
Introduction

North China Plain (NCP) contributes about 30% of
China’s total agricultural production. The annual
chemical nitrogen fertilizer input is estimated as high
as 400–600 kg hm)2. High nitrogen fertilizer rates
generally result in low nitrogen use efficiency (NUE)
and high nitrogen loss. Loss of fertilizer nitrogen
through leaching was estimated to be 8.5-28.7% of the
applied rates (Li et al. 1999). Recently, much concern

have been directed toward agriculture-derived
groundwater nitrates pollution, which may cause algal
blooms and eutrophication in aquifers, and can pro-
duce potential hazards to human health (Fan and
Steinberg 1996; Gelberg and Church 1999; Gulis et al.
2002). Some studies conducted in the NCP areas
showed that the NO3–N concentrations had more than
half exceeding the NO3–N concentration limit of
10 mg L)1 (Zhang et al. 1996). In a recent survey, it
is reported that nitrate contaminations have even
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Abstract In recent years, nitrate
contamination of groundwater has
become a growing concern for peo-
ple in rural areas in North China
Plain (NCP) where groundwater is
used as drinking water. The objec-
tive of this study was to simulate
agriculture derived groundwater ni-
trate pollution patterns with artifi-
cial neural network (ANN), which
has been proved to be an effective
tool for prediction in many branches
of hydrology when data are not
sufficient to understand the physical
process of the systems but relative
accurate predictions is needed. In
our study, a back propagation neu-
ral network (BPNN) was developed
to simulate spatial distribution of
NO3-N concentrations in ground-
water with land use information and
site-specific hydrogeological proper-
ties in Huantai County, a typical
agriculture dominated region of
NCP. Geographic information sys-
tem (GIS) tools were used in pre-

paring and processing input–output
vectors data for the BPNN. The
circular buffer zones centered on the
sampling wells were designated so as
to consider the nitrate contamina-
tion of groundwater due to neigh-
boring field. The result showed that
the GIS-based BPNN simulated
groundwater NO3-N concentration
efficiently and captured the general
trend of groundwater nitrate pollu-
tion patterns. The optimal result was
obtained with a learning rate of 0.02,
a 4-7-1 architecture and a buffer
zone radius of 400 m. Nitrogen
budget combined with GIS-based
BPNN can serve as a cost-effective
tool for prediction and management
of groundwater nitrate pollution in
an agriculture dominated regions in
North China Plain.
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increased in some local shallow groundwater in the
NCP (Zhu and Chen 2002).

Several process-based models have been developed
for simulating the fate and transport of nitrogen in soils
and groundwater, and further details can be found in
Ma and Shaffer (2001) and Chowdary et al. (2005).
However, nitrate occurrence in groundwater, when re-
lated to land use distribution, agricultural management
practices, and the physical and chemical processes in soil
and groundwater, does not exhibit well behaved rela-
tionships. The process-based distributed models used to
describe such relationships require complex mathemati-
cal equations, initial and boundary conditions, and de-
tailed characterizations of the study area, including the
physical, chemical, and biological processes, but such
processes are not always understood (McGechan and
Wu 2001). Furthermore, these models cannot estimate
concentrations of nitrate in groundwater using easily
measurable data such as nitrogen input and soil texture.

Thus, process-based models do have some practical
limitation. When data are insufficient and obtaining
accurate predictions is more important than under-
standing the nitrogen cycling process, black box and
conceptual models with less data requirement and cali-
bration time may be suitable alternatives. Artificial
neural network (ANN) are ‘black box’ models with
particular properties greatly suited to dynamic nonlinear
system modeling and can overcome the difficulties of
processed-based techniques used in simulating complex
features of different relationships. ANN has been widely
used for simulation and prediction of water quality
(Aguilera et al. 2001; Kralisch et al. 2003; Daliakopoulos
et al. 2005; Mohammad and Jagath 2005a). The
advantages of ANN models over conventional simula-
tion methods have been discussed in detail by French
and Krajewski (1992). This paper is intended to predict
groundwater pollution patterns in agriculture-domi-
nated area with land use information and some easy
obtained site-specific data, developing the potential of
GIS and artificial neural network.

Methods and materials

Study area and data source

The study was conducted in Huantai County of the
North China Plain (Fig. 1), covering an area of
509.5 km2. It represents the transient zone from the
mountain alluvial plain in central Shandong to the
Yellow River plain in the north. The soil parent material
mainly consists of mountain diluvium and Yellow River
alluvial deposits, which formed the clay loam soils
classified as Calcaric Fluvisols. The landscape of the
study area is relatively flat with relative elevations of
6.5–29.5 m and gradient ratios of 1/800–1/3,500 (Liu

et al. 2005). Both groundwater and surface water run
roughly in the same direction as the land slopes from
southwest down to northeast. The average groundwater
table was 13.6±8.2 m across the entire county in 2002.

The study area has been dominated by winter wheat
and summer maize rotation system which account for
75% of all crops planted for decades. More than
15 t ha)1 of grain was produced across the entire area
since 1990. Excessive amounts of fertilizer and water
have been applied annually. N fertilizer was applied at
634 kg N ha)1 for the double cropping system in 2002.
Under such an intensive farming practice, NO3-N
leaching from plant rooting zones was usually observed
(Liu and Wu 2002, 2003).

Groundwater sampling

Water sampling was carried out in November 2002 and
2004 in shallow aquifers across the Huantai County to
analyze the nitrate concentration. All sites were away
from the influence of high-density housing. In total, 616
water samples were collected from irrigation wells. The
location of the wells was precisely recorded with a global
position system (GPS) receiver. Groundwater was sam-
pled with portable pump for shallow and installed pump
for relatively deep water. The continuous flowing ana-
lyzer was used to analyze NO3-N concentration of the
sampled water.

Data collection

Information on the yields and nitrogen inputs (fertilizer
and manure) for various crop systems in the last 4 years

Fig. 1 Geographic location of the study area, Huantai County
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were collected through farmer interviews with the 130
owners of randomly selected sampling wells. The crop-
ping systems in the buffer zone of the sampling well were
derived from Huantai Land Use Information System
(LUIS, on a scale of 1:10,000), a land use database
which was compiled and maintained in 2002 by the
Huantai Land Resources Bureau. It was assumed that
present land use patterns have never changed since it
was developed for agriculture.

Soil sand content of various soil types in the study
area was referenced to previous study (Liu 2004). Soil
organic matter contents of the cropping horizon were
monitored in 1996, 1999, and 2002. Depth to ground-
water data was collected by local groundwater table
monitoring stations. The annual data from 1996 to 2002
was averaged across observations at 5-day intervals
from 32 monitored wells in the study area.

The agricultural land use was grouped into four
categories: wheat–maize rotational systems, vegetables,
and cotton and fruit trees. Table 1 shows the range of
values for the collected data of different agricultural land
use types.

Back propagation neural network development

The back propagation neural network (BPNN) was used
as the exploratory model for our study. BPNN have
performed well in simulating and predicting agricultural
non-point pollution in stream water and groundwater
(Mohammad and Jagath 2005a; Sahoo et al. 2005).
Detailed descriptions of BPNN are provided by Sharma
et al. (2003). An ANN learns the underlying different
relationships of the system of interest from training
samples, which are basically the cause-effects samples
(Qu et al. 2004). Thus, the first step in the analysis is to
conceptualize the cause-effect relationships for ground-
water nitrate pollution and thus precisely identify input
and output vectors of the ANN.

Conceptualization of groundwater nitrate pollution

In an agriculture-dominated region, nitrogen applied to
cropped fields reaches the groundwater as nitrate dis-
solve in rainwater or irrigation water percolating out of
the crop root zone. The nitrate concentration in
groundwater depends on field nitrogen available for
leaching and nitrogen transport through the soil with
applied water.

The nitrogen available for leaching depends on agri-
cultural land use and nitrogen management. In this
study, field nitrogen surplus was used to measure the
effect of land use. Aller et al. (1987) reported seven most
important hydrogeological factors that control the
groundwater pollution potential, i.e., D depth to aquifer,
R recharge, A aquifer media, S soil media, T topogra-
phy, I impact of vadose zone media, and C conductivity
of the Aquifer. A, T, and I were considered to be spatial
homogeneous at county scale in NCP. As such, only
three hydrogeological factors including D, R, and S were
considered in this study.

Field water percolates more easily through soils with
less clay and higher sand content, and the sand contents
at the 30–60 cm depth was found to be an accurate
predictor of nitrate leaching risk (Assimakopoulos and
Kalivas 2003). In addition, if a sufficient source of or-
ganic matter is present, bacterial systems are capable of
denitrifying large amounts of NO3-N in the soil zone,
thus reducing the pool of nitrate available for leaching
(Mujumdar and Sasikumar 2002).

Thus, field nitrogen surplus, groundwater depth, soil
organic matter content, and soil sand content at 30–
60 cm depth were identified as four indicators to reflect
the impact of land use hydrogeological factors on
groundwater nitrate pollution. They were used as input
vectors of the artificial neural network, and the ground-
water NO3-N concentration as the output vectors.

It was reported that land use distribution in a greater
catchment area may better reflect the effects of land use
on groundwater nitrate concentrations than does the
land use at the farm where the well is located (Kolpin
1997). Thus, circular-buffered zones, centered by the
nitrate receptors, were designated, so that the effects of
neighboring land uses and site properties on nitrate
contamination of groundwater could be considered.
Buffers with radii ranging from 200 to 2,000 m have
been used in other studies (Kolpin 1997; McLay and
Dragten 2001). We arbitrarily chose a radius of 200 m as
the initial buffer zones radius, and used the trial and
error method to obtain the most optimal one.

Preparation of training and validation data set

A soil surface budget was employed to calculate field
nitrogen surplus for the present study, which records all
nutrients that enter the soil via the surface and that leave
the soil via crop’s offtake (Oenema and Heinen 1999).

Table 1 Hydrogeological properties of different agricultural land use types

Hydrogeological factors Wheat–maize Vegetables Cotton Fruit trees

Depth to groundwater (m) 2.1–34.5 7.5–27.2 3.7–29.3 6.3–33.5
Soil sand content at 30–60 depth (%) 4.5–45.2 12–29.6 8.8–31.6 14.5–30.2
Soil organic matter content (%) 1.08–2.36 1.28–1.77 1.13–1.69 1.12–1.58
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Nitrogen inputs via fertilizer and animal manure addi-
tions were adjusted for miscellaneous gaseous N losses
from the soil and crops, which were estimated to be 20%
of nitrogen input based on previous studies (Hu et al.
2004). Atmospheric deposition was estimated at
12 kg ha)1 year)1, based on Lu (1998). The nitrogen
output via crop offtake was calculated from crop yield
and N content. The N content in plant parts was referred
to Luo (2001).

Geographic information system (GIS) was used to
manage the data. The values of the four input vectors for
the water-sampling sites were estimated with interpola-
tion of 12 neighboring values by using the inverse dis-
tance weighted (IDW) method (ArcView 3.3, ESRI), and
then the input and output vectors data sets of the buffer
zones of the sampling sites were computed. The 616
samples were divided into three subsets, of which
approximately half of the samples were used for training
the neural network, a quarter of the sample for model
calibration, and the rest of the samples for model vali-
dation.

Network architectures and efficiency evaluation

The MATLAB Toolbox (MathWorks, Inc., Natick,
MA, USA) was used to develop the BPNN. It provides
many training methods, of which the Levenberg-Mar-
quardt training algorithm was selected, considering its
fast convergence ability (Sahoo et al. 2005). A tangent
sigmoid transfer function was used for hidden layers and
a linear transfer function for the output layer according
to Qu et al. (2004). The structure and learning rate of the
network is determined using trial and error by varying
learning rates, number of hidden layer, and nodes of the
hidden neurons in the test scenarios.

Predictive efficiency of the BPNN was qualitatively
assessed using the scatter plots of the predicted versus
observed nitrate concentration, and quantitatively via
R2 efficiency criterion and root mean square error
(RMSE). The R2 efficiency criterion was defined as
(Daliakopoulos et al. 2005):

R2 ¼ 1�
Pn

1 c0 � cp
� �2

Pn
1 c20 �

Pn
1 c2p=n

where R2 represents the percentage of the initial varia-
tion explained by the model, n is the number of the
testing patterns; c0 and cp are the observed and predicted
nitrate concentrations, respectively. The RMSE indi-
cates the discrepancy between the observed and calcu-
lated values. The best fit between observed and
calculated values would have R2=1 and RMSE=0.
RMSE was calculated as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
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� �2

n

s

:

Results and discussion

Land use and groundwater nitrate pollution

Statistical data of the survey given in Table 2 shows
the association of the field nitrogen surplus (FNS) and
nitrate pollution in shallow groundwater. The vegeta-
ble systems showed the greatest FNS, with average
values greater than 550 kg N ha)1 year)1, and cotton
had the lowest FNS, with average values close to
90 kg N ha)1 year)1. It is generally believed that
intensive farming with high nitrogen surplus would
lead to more severe groundwater pollution. In our
study, however, the vegetable cropping system with a
FNS as high as 558.7 kg N ha)1 year)1 was acting
similarly as the wheat–maize rotation system with a
FNS of 194.8 kg N ha)1 year)1 in terms of NO3-N
concentration in groundwater. Moreover, the ground-
water NO3-N concentration beneath cotton fields with
the lowest FNS have reached the highest lever, while
the fruits tree fields with medium FNS had the lowest
level of groundwater NO3-N concentration. Careful
analysis found that most of the water samples were
taken from wheat–maize dominated areas where cot-
ton and fruit trees were also commonly planted, which
supports the assumption that the neighboring land use
and site-specific properties may have played important
role in shaping groundwater pollution patterns (Liu
et al. 2005).

Table 2 NO3-N concentration in shallow groundwater in relation to field nitrogen surpluses of aboveground cropping systems

Crop system No of field
samples

N input
(kg ha)1 year)1)

Crop offtake
(kg N ha)1 year)1)

N surplus
(kg ha)1 year)1)

No of groundwater
samples

NO3-N concentration
(mg L)1)

Wheat–maize 68 505.9 (43.2) 311.1 (12.2) 194.8 (33.2) 546 8.1 (8.6)
Vegetables 26 717.2 (81.8) 158.5 (34.7) 558.7 (93.1) 32 8.4 (9.3)
Cotton 20 157.6 (11.2) 69.7 (5.8) 87.9 (10.6) 28 9.1 (10.3)
Fruit trees 16 311.3 (33.4) 13.5 (3.7) 317.8 (29.7) 10 3.9 (2.8)

The values in parentheses are standard deviations.
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Model training and verification

The configurations of the BPNN, such as the learning
rate and the size of the hidden layer and neurons, were
determined by trial and error. The learning rate varied
from 0.01 to 0.2, with the hidden layer kept at 1 with 10
neurons. This low learning rate was chosen because high
fluctuations in error were observed at higher learning
rates. Analysis of these results led to an optimum
learning rate of 0.02.

The model was then tested by varying the size of the
hidden layer and neurons. The number of hidden layers
was set to one and two, and then neurons ranging from 4
to 15 in each layer were used to test the BPNN model
according to Qu et al. (2004). The correlation coefficients
were all greater than 0.85 in the training phase, but most
were less than 0.75 in the validation phase, indicating
that the BPNN model was trained well but lost some of
its generalization ability. The architecture 4–7–1 (four
neurons in the input layer, seven neurons in the hidden
layer, and one in the output layer) produced the opti-
mum results with R2=0.77 and RMSE=2.93 mg L)1 in
the validation phase. Scatter plots of the observed versus
BPNN-predicted NO3-N concentrations were given in
Fig. 2b, which showed higher predictive efficiency for
groundwater NO3-N concentration ranging from 5 to
10 mg L)1 and relatively lower efficiency for other ran-
ges. The lower efficiency was assumed to be affected by
relatively small data set to train the BPNN.

The sensibility of predictive efficiency to the radius
of the well buffer zone is also examined. The optimal
BPNN developed above was tested with the radius
ranging from 100 to 2,000 km with 50-m intervals. The
best performance was obtained at the radius of 400 m
with R2=0.81 and RMSE=2.37 mg L)1 in the vali-
dation phase. Scatter plots of the observed versus

BPNN-predicted NO3-N concentrations at this radius
were given in Fig. 2b. The results were similar to
Kolpin (1997) which showed that a 500-m radius pro-
vided the best correlation with NO3-N in groundwater
across a wide range of soil types and land uses in the
Unite States. In comparison to Fig. 2a, Fig. 2b showed
higher predictive efficiency for ranges of 6–11 mg L)1.
Predictive efficiency increasing due to buffer zone des-
ignation indicates that land use patterns and site-spe-
cific properties of neighboring field play important role
in shaping groundwater nitrate pollution in an agri-
culture dominated region.

Simulation of groundwater NO3-N concentration
distribution

The NO3-N concentrations in groundwater were classi-
fied into four groups defined by Liu (2004). The four
concentration ranges are: clean (0–3 mg L)1), lightly
polluted (3–6 mg L)1), polluted (6–10 mg L)1), and se-
verely polluted (>10 mg L)1). Figure 3a shows the ob-
served distribution of NO3-N concentration interpolated
from the groundwater sampling data using the IDW
method.

Then the BPNN was used to predict the NO3-N
distribution in the aquifer across Huantai County under
present land use conditions. GIS was used to divide the
area into homogenous zones in accordance with four
input vectors layers including field nitrogen surplus, soil
sand content at 30–60 depth, soil organic matter con-
tent, and depth to groundwater. A new map of 2,326
basic simulation units (BSU) were generated by over-
laying these layers and the attributes data were prepared
for running the BPNN model.

As show in Table 3, the BPNN underestimated the
clean and slighted polluted areas, which was assumed to
be affected by relatively small data set ranging from 0 to
6 mg L)1 of NO3-N concentration to train the BPNN.
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Fig. 2 Scatter plots of the observed versus BPNN-predicted NO3-
N concentration for circular zoned buffer areas with radii of (a)
200 m and (b) 400 m
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In addition, the simulation result overestimated the
polluted and the severely polluted areas by 9.60 and
13.23%, respectively. Figure 3b shows the NO3-N con-
centration distribution simulated by the BPNN model.
The overestimated severely polluted areas are mainly
distributed in the northeast corner of the county, where
the Mata Lake was supposed to dominantly shape the
NO3-N distribution patterns. In comparison to grid

form of output data generated by IDW method, the
GIS-based BPNN exported vector data in shape form.
As such, landscapes were more concentrated in Fig. 3b,
while Fig. 3a showed more fragmentation for different
ranges of groundwater NO3-N concentrations. How-
ever, comparison between Fig. 3a and b clearly dem-
onstrated that the BPNN model captured the general
trend of nitrate distribution in most parts of the study
area.

Application in groundwater quality management

The increasing evidence of the nitrate contamination of
groundwater in agriculture-dominated areas required
protection alternatives. Due to the presence of the
nitrogen surplus in soil-crop systems that provide nitrate
to groundwater, it is assumed that there is a sustainable
nitrogen surplus (SNS) that soil-crop systems can handle
without providing too much nitrate available for leach-
ing (Mohammad and Jagath 2005b). Thus, agriculture-
derived nitrate pollution can be controlled by main-
taining the nitrogen surplus of the crop fields under the
SNS. SNS is a goal-oriented rather than means-oriented
indicator, leaving government and farmers the more
freedom to select proper measures to control agriculture
derived groundwater pollution and keep the ground-
water NO3-N concentration lower than 10 mg L)1.
Consequently, the severely polluted area can be reduced.
So, we investigated the practicability of the GIS-based
BPNN by simulating the sensibility of severely polluted
area to FNS change and recommending the SNS.

Under current agricultural land use conditions, the
severely polluted area simulated by the BPNN is
88.79 km2, where the average field nitrogen surplus is
224 kg ha)1 year)1. The reductions of field nitrogen
surplus ranging from 5 to 50% at intervals of 5% were
simulated by the BPNN model. The result shows that
decrease of FNS would notably reduce the severely
polluted area. A 35% decrease of FNS resulted in 84.7%
reduction of the severely polluted area. Further decrease
of the filed nitrogen surplus results in much less reduc-
tion of the severely polluted areas. Figure 3c showed
the simulation results of NO3-N concentration distri-
bution with the FNS reduction by 35% (reduced to

Fig. 3 Distributions of NO3-N concentrations in the study area:
aestimation by interpolation of the sampling data; b BPNN
prediction under current land use conditions; c BPNN prediction
with the FNS reduction of 35% in the severely polluted areas

Table 3 BPNN simulation results in comparison to observed re-
sults

Range of NO3-N concentration (mg L)1) Areas (km2)

IDW method BPNN

0–3 28.65 44.86
3–5 85.42 95.64
5–10 159.54 140.89
>10 88.79 81.01
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146 kg ha)1 year)1) only in the severely polluted areas.
The remained severely polluted areas is 12.41 km2,
where soil sand content at depth of 30–60 cm was
greater than 40% and the nitrate concentration reduc-
tion was supposed to be more sensitive to rain fall and
irrigation. Thus, the FNS of 146 kg ha)1 year)1 can be
recommended as the SNS in the severely polluted areas.
However, a uniform SNS for the whole severely polluted
areas may be arbitrary because of spatial heterogeneity
of groundwater NO3-N concentration. So, it may lead to
economic loss as a result of unnecessary reductions of
nitrogen input in some area. Therefore, the spatial pat-
tern of the sustainable FNS in the severely polluted areas
requires further research.

Conclusion

To predict the nitrate concentration distribution in an
agriculture-dominated region, a GIS-based BPNN
model was developed. Field nitrogen surplus and three
easily obtained site-specific hydrogeological properties
were selected as input vectors to simulate the NO3-N
concentration in groundwater. The buffer zones were
designated so that the effects of the land use patterns on
groundwater nitrate pollution distribution can be con-
sidered. Modeling efficiency increases because buffer
zone designation supports the assumption that the land
use patterns and site-specific properties of neighboring
field play important roles in shaping groundwater nitrate
pollution patterns.

The optimal performance of the BPNN was obtained
with a learning rate of 0.02, a 4–7–1 architecture, and a

buffer radius of 400 m. Although the BPNN underesti-
mated the clean and slightly polluted areas and overes-
timated the severely polluted areas in comparison to
observed results, it did capture the general trend of the
nitrate distribution in the study area under current
agricultural land use conditions. It was assumed that
there is a sustainable nitrogen surplus that soil-crop
systems can handle without too much nitrate available
for leaching. The sustainable FNS in the severely pol-
luted areas was recommended by running the BPNN
with various FNS progressively. The severely polluted
area was observed to be sensitive to reduction of the
FNS.

A simple combination of nitrogen budget with GIS-
based BPNN can be constituted as a cost-effective tool
for prediction and management of groundwater nitrate
pollution in an agriculture dominated region in the
NCP. The significant advantage of BPNN method
should be the easily obtained data supports and such an
analytical tool is more practical for policy-making.
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