theorem enables us to determine the
PDE that the 3D function � must satisfy if it minimizes

Figure 2 A 2D view of a velocity seismic model (without fault).
The white points correspond to interpolation conditions. The
horizontal segment is the initial guess. At the end of the segmen-
tation process, one wants to both segment the image (i.e., find
the interface between two regions) and interpolate the well data
(curve).

www.usgs.gov/
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the above functional. The evolution equation is then
given. We establish the existence and uniqueness of the
viscosity solution of the associated parabolic problem.
The discretization is given in Section 3, and numerical
examples illustrate the matter in Section 4. Conclusions
are given in Section 5.

2 Mathematical formulation

2.1 Model

Let I : � −→ � be a given bounded image function (for
instance, I can be the attribute “seismic wave propa-
gation velocity,” or just the grey level pixel values on
other applications), with � an open-bounded subset of
�n. Let us consider n = 2 for the purpose of illustra-
tion. As mentioned in Section 1, we plan to introduce
a geometrical approach in this new method by adding
interpolation constraints. Thus, let S = (xi, yi)i ∈ �

be a finite set of given points that correspond to the
interpolation condition (well data). We would like to
find a contour � ⊂ � such that � is the boundary
of the object under consideration, interpolating the
points from S which belong to this boundary. Let g :
[0, +∞[−→ [0, +∞[ be an edge function as in [8, 11],
such that g(0) = 1, g is positive, strictly decreasing and
lim

s→∞ g(s) = 0. The function g is applied to the gradient

of the image |∇ I(x, y)|. An example of such a function
is given by

g(s) = 1

1 + s2
,

so

g(|∇ I(x, y)|) = 1

1 + |∇ I(x, y)|2 . (1)

Furthermore, to the set of points S, we associate the
distance function d(a) from every point a ∈ � to S

d(a) = distance(a, S) = min
c∈S

|a − c| . (2)

By definition, d(a) = 0 if and only if a ∈ S.
In the previous definition of the distance function d,

its effect is global, so this model could be considered
not appropriated because the evolution of points which
are very far from the set of points S are going to be
(in some cases) influenced by S because of the distance

function d given in (2). Therefore, to overcome this
fact and improve the model, it is possible to use the
following distance function: at the point a, we consi-
der the following distance function da(x) defined on an
interval

[
A, B

]
of � by:

da(x) = 1 − Da(x)e− x2

σ2 , (3)

where

Da(x) =
{

0 sur ]−∞, α[ ∪ ]α, +∞[
Pa

5 sur [−α, α]
,

with Pa
5(x) ∈ P5 (polynomial space, degree ≤ 5) and

satisfying
⎧
⎪⎨

⎪⎩

Pa
5(a) = 1, (Pa

5)
′ = 0,

Pa
5(a + α) = (Pa

5)
′(a + α) = 0

Pa
5(a − α) = (Pa

5)
′(a − α) = 0,

so

Pa
5(a) = (cx + b) (x − α)2 (x + α)2 ,

the parameter α allowing to control the support of the
function Da(x) (b , c ∈ �). We note that da(x) ∈ C1. In
2D , it is easy to get the following distance function:

d(x) =
n∏

k=1

(
1 − Pak,1

5 (x1)Pak,2

5 (x2)e
− [(x1−a1)

2+(x2−a2)
2]

σ2

)
.

The effect of the function d is therefore local: in a
neighborhood of the points from S, d ≈ 0, which means
that it will stop the evolution of the curve, while it
will not affect the motion of the curve in remote points
from S.

To find a contour � such that g � 0 or d � 0 on �, we
propose to minimize the following energy:

E(�) =
∫

�

d.g(|∇ I|)ds. (4)

We will start with an initial guess �0, and we will apply
gradient descent to the energy, in a level set approach.
We will construct a family of curves �(t) decreasing the
energy as t increases.

2.2 The level set approach

The level set approach ([1, 29, 30, 32, 33]) consists in
considering the evolving active contour � = �(t) as the
zero level set of a function �, which is a Lipschitz
continuous function defined by:
{
� : � × [0, +∞[−→ �

(x, y, t) �−→ �(x, y, t)
(5)
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such that

�(t) = {(x, y) ∈ � : �(x, y, t) = 0},
and �(·, ·, t) takes opposite signs on each side of �(t).
It enables us to re-write the energy in terms of � as
follows

F(�) =
∫

�

d(x, y)g(|∇ I(x, y)|)|∇ H(�(x, y))|dxdy,

where H is the one-dimensional Heaviside function. By
approximating H by a C1 or C2 regularization Hε , as
ε −→ 0 and letting δε = H′

ε , the energy can be written
as (see Chan and Vese [12])

Fε(�) =
∫

�

d(x, y)g(|∇ I(x, y)|)δε(�)|∇�(x, y)|dxdy,

(6)

where
∫

�

δε(�)|∇�(x, y)|dxdy

is an approximation of the length term.

2.3 Minimization of the energy

In this section, we minimize the energy Fε , and we
determine the associated partial differential equation
satisfied by �. To this end, it is possible to use varia-
tional calculus with the extension of the classical Euler–
Lagrange theorem to a function that depends on two

variables (see le Guyader [21]). But we prefer propos-
ing a proof based on the Gâteaux derivative which
permits to get boundary conditions. We recall that F
is differentiable in the Gâteaux sense at � ∈ X if the
application

x �−→ F ′
�(	) = lim

h→0

F(� + h	) − F(�)

h

is defined for any 	 ∈ X and if it is linear and continu-
ous. In this case, Riesz theorem provides the existence
of F ′(�) ∈ X such that

F ′
�(	) =< F ′(�), 	 >,

F ′(�) being the gradient of F at �. Coming back to the
problem, let us determine the Gâteaux derivative of the
energy Fε . The Gâteaux derivative of Fε with respect to
� in the direction of 	 is

F ′
ε�

(	) = lim
h→0

Fε(� + h	) − Fε(�)

h

where

Fε(�+h	)−Fε(�)

=
∫

�

d(x, y)g(|∇ I(x, y)|)δε(�+h	)|∇�+h∇	|dxdy

−
∫

�

d(x, y)g(|∇ I(x, y)|)δε(�)|∇�|dxdy.

Then

Fε(� + h	) − Fε(�)

=
∫

�

d(x, y)g(|∇ I(x, y)|)δε(� + h	)|∇�|
√

1 + h2
|∇	|2
|∇�|2 + 2h

< ∇�, ∇	 >

|∇�|2 dxdy

−
∫

�

d(x, y)g(|∇ I(x, y)|)δε(�)|∇�|dxdy

and we use a Taylor development (on h) to linearize the
square root. Taking the limit when h → 0, we get

F ′
ε�

(	) =
∫

�

d(x, y)g(|∇ I(x, y)|)δ′
ε(�)	|∇�|dxdy

+
∫

�

d(x, y)g(|∇ I(x, y)|)δε(�)

× < ∇�, ∇	 >

|∇�| dxdy.

Hence

F ′
ε�

(	) = −
∫

�

δε(�)div
(

d(x, y)g
(|∇ I(x, y)|) ∇�

|∇�|
)

×	dxdy

+
∫

∂�

d(x, y)g(|∇ I(x, y)|)δε(�)

|∇�| 	

×
(

∂�

∂x
νxdσ + ∂�

∂y
νydσ

)
dσ
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and

F ′
ε�

(	) = −
∫

�

δε(�)div
(

d(x, y)g
(|∇ I(x, y)|) ∇�

|∇�|
)

× 	dxdy

+
∫

∂�

d(x, y)g
(|∇ I(x, y)|)δε(�)

|∇�|
∂�

∂ν
	dσ.

This expression must vanish for all 	 to satisfy the
Euler–Lagrange equation. Therefore, we obtain the
following problem:
⎧
⎪⎪⎨

⎪⎪⎩

δε(�)div
(

d(x, y)g(|∇ I(x, y)|) ∇�

|∇�|
)

= 0.

with the boundary conditions
δε(�)

|∇�|
∂�

∂ν
= 0.

(7)

2.4 Evolution equation

From the previous section, we get the evolution
equation

∂�

∂t
= δε(�)div

(
d(x, y)g(|∇ I(x, y)|) ∇�

|∇�|
)

. (8)

As stressed by Zhao et al. [39], there is a balance
between the potential force and the surface tension.
A parallel can be drawn with the classical deformable
models, a model which shows off an equilibrium be-
tween the regularization energy and the energy linked
to the image. The closer we are to the finite set of
points or on edges, the more important is the flexi-
bility in the model, since in this case, the expression
d(x, y)g(|∇ I(x, y)|) vanishes.

The energy Fε(�) is decreasing with time t.

Proof We follow the same arguments as Zhao et al.
[40]. �

When a local minimum is reached, then the quantity
∂�

∂t
tends to 0, which means that the steady state is

reached. A rescaling can be made so that the motion
is applied to all level sets by replacing δε by |∇�|. As
stressed by Zhao et al. [39] and Alvarez et al. [5], it
makes the flow independent of the scaling of �. Thus,
the proposed parabolic problem with the associated

boundary conditions
∂�

∂ν
= 0 can be written as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�(x, 0)=�0(x),

∂�

∂t
=|∇�|

[
div

(
d(x, y)g

(|∇ I(x, y)|) ∇�

|∇�|
)]

,

∂�

∂ν
=0 on ∂�.

(9)

The evolution equation satisfied by � is defined by

∂�

∂t
= |∇�|

[
div

(
d(x, y)g(|∇ I(x, y)|) ∇�

|∇�|
)]

.

All the level sets move according to

�t = d(x, y)g(|∇ I(x, y)|)κ �n

− < ∇
(

d(x, y)g
(|∇ I(x, y)|)

)
, �n > �n, (10)

with κ = div
( ∇�

|∇�|
)

and �n = − ∇�

|∇�| (interior nor-

mal). Indeed, we have for all level sets

�(�(t), t) = constant.

Calculating the derivatives with respect to the variable
t, we have

d
dt

[�(�(t), t)] = 0 ⇔ �t+ < ∇�, �t >= 0,

where �t denotes
∂�

∂t
and �t,

∂�

∂t
.

Hence, using the definition of �t and �n, we get

�t = d(x, y)g(|∇ I(x, y)|)κ|∇�|
+ < ∇(d(x, y)g(|∇ I(x, y)|)), ∇� > .

A parallel can be drawn with the Caselles et al. [9, 10]
model, in which the evolution equation of any level set
is given by:

�t = g(|∇ I(x, y)|)κ �n− < ∇(g(|∇ I(x, y)|)), �n > �n.

The convergence of the model can be increased by
adding the component kdg(|∇ I|), �n in the evolution
equation of a level set (10), k being a constant. An
analogy with the Balloon model developed by Cohen
[14] can be made: this constant motion term prevents
the curve to stop on a non-significative local minimum
and is also of importance when starting from curves
inside the object to be detected.

The associated parabolic problem becomes:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(x, 0) = �0(x),

∂�

∂t
= |∇�|d(x)g(|∇ I(x)|)div

( ∇�

|∇�|
)

+ < ∇(d(x)g(|∇ I(x)|)), ∇� >

+ kd(x, y)g(|∇ I(x, y)|)|∇�|,
∂�

∂ν
= 0 on ∂�.

(11)

In the next section, we aim at proving the existence
and uniqueness of the solution of this parabolic prob-
lem which are the main results of this paper.

Remark 1 When using the distance function given in
Eq. (2), in the evolution equation satisfied by �, ∇d is
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well-defined, except at the points that are equidistant
from at least two points of the given finite set S and at
the points from S. Indeed, the function d(x) = d(x; S)

is continuous as the inf of a finite number of continuous
functions but is not differentiable at the points equidis-
tant from at least two points of the given finite set S and
at the points from S. The distance function d satisfies
the Eikonal equation |∇d| = 1. In the theoretical part
devoted to the existence and uniqueness of the solution
of our problem, we need a certain smoothness on the
distance function d. Using the curvature as a regular-
izing or smoothing term enables us to get the desired
properties on d. What follows is taken from Sethian’s
book [32]: the main conclusion that we use here is that
“a front propagating at the speed 1 − εκ for ε > 0 does
not form corners and remains smooth for all time.”
Furthermore, as the dependence on curvature vanishes,
the limit of this motion is the entropy-satisfying solution
obtained for the constant speed case.

2.5 Existence, uniqueness of the solution

In this section, we use the notion of viscosity solutions
(for more details, see the ‘User’s Guide to Viscosity
Solutions’ by Crandall et al. [15]). This theory applies to
some partial differential equations that can formally be
written in the form F(x, u, Du, D2u) where Du denotes
the gradient and D2u the Hessian matrix (which is
symmetric). In general, F is defined as

F : �n × � × �n × S(n) −→ �
where S(n) denotes the set of symmetric (n × n) matri-
ces. In our case, F will be defined by F : � × � × �2 ×
S(2) −→ �. A complete study of viscosity solutions
for this problem is studied in le Guyader [21], where
different approaches of viscosity solutions are given for
our considered problem (based on the works of Alvarez
et al. [5], Barles [6, 7], Caselles et al. [8], Chen et al. [13]
and Crandall and Lions [16]).

Here is a first result that will be used in the sequel.

Preliminary Let p, q ∈ �n\ {0} , then
∣∣
∣
∣

p
|p| − q

|q|
∣∣
∣
∣ ≤ |p − q|

min(|p|, |q|) .

Proof evident. �

We use here the existence theorem for viscosity solu-
tions introduced by Ishii and Sato [24]. This article
treats the difficult case of singular parabolic equa-
tions with non-linear oblique derivative boundary con-

ditions while we wish to apply it to a problem with
homogeneous Neumann boundary conditions. As for-
merly done in their article, we denote by ρ(p, q) =
min

( |p − q|
min(|p|, |q|) , 1

)
. We assume that � is a bounded

domain in �n with a C1 boundary. Let us consider the
following conditions:

1. F ∈ C([0, T]× �̄× � × (�n − {0}) × Sn), where Sn

denotes the space of n × n symmetric matrices
equipped with the usual ordering.

2. There exists a constant γ ∈ � such that for each

(t, x, p, X) ∈ [0, T] × �̄ × (�n − {0}) × Sn,

the function

u �→ F(t, x, u, p, X) − γ u

is non-decreasing on �.
3. For each R > 0, there exists a continuous function

wR : [0, ∞[−→ [0, ∞[ satisfying wR(0) = 0 such
that if X, Y ∈ Sn and μ1, μ2 ∈ [0, ∞[ satisfy:
(

X 0
0 Y

)
≤ μ1

(
I −I

−I I

)
+ μ2

(
I 0
0 I

)
(12)

then

F(t, x, u, p, X) − F(t, y, u, q, −Y)

≥ −wR(μ1(|x − y|2 + ρ(p, q)2) + μ2 + |p − q|
+ |x − y|(1 + max(|p|, |q|))),

for all t ∈ [0, T] , x, y ∈ �, u ∈ � with |u| ≤ R and
p, q ∈ �n\ {0} .

4. B ∈ C(�n × �n)
⋂

C1,1(�n × (�n\{0}))
5. For each x ∈ �n, the function p �→ B(x, p) is posi-

tively homogeneous of degree 1 in p, i.e., B(x,

λp) = λB(x, p), ∀λ ≥ 0, p ∈ �n\{0}.
6. There exists a positive constant θ such that < ν(z),

Dp B(z, p) >≥ θ for all z ∈ ∂� and p ∈ �n − {0}.
Here ν(z) denotes the unit outer normal vector of
� at z ∈ ∂�.

We recall the following theorem taken from Ishii and
Sato [24].

Theorem 1 Consider the following problem:
{

ut + F(t, x, u, Du, D2u) = 0 in ]0, T[×�

B(x, Du) = 0 in ]0, T[×∂�
(13)

satisfying u(0, x) = g(x) for x ∈ �̄. Assume that condi-
tions 1, 2, 3, 4, 5 and 6 hold. Then for each g ∈ C(�̄),
there is a unique viscosity solution u ∈ C([0, T[×�̄) of
(10) satisfying u(0, x) = g(x) for x ∈ �̄.
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We apply this theorem to the considered problem.
The function F is defined by:

F(t, x, u, p, X)=−trace
(

d(x)g(|∇ I(x)|)
(

I− p
⊗

p
|p|2

)
X

)

−<∇(d(x)g(|∇ I(x)|)), p > .

Denoting by A(x, p) the symmetric positive matrix
defined by

A(x, p) = d(x)g(|∇ I(x)|)
(

I − p
⊗

p
|p|2

)
,

we get

F(t, x, u, p, X) = −trace(A(x, p)X)

− < ∇(d(x)g(|∇ I(x)|)), p > .

F presents a singularity for p = 0 but is continuous
otherwise. The first point is satisfied.

F does not depend explicitly on u, so any negative
constant γ satisfies the second condition.

For the third point, the inequality (12) gives us that
for all r, s ∈ �2,

(Xr, r) + (Ys, s) ≤ μ1|r − s|2 + μ2(|r|2 + |s|2).
Taking successively r = σ(x, p)ei and s = σ(y, q)ei with
(ei)i an orthonormal basis of �2 (as done in [18],
A(x, p) = σ(x, p)σ T(x, p)), we get:

trace(A(x, p)X) + trace(A(y, q)Y)

≤ μ1trace((σ (x, p) − σ(y, q))(σ (x, p) − σ(y, q))T)

+ μ2(d(x)g(|∇ I(x)|) + d(y)g(|∇ I(y)|)).
Hence

trace(A(x, p)X) + trace(A(y, q)Y)

≤ μ1|
√

d(x)g(|∇ I(x)|) p
|p|

− √
d(y)g(|∇ I(y)|) q

|q|
∣
∣2 + 2θμ2 .

The function x �→ d(x)g(|∇ I(x)|) is bounded by θ .
Moreover, one has:

∣∣
∣
∣
√

d(x)g(|∇ I(x)|) p
|p| − √

d(y)g(|∇ I(y)|) q
|q|

∣∣
∣
∣

2

=
∣∣
∣
∣
(√

d(x)g(|∇ I(x)|) − √
d(y)g(|∇ I(y)|)

) p
|p|

+ √
d(y)g(|∇ I(y)|)

(
p

|p| − q
|q|

) ∣
∣
∣∣

2

.

Thus
∣
∣
∣∣
√

d(x)g(|∇ I(x)|) p
|p| − √

d(y)g(|∇ I(y)|) q
|q|

∣
∣
∣∣

2

≤ 2
(√

d(x)g(|∇ I(x)|) − √
d(y)g(|∇ I(y)|)

)2

+ 2d(y)g(|∇ I(y)|)| p
|p| − q

|q| |
2.

Using the preliminary and properties of the functions
x �→d(x)g(|∇ I(x)|) and x �→√

d(x)g(|∇ I(x)|) as in [18],
we can conclude that

trace(A(x, p)X) + trace(A(y, q)Y)

≤ μ1(2ζ |x − y|2 + 8θρ(p, q)2) + 2θμ2.

Next, we have to evaluate the expression

F( t, x, u, p, X ) − F(t, y, u, q, −Y ) =
−(trace(A(x, p)X ) + trace(A(y, q)Y ))

−(< ∇(d(x)g(|∇ I(x)|)), p >

− < ∇(d(y)g(|∇ I(y)|)), q >).

Using the same arguments as in [18], we have

| < ∇(d(x)g(|∇ I(x)|)),
p > − < ∇(d(y)g(|∇ I(y)|)),
q > | ≤ κ|x − y|max(|p|, |q|) + C2|p − q|,

from which we deduce

− (F(t, x, u, p, X) − F(t, y, u, q, −Y))

≤ μ1[2ζ |x − y|2 + 8θρ(p, q)2]
+ 2θμ2 + κ|x − y| max(|p|, |q|) + C2|p − q|

and

− (F(t, x, u, p, X) − F(t, y, u, q, −Y))

≤ max(2ζ, 8θ, C2, κ)(μ1(ρ(p, q)2 + |x − y|2)
+ μ2 + |p − q| + |x − y|(1 + max(|p|, |q|))).

We just have to take wR(l)=max(2ζ,8θ,C2,κ)l. wR(0)=
0 and wR is non-decreasing on [0, ∞[.

The fourth point is fulfilled with assumptions on ν

(vector field of class C1,1).
Then, it is easy to check that B is positively homo-

geneous of degree 1. For the last point, one can easily
see that:

B(z, p) =< ν(z), p > (14)

and

< ν(z), Dp B(z, p) >= |ν(z)|2 = 1.

We take θ = 1 and the last assumption is fulfilled.
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3 Numerical algorithm

We recall the evolution equation
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂�

∂t
= |∇�|d(x)g(|∇ I(x)|)div

( ∇�

|∇�|
)

+ < ∇(d(x)g(|∇ I(x)|)),
∇� > +kd(x)g(|∇ I(x)|)|∇�|,
on [0, +∞[×�.,

�(0, x) = �0(x),
∂�

∂ν
= 0 on ∂�.,

(15)

Its discretization has the following characteristics:

• The distance function d is computed using the
fast marching method (see Sethian [32] and
Hvistendahl Karlsen et al. [23]).

• We have chosen the additive operator splitting
(AOS, see Weickert and Kühne [37]) scheme.
The classical spatial discretization of the term
div(c|∇�|) is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div(c∇�) � ∂x

(
cij

�i+ 1
2 , j − �i− 1

2 , j

h

)

+ ∂y

(
cij

�i, j+ 1
2
− �i, j− 1

2

h

)
,

� ci+ 1
2 , j

�i+1, j − �i, j

h2

− ci− 1
2 , j

�i, j − �i−1, j

h2

+ ci, j+ 1
2

�i, j+1 − �i, j

h2

− ci, j− 1
2

�i, j − �i, j−1

h2
.

The terms c
i
+− 1

2 , j
and c

i, j
+− 1

2

can be determined by

linear interpolation. To simplify the notation in
the following, we use a vectorial representation of
the function � via a concatenation of the rows of
the image. So, � ∈ R

N×M where N is the number
of lines and M the one of columns. The center of
gravity of a pixel i is associated with the node of
the meshing of coordinates xi. Thus, the term �n

i
corresponds to an approximation of �(xi, tn). We
first suppose that k = 0. The discretization of the
evolution equation 15 is given by the semi-implicit
scheme

�n+1
i = �n

i + τ |∇�|ni

×
∑

j∈�(i)

(
dg

|∇�|
)n

i
+

(
dg

|∇�|
)n

j

2
.
�n+1

j − �n+1
i

h2
,

where �(i) denotes the neighbourhood of the pixel
i. However, to assure that |∇�| does not vanish, one

can replace the arithmetic mean

(
dg

|∇�|
)n

i
+

(
dg

|∇�|
)n

j

2
by its harmonic counterpart. If |∇�|ni = 0 or
(dg)i = 0, we set:

�n+1
i = �n

i .

Then, we introduce the linear system

�n+1 = �n + τ
∑

l∈{x,y}
Al(�

n)�n+1.

where Ax(�
n) is defined by

aijx(�
n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

|∇�|ni
2

(
|∇�|

dg

)n

i
+

(
|∇�|

dg

)n

j

, j ∈ �x(i),

−|∇�|ni
∑

m∈�x(i)

2
(

|∇�|
dg

)n

i
+

(
|∇�|

dg

)n

m

,

i = j, 0 else,

where �x(i) represents the neighbouring pixels of
i with respect to direction x. However, the solu-
tion �n+1 cannot be directly determined from this
scheme; it requires to solve the following linear
system:
(

Id − τ
∑

l∈{x,y}
Al

(
�n)

)
�n+1 = �n,

where Id is the unit matrix. The matrix(
Id − τ

∑

l∈{x,y}
Al (�

n)

)
is strictly diagonally domi-

anant; it follows from Gershgorin’s theorem that it
is invertible. To solve this linear system, iterative
algorithms should be used. Classical methods like
Gauss–Seidel does not need additional storage,
and convergence can be guaranteed for the special
structure of the system matrix. This convergence,
however, may be rather slow (when parameter τ

increases) since the condition number of the system
matrix increases with the image resolution. An
alternative discretization is proposed by Weickert
and Künhe [37]; they focus on a splitting-based
alternative (AOS scheme). It is easy to implement
and does not require to specify any additional
parameters. This may make it attractive in a
number of practical applications. Instead of using
the semi-implicit scheme

�n+1 =
⎛

⎝Id − τ
∑

l∈{x,y}
Al

(
�n)

⎞

⎠

−1

�n,
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Weickert and Kühne [37] consider the AOS variant:

�n+1 = 1

2

∑

l∈{x,y}

(
Id − 2τ Al

(
�n))−1

�n. (16)

By means of a Taylor expansion, it is easy to see that
the semi-implicit scheme and its AOS version differ by
an O(τ 2) term. The AOS scheme leads to

2�n+1 = (
Id − 2τ Ax

(
�n))−1

�n

+ (
Id − 2τ Ay

(
�n))−1

�n. (17)

We set for l ∈ {x, y},
Bl(�

n) = Id − 2τ Al(�
n).

The matrix B is strictly a diagonally dominant tridiag-
onal linear system which can be solved very efficiently
with a Gaussian algorithm. As shown in [37], the fact
that AOS schemes are based on an additive splitting
guarantees that both axes are treated in exactly the
same manner. AOS schemes are not only efficient, but
also unconditionally stable.

4 Numerical results

• The user defines an initial condition (paraboloids,
ellipses...).

• The user gives interpolation conditions (if there are
ones).

• The stopping criterion is either the number of iter-
ation or a verification that the solution is stationary
while computing the relative error between �n+1

and �n.

Example 1 (velocity seismic model) We give a numer-
ical example on a velocity seismic model. There is a
vertical fault and several layers. The time step is equal

to 2, k = 0.02 and g : s �→ 1

1 + s2
. CPU time is equal to

96 s (pc Intel Pentium 4 2.8Ghz 256Mo) (figures 3 and 4).

Figure 3 2D view of the
initial condition. There are six
interpolation conditions.

Figure 4 The final contour
after 140 iterations.

Example 2 (2D fault extraction) The time step is equal

to 2, k = 0.02, and g : s �→ 1

1 + s2
. CPU time is equal

to 128 s (pc Intel Pentium 4 2.8Ghz 256Mo). This a very
difficult (extreme!) example because we want to locate
a vertical fault which is very difficult to segment. In this
example, the interpolation condition are not well data,
but points given by the user to help the segmentation
process. Without these (well-chosen) interpolation con-
dition, the segmentation is impossible to realize (figures
5 and 6).

5 Concluding remarks

We have developed a segmentation method under in-
terpolation condition which gives good results.

But some works still remain to be done:

• The CPU time is suspiciously high for such a result.
Some works are in progress to improve the imple-
mentation of our method. A good way to explore
is given in Yatziv et al. [38] where the authors pro-

Figure 5 Fault extraction.
Many interpolation
conditions (9 points) are
needed on such an image to
get a vertical fault. User
intervention is crucial in this
process (source data:
confidential). The algorithm
has been modified to define
such an initial condition.
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Figure 6 Final result.

pose a faster implementation of the fast marching
method.

• Of course, the final goal will be to segment more
complex geophysical data. For now, to segment a
3D block (see figure 7), it is needed to start the
process with an initial guess, and the main problem
is to be able to give a “correct” initial condition, and
so to have a “good” visualization of the data set.
Another approach would be to segment 2D slices

(like example 2 of section 4) of the 3D block, and
then apply a 3D reconstruction method (work in
progress).

We conclude with some remarks.

• This method has been successfully tested on classi-
cal image segmentation without interpolation con-
dition in Le Guyader [21].

• Some comparisons with other methods (deform-
able models method under geometrical constraints
developed by Le Guyader et al. [22]) are given in
[21].

• This method has been validated on medical applica-
tions (see Apprato et al. [4]): in this case, the inter-
polation conditions are useful to help the process
when some image data are missing. The goal was
to compute the blood flow variations, throughout a
cardiac cycle. With our colleagues from “C.H.U du
Haut-Lévèque-Hôpital de Bordeaux,” this method
has been successfully applied on a patient image
sequence to outline the cross-sectional area of a
great thoracic vessel, namely, the main pulmonary
artery, to non-invasively assess pulmonary arterial
hypertension.

• Let us note that in case of noisy images, it is possible
to use usual filter or specific algorithm (see Sethian
[32]).

Figure 7 Example of 3D
geological data (location:
Pyrénées region near Pau,
France) where several layers
(A and B) are clearly located;
but to segment the complex
structure, one needs to give
initial guesses and a scientific
visualization tool must be
used to look inside the data.
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