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Abstract This paper presents a one-dimensional steady-
state model to investigate the sensitivity of the dynamics
of sustained eruption columns to radius variations with
height due to thermal expansion of the entrained air, and
decreases in atmospheric pressure with height. In contrast
to a number of previous models using an equation known
as the entrainment assumption, the new model is based on
similarity arguments to derive an equation set equivalent to
the model proposed by Woods [Bull Volcanol 50:169–193,
1988]. This approach allows investigation of the effect of
gas compressibility on the entrainment rate of ambient air,
which has been little examined for a system in which a
decrease in pressure significantly affects the density strat-
ification of a compressible fluid. The new model provides
results that include two end members: one in which the
volume change within the eruption columns affects only
the radial expansion without changing the vertical motion,
and the other is the converse. The Woods [Bull Volcanol
50:169–193, 1988] model can be regarded as being between
those two end members. The range of uncertainty arises
because the extremely high temperature of discharged ma-
terials from a volcanic vent, and the exceptional terminal
height of the eruption columns, allow significant expan-
sion of the gas component in the eruption columns, making
them behave differently from common turbulent plumes.
This study indicates that the maximum height of the erup-
tion columns is affected considerably by this uncertainty,
particularly when the eruption columns extend above a
height of 10 km, at which the pressure is about one-fourth
the pressure at the ground surface. Column collapse may
also be suppressed in wider parameter ranges than previ-
ously estimated. However, the uncertainty can be reduced
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by measuring column radii through a vertical profile during
actual volcanic eruptions. Accordingly, this paper suggests
that appropriate observation of eruption column shapes is
essential for improving our understanding of the dynamics
of eruption columns.
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Introduction

Volcanic eruption columns are generated during explosive
volcanic eruptions that tear magma into fragments and dis-
charge them as pyroclasts from a volcanic vent at speeds of
hundreds of meters per second. An eruption column pre-
dominantly consists of a turbulent suspension of hot pyro-
clasts, volcanic gases, and air mixed from the surroundings.
Some eruption columns extend as high as 50 km into the
atmosphere and sustain themselves for a few hours to sev-
eral days with a magma discharge rate of 106 to 109 kg s−1

(Walker 1981; Carey and Sigurdsson 1989).
Extensive studies over the last few decades have led to

considerable advances in understanding the dynamics of
volcanic eruption columns, as summarized in some out-
standing reviews (e.g. Woods 1993; Sparks et al. 1997;
Dobran 2001). These studies suggest that the lower part
of an eruption column is denser than the ambient air and
driven by the upward momentum from a volcanic vent.
This part is referred to as the gas-thrust region. The erup-
tion column collapses to the ground surface to form a foun-
tain that feeds a pyroclastic gravity current if the column
remains denser than the ambient air. However, many erup-
tion columns continue rising because hot pyroclasts contain
substantial thermal energy, by which the air mixed into the
eruption column is heated and expands to become buoy-
ant. Buoyancy forces generated by thermal energy released
from hot pyroclasts dominate the motion at the upper part
of the eruption column, which part is referred to as the
convective region. The top of an eruption column is called
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the umbrella region, at which the eruption column spreads
laterally when the bulk density of the gas-particle mixture
in the eruption column becomes equal to the density of the
ambient atmosphere at that height.

Previous theoretical studies on the dynamics of volcanic
eruption columns have been based primarily on classical
one-dimensional steady-state models of turbulent jets and
plumes. Wilson (1976) investigated the motion of the gas-
thrust region by adapting the jet theory of Prandtl (1952).
Settle (1978) and Wilson et al. (1978) considered that buoy-
ancy forces dominate the motion of an eruption column at
most of its height, and applied the one-dimensional model
for turbulent plumes proposed by Morton et al. (1956).
They successfully demonstrated that the maximum height
of an eruption column has a simple relationship with the
heat flux given at a volcanic vent. Woods (1988) com-
bined the jet model of Prandtl (1952) and the plume model
of Morton et al. (1956) to develop a more sophisticated
one-dimensional steady-state model, which takes the con-
servation of thermal energy into account to investigate the
influences of considerable changes in the density and tem-
perature in an eruption column.

While Woods (1988) successfully shed new light on the
dynamics of volcanic eruption columns, the Woods (1988)
model involves some conceptual simplifications with rela-
tively few physical variables. In particular, the entrainment
assumption, which was introduced by Morton et al. (1956)
to parameterize mixing between the inside and outside of
turbulent plumes, plays a key role in the Woods (1988)
model. The entrainment assumption has been justified by
laboratory experiments under simple conditions and ap-
plied to phenomena over a wide range of scales (Turner
1986). However, physical observations during actual vol-
canic eruptions are too sparse to ensure that the entrainment
assumption can be applied to eruption columns.

Volcanic eruption columns involve a number of physi-
cal processes that are not considered in the original plume
model of Morton et al. (1956). The physical processes that
cause volume changes to a gas-particle mixture in an erup-
tion column may violate the entrainment assumption be-
cause the entrainment assumption is originally introduced
to an incompressible fluid flow. Therefore, the influence of
the thermal expansion of mixed air due to heat exchange
between hot particles and the surrounding gas should be
carefully examined. A decrease in atmospheric pressure
with height also needs to be addressed because it causes
considerable expansion of an uprising gas-particle mixture
in an eruption column that is as high as the scale height of
the atmosphere.

A possible approach to investigate the effects is to con-
duct computer simulations. Elaborate numerical models
based on the Navier-Stokes equations have been developed
in the past two decades to provide abundant information
on eruption columns (e.g. Valentine and Wohletz 1989;
Neri and Dobran 1994; Oberhuber et al. 1998). Computer
simulations will be an increasingly influential approach
because they have a significant potential for investigating
realistic complex processes, including time-variable and
three-dimensional effects.

Despite that, special care is required to evaluate simu-
lation results, particularly those related to the processes
addressed here, primarily because numerical techniques
for compressible flows of a gas-particle mixture are still in
their infancy. The thermal expansion of a gas-particle mix-
ture is controlled by the intimate interaction of the thermal
and particle diffusion due to turbulence, whose length scale
is substantially smaller than a typical grid size of volcanic
simulations. The validity of numerical methods for
approximating the contribution of the process is scarcely
ascertained. Expansions due to pressure changes also tend
to induce considerable errors in computer simulations
because inappropriate conditions such as unrealistic
boundaries often smear pressure calculations. Therefore,
the quantitative accuracy of simulation results is open to
question.

Simulation results should be interpreted on the basis of
the proper understandings of the significance of particular
effects on flow characteristics, many of which are gained
from similarity arguments. This suggests that similarity ar-
guments are still useful even in the computer age. This
study aims to provide a physical basis for robust simula-
tions with a well-designed numerical model. The outcome
of this study is used to extend the numerical model pre-
sented in Ishimine (2005) to appropriately calculate erup-
tion columns penetrating the stratosphere.

This paper discusses how the thermal expansion of mixed
air and the decrease in atmospheric pressure affect the for-
mulation of the simple one-dimensional model based on
similarity arguments. The focus is primarily on the modi-
fication required of the entrainment assumption, which is
used in the same form as in Morton et al. (1956) in pre-
vious studies that examine gas compressibility in eruption
columns (e.g., Sparks 1986; Woods 1988; Glaze and Baloga
1996).

This paper does not address some effects that play impor-
tant roles in the dynamics of eruption columns, for exam-
ple, thermal disequilibrium between particles and the sur-
rounding gas, excessive pressure of ejected materials, and
condensation/evaporation of magmatic and atmospheric
water. The additional processes are ignored to prevent ob-
scuring the central point of this paper. I adopt the simple
assumptions used in Woods (1988) except for the entrain-
ment assumption. This approach leads to development of a
new model of sustained eruption columns analogous to the
Woods (1988) model. The comparison of the models pro-
vides insight into the dynamics of eruption columns. The
additional processes are expected to affect the new model
in a similar manner as the previous models. They are easily
incorporated into the new model because the mathemati-
cal formulations for the processes have been proposed in
previous studies (e.g., Woods and Bursik 1991; Woods and
Bower 1995; Glaze et al. 1997).

The first part of this paper is devoted to reviewing
one-dimensional steady-state models of turbulent jets and
plumes with the help of similarity arguments. This may
clarify the physical background of the entrainment assump-
tion for turbulent jets and plumes in uniform surroundings.
The mathematical treatment for deriving one-dimensional
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steady-state models that include the effect of the thermal
expansion of mixed air and the decrease in atmospheric
pressure is then examined. An alternative formulation of
an eruption column is proposed on the basis of the above
discussion, to examine the sensitivity of the vertical varia-
tion of physical variables, such as the density, temperature,
and upward velocity in an eruption column, on the varia-
tion in radius with height. There are five appendices, which
contain derivations of various equations to support the ar-
guments in the main body of the paper.

Similarity solutions of turbulent jets and plumes

Fundamental assumptions

As in previous studies of volcanic eruption columns, I as-
sume eruption columns to be generated by continuous dis-
charge of a hot mixture of magma fragments and volcanic
gases from a volcanic vent. I use a one-dimensional steady-
state model for a forced plume. A forced plume is a flow
caused by continuous discharge of a fluid from a small ori-
fice into another fluid, which is at rest when not influenced
by the discharged fluid. The vigorous turbulent mixing be-
tween the discharged fluid and the ambient fluid gives the
forced plume a characteristic conical shape.

The flow is referred to as a turbulent jet if the density
of the discharged fluid is virtually equal to the density of
the ambient fluid and, as a result, the buoyancy effect is
negligible. A turbulent jet is driven by the momentum flux
given at the orifice. If the density difference between the
discharged fluid and its surroundings is so significant that
the buoyancy effect is predominant over the effect of the
momentum flux from the orifice, then the flow is referred to
as a turbulent plume, or a pure plume, to distinguish it from
a forced plume. A forced plume is affected by buoyancy
forces as well as the momentum flux from the orifice. A
forced plume is sometimes referred to as a buoyant jet.

I first review one-dimensional steady-state models of tur-
bulent jets and turbulent plumes to provide a theoretical
framework to discuss eruption columns. These flows have
been widely studied as a basic problem of fluid dynamics
and the results may be found in the literature (e.g. Fischer
et al. 1979; List 1982; Turner 1986).

Similarity solutions for the time-averaged properties of
idealized turbulent jets and plumes can be obtained under
the assumptions listed below. Note that numbers (1) through
(8) are considered wholly acceptable for the purpose of
this paper even when applying to eruption columns, while
numbers (9) and (10) are subsequently addressed in more
detail.

(1) Flows are so extremely turbulent that viscosity does
not affect the flow.

(2) Flows can be regarded as steady when considering
temporal averages over an appropriate period of time,
despite flows being turbulent and thus inherently un-
steady.

(3) Flows of the surrounding fluid are negligible except for
the turbulent region affected by the discharged fluid.

(4) The difference in pressure between inside and outside
of the turbulent region is negligible.

(5) Boundaries do not affect the flows.
(6) Buoyancy forces and the momentum supplied from a

source are both directed vertically upward. Accord-
ingly, horizontal motion is negligible.

(7) The time-averaged profiles of vertical velocity and
density in a horizontal cross-section are similar at all
heights.

(8) An orifice is infinitely small and thus the shape and
size of the orifice do not affect flows.

(9) Both the discharged and surrounding fluids are incom-
pressible and do not change volume upon mixing.

(10) The density difference between the discharged and
surrounding fluids is small compared with the refer-
ence density, which in this paper is the density of the
surrounding fluid at the level of the source.

Physical variables are described in cylindrical polar co-
ordinates (r, z), where the vertical axis is taken as the z-axis
with its origin at the injecting source, and the perpendicular
distance from the z-axis is denoted by r. My interest in this
section is in determining the variation of the time-averaged
profile of the upward velocity, w′(r, z), and density, ρ ′(r,
z), with height. Previous experimental studies of jets and
plumes suggested that time-averaged profiles in the hori-
zontal cross-section are axially symmetrical and described
well by Gaussian profiles, as

w′(r, z) = w(z) exp

(
− r2

L2

)
, (1)

and

ρ ′(r, z) = α(z) − �ρ(z) exp

(
− r2

λ2L2

)
, (2)

where w(z) is the upward velocity on the z-axis, α(z) is
the density of the ambient fluid, ∆ρ (z) is the difference
of the density on the z-axis from the ambient density, L is
the horizontal length scale on which the upward velocity
decays by a factor 1/e, and λ is the ratio of the length scale
of the density distribution to that of the upward velocity
distribution (all variables used in this paper are listed in
Table 1).

Laboratory experiments indicate that λ tends to be
slightly greater than unity. For example, Rouse et al. (1952)
give λ=1.16 for forced plumes generated by heated air,
while Papanicolaou and List (1988) report that λ=1.194
for forced plumes of sodium chloride-water solutions.
In this paper, I define the length scale L as the radius
of the flow for simplicity, on the assumption that λ is
unity.

The motion of turbulent jets and plumes is described
by the conservation conditions of volume, mass, and mo-
mentum; therefore, I discuss the three vertical fluxes inte-
grated across the horizontal cross-section at each height.
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Table 1 Notations

B Buoyancy flux
B∗ Buoyancy flux modified by pressure decrease
Bo Buoyancy flux at the source
C Integration constant
Ca Specific heat at a constant pressure of the air,

998 J K−1 kg−1

CP Bulk specific heat at a constant pressure of the material in
the eruption column

CPo Bulk specific heat at a constant pressure of the material in
the eruption column at the source, 1617 J K−1 kg−1

g Gravitational acceleration, 9.81 m s−2

H1 Height of the tropopause, 11 km
H2 Height of the stratopause, 20 km
ha Characteristic length scale for an isentropic atmosphere
hj Characteristic length scale for a forced plume
kj Jet radius gradient, 0.125
kp Plume radius gradient, 0.108
L Radius
L∗ Radius modified by pressure decrease
L† Modified radius for the eruption column
Lo Radius at the source
M Momentum flux
Mo Momentum flux at the source
mg Mass of gas in the eruption column at a given height
mm Mass of volcanic gas in the eruption column at a given

height
ms Mass of solid particles in the eruption column at a given

height
N Brunt-Väisälä frequency
n Gas mass fraction
no Gas mass fraction at the source
P Pressure
Po Pressure at the ground surface
P1 Pressure at the tropopause
P2 Pressure at the stratopause
Q Mass flux
R Non-dimensional radius of an incompressible plume in a

stratified environment
R∗ Non-dimensional radius of a plume in an isentropic

atmosphere
Ra Gas constant for the air 285 J K−1 kg−1

Rg Bulk gas constant for the gas in the eruption column
Rm Gas constant for the volcanic gas 462 J K−1 kg−1

r Radial distance from the centerline
T Temperature in the eruption column
T∗ Temperature of the isentropic air
Ta Temperature of the ambient air
To Temperature of the ambient air at the ground surface, 273 K
T1 Temperature of the ambient air at the tropopause
U Non-dimensional velocity of an incompressible plume in a

stratified environment
U∗ Non-dimensional velocity of a plume in an isentropic

atmosphere
V Volume flux
Ve Volume flux of the entrained fluid per unit height
V ∗

e Ve modified by pressure decrease

Table 1 Continued

V †
e Ve modified for the eruption column

w Vertical velocity on the centerline
w′ Local vertical velocity
wo Vertical velocity on the centerline at the source
X L∗w
x Non-dimensional height of an incompressible plume in a

stratified environment
x∗ Non-dimensional height of an isentropic atmosphere
Y L∗2w

z Height above the source
α Density of the environment
α∗ Potential density for α

αo Density of the environment at the source height
β Density on the centerline
βo Density on the centerline at the source
�1 Temperature lapse rate at the troposphere, −6.5 K m−1

�2 Temperature lapse rate at the stratosphere, 2.0 K m−1

γ Ratio of specific heats of the air, 1.40
� Non-dimensional reduced gravity
�ρ Density difference between the centerline and environment,

α−β

�ρ∗ �ρ modified by pressure decrease
δV Volume change of the internal fluid
δVe Volume change of the entrained fluid
εj Entrainment coefficient of the jet, 0.0625
εp Entrainment coefficient of the plume, 0.0900
λ Ratio of the length scale for the velocity and density, 1.0
π 3.14
ρ′ Local density
ρb Density of the air at a temperature in an eruption column
ρg Density of the gas phase in an eruption column
ρm Density of volcanic gas at a temperature in an eruption

column
ρs Density of solid particles, 1000 kg m−3

φ Gas volume fraction
φo Gas volume fraction at the source
ξ Non-dimensional variable of X
ψ Non-dimensional variable of Y

The volume flux V (z) is defined by

V (z) =
∫ ∞

0
w′(r, z) · 2πrdr. (3)

Similarly, the mass flux Q(z) and momentum flux M(z) are
defined by

Q(z) =
∫ ∞

0
ρ ′(r, z)w′(r, z) · 2πrdr, (4)

M(z) =
∫ ∞

0
ρ ′(r, z) w′(r, z) w′(r, z) · 2πrdr. (5)
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Equations (1) and (2) can be used to rewrite Eqs. (3) to
(5) as

V (z) = π L2w, (6)

Q(z) = π

(
α − λ2

1 + λ2
�ρ

)
L2w, (7)

M(z) = π

2

(
α − 2λ2

1 + 2λ2
�ρ

)
L2w2. (8)

Turbulent jets in a uniform environment

A turbulent jet can be defined as a flow generated by contin-
uous discharge of a fluid of a constant density from a small
orifice into a calm fluid of the same density. The density
difference between the discharged fluid and its surround-
ings is zero (i.e., �ρ = 0), and thus Eq. (8) can be rewritten
as

M(z) = π

2
αL2w2. (9)

The total momentum flux passing through any horizontal
cross-section remains constant when no external forces act
on the fluid, i.e.,

d

dz

(π

2
αL2w2

)
= 0, (10)

where πα/2 can be eliminated because it is constant.
Equation (10) indicates that the volume flux described by
Eq. (6) approaches zero when L approaches zero. This also
holds for the mass flux. Thus, we can envisage a virtual
point source from which a finite amount of momentum
flux is supplied without volume and mass fluxes. This in-
dicates that the turbulent jet is defined by momentum flux
M alone, which remains constant at all distances from the
origin.

The above property suggests that an additional constraint
can be obtained from similarity arguments, as described
in several publications (e.g. Fischer et al. 1979; List 1982;
Turner 1986; Landau and Lifshitz 1987). The effect of vis-
cosity is essentially unimportant for the motion considered
here because this paper addresses fully turbulent flows to
apply to volcanic eruption columns with Reynolds numbers
certainly exceeding a few hundred thousands. Turbulent
mixing also prevents the shape and size of the orifice from
affecting the form of turbulent jets at distances greater than
the dimensions of the orifice. Boundary conditions also
cannot prescribe the length scale because the solution for
flows in a virtually infinite space filled with a calm fluid is
now sought. As a result, there are no characteristic parame-
ters with the dimensions of length. The flow properties are
thus governed by turbulence alone, which makes the flow
self-similar.

If a turbulent jet spreads its radius as geometrically self-
similar, the radius can only be directly proportional to the
height:

L = k j z, (11)

where kj is a proportionality constant verified by labora-
tory experiments. The upward velocity can be derived from
Eqs. (10) and (11):

w = 1

k j

(
2M

πα

)1/2

z−1. (12)

Although many previous studies on volcanic eruption
columns treat the gas-thrust region by adapting Prandtl
(1952)’s theory, the above description is preferable because
it facilitates comparing the mathematical treatment of tur-
bulent jets with that of turbulent plumes described later.
The present treatment is mathematically equivalent to that
in Prandtl (1952) for the arguments in this paper. For ex-
ample, combining Eqs. (10) and (11) with a value obtained
from experiments:

k j = dL

dz
= 1

8
, (13)

yields Wilson (1976)’s Eq. (10):

w
dw

dz
= −w2

8L
. (14)

Turbulent plumes in a uniform environment

A pure turbulent plume can be defined as a flow driven
by buoyancy forces alone. This indicates that the momen-
tum flux given at an orifice is negligible in a pure plume
compared with the momentum flux generated by buoy-
ancy forces. The flow properties of a turbulent plume in
a uniform environment can thus be determined by simple
similarity arguments, as with the turbulent jet described
above.

Buoyancy forces act at all heights, and thus the conser-
vation of the momentum flux passing through a horizontal
cross-section can be given by

dM

dz
=

∫ ∞

0
(α − ρ ′)g · 2πrdr, (15)

where g is the acceleration due to gravity. Integrating the
right hand side transforms Eq. (15) to

d

dz

(π

2
αL2w2

)
= πλ2�ρgL2. (16)

Note that the left hand side of Eq. (16) is described in a
manner similar to that in Eq. (10), despite being rewritten
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by using Eq. (8). This introduces the Boussinesq approxi-
mation, which takes the density difference, �ρ, to be neg-
ligible except in terms directly proportional to the density
difference such as the right hand side of Eq. (16).

An additional constraint is required to solve Eq. (16)
because it includes �ρ, in contrast to Eq. (10). That leads to
discussion of the conservation of volume and mass fluxes.
The fluid discharged from the orifice is mixed with the
ambient fluid due to vigorous turbulence. This increases
the volume and mass fluxes passing through a horizontal
cross-section as the fluid moves away from the orifice.
Accordingly, the volume flux can be described as

dV

dz
= Ve, (17)

where Ve is the volume flux entrained into the turbulent
region from the calm surroundings per unit height. Since
the entrained mass is represented by the product of the
volume of the entrained fluid and its density, the mass flux
is given by

dQ

dz
= αVe. (18)

Combining Eqs. (17) and (18) yields

d

dz
(αV − Q) = V

dα

dz
. (19)

Although the right hand side of Eq. (19) can be elimi-
nated for the flows in a uniform environment, I leave it for
following arguments. Equations (6) and (7) can be used to
transform Eq. (19) to

d

dz

(
π

λ2

1 + λ2
�ρL2w

)
= π L2w

dα

dz
. (20)

Equation (20) indicates that if the ambient fluid is uni-
form, the buoyancy flux defined by

B = π
λ2

1 + λ2

�ρ

α
gL2w (21)

remains constant. Combining Eqs. (16) and (21) yields

d

dz

(π

2
αL2w2

)
= (1 + λ2)αB

w
. (22)

The buoyancy flux is independent of the momentum, vol-
ume and mass fluxes because the buoyancy flux is constant
in a uniform environment whereas the other three fluxes
vary with height as shown in Eqs. (16)–(18). Thus, we can
envisage an ideal turbulent plume that is generated by a
buoyancy flux of a finite amount given at a virtual point
source without the momentum, volume, and mass fluxes at
the point. This ideal turbulent plume should be described by

the buoyancy flux given at the source alone. This indicates
that the turbulent plume has no characteristic parameters
with the dimensions of length, as is the case with turbulent
jets. It therefore follows as before that the flow becomes
self-similar and the radius must be directly proportional to
the height:

L = kpz, (23)

where kp is a proportionality constant for a turbulent plume.
Combining Eqs. (22) and (23) yields the upward

velocity:

w =
[

3(1 + λ2)B

2πk2
p

z−1 + Cz−3

]1/3

, (24)

where C is an integration constant and becomes zero with
a boundary condition assuming a momentum flux of zero
at the origin. The density difference between the inside and
outside of the plume can be written as

�ρ = α

λ2g

[
2(1 + λ2)2 B2

3π2k4
p

]1/3

z−5/3. (25)

The above solution is equivalent to that obtained in
Morton et al. (1956), although the entrainment assumption
is not used here.

It should be noted that the equation for the volume flux,
Eq. (17), holds only when the volume of entrained fluid
does not change upon mixing. Actual fluids change their
volume when the thermodynamic conditions in the tur-
bulent plume differ from those of the surroundings. The
air mixed into a volcanic eruption column, in particular,
should significantly expand when the mixed air is heated
in the eruption column. This is the key topic discussed in
this paper.

Entrainment assumption

It is worth noting here a simple fact first pointed out by
Batchelor (1954): The entrainment assumption is not an
independent assumption but a fundamental consequence of
the similarity arguments for a turbulent plume in a uniform
environment. The entrainment assumption states that the
increasing rate of the vertical volume flux in a turbulent
plume is directly proportional to the product of the length
of the circumference and upward velocity at the height,
i.e.,

dV

dz
= 2πεp Lw, (26)

where εp is a constant called the entrainment coefficient.
This assumption was widely used in previous studies on
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volcanic eruption columns since its usefulness was demon-
strated by Morton et al. (1956).

In contrast, the analytical solution of turbulent plumes
in the preceding subsection was derived on the basis of
similarity arguments. The volume flux of Eq. (6) can
be given as follows by using the similarity solution in
Eqs. (23) and (24):

V = π

[
3(1 + λ2)k4

p B

2π

]1/3

z5/3. (27)

The z-derivative of Eq. (27) yields an equation in which
the entrainment coefficient is represented by

εp = 5

6
kp. (28)

In fact, if two relations of L ∝ z and w ∝ za (a is an
arbitrary constant except −2) are simultaneously satisfied,
we always obtain

d

dz
(L2w) ∝ Lw. (29)

This demonstrates that turbulent jets as well as turbulent
plumes satisfy the relation stated in the entrainment as-
sumption. Here, the entrainment coefficient for a turbulent
jet, εj, is given by

ε j = 1

2
k j . (30)

Forced plumes in a uniform environment

Forced plumes are affected by both the buoyancy flux and
momentum flux given at the source. A forced plume is
driven near the source predominantly by the momentum
flux given at the source. Buoyancy forces increase the mo-
mentum flux at all heights as the fluid in a forced plume
moves away from the source and, thus, the effect of the
momentum flux given at the source becomes negligible.
Accordingly, the flow asymptotically approaches a pure
turbulent plume with increasing height.

The transition height from a turbulent jet to a turbulent
plume can be estimated by simple dimensional analysis.
Morton (1959) demonstrated that combining the constant
buoyancy flux, B, and the momentum flux given at the
source, Mo, yields only one parameter that has the dimen-
sion of length, given by

h j = M3/4
o

α3/4 B1/2
. (31)

Papanicolaou and List (1988)performed laboratory exper-
iments and reported that flows behave like pure jets for

z/hj<1 and pure plumes for z/hj>5. There is a smooth tran-
sition from jets to plumes for 1<z/hj<5.

I now consider the vertical variation of the momentum
flux in a forced plume by using the analytical solution for
turbulent plumes in Eq. (24). Note that simple similarity ar-
guments cannot be directly applied here in the strict sense
because forced plumes have a characteristic length scale,
hj. Nevertheless, laboratory experiments indicate that the
spreading rate of the plume radius is nearly equal to that of
the jet radius. For example, Papanicolaou and List (1988)
indicated that kj=0.109 and kp=0.105. Accordingly, I ten-
tatively apply the similarity solution for a pure plume to a
forced plume, and then Eq. (24) gives the upward velocity
of a forced plume as

w =

3(1 + λ2)B

2πk2
p

z−1 +
(

2Mo

πk2
pα

)3/2

z−3




1/3

. (32)

As expected, Eq. (32) corresponds to Eq. (12) if the buoy-
ancy flux B is absent and kp=kj.

The vertical variations of the radius and upward velocity
are given, and thus, the vertical variation of the momentum
flux can be easily derived as

M = Mo

[
1 + 3

4

(π

2

)1/2
(1 + λ2)kp

(
z

h j

)2
]2/3

. (33)

Equation (33) suggests that the momentum flux varies by
1.1<M/Mo<3.2 in the smooth transition range of 1<z/hj<5
if kp=0.10 and λ=1.0. The middle value of the range almost
exactly coincides with M/Mo=2.0, at which the momentum
flux generated by buoyancy forces becomes equivalent to
that given at the origin. Although this is a direct conse-
quence of the fact that a forced plume is a composite of a
pure jet and pure plume, it is noteworthy in the context of a
study of volcanic eruption columns. The transition height
from the gas-thrust region to the convective region of a
volcanic eruption column is often prescribed by conditions
different from those based on the momentum flux ratio. I
will discuss this in detail in a subsequent section.

An alternative formulation of a forced plume was pro-
posed by Morton (1959), in which a numerical integra-
tion was performed on the assumption that the entrainment
coefficient is constant throughout the height. Combining
Eqs. (28) and (30) under this assumption yields

kp

k j
= 3

5
. (34)

This suggests that the spreading rate of the radius in the
plume-like region far from the origin is 40% smaller than
that in the jet-like region near the origin. List and Imberger
(1973) followed this treatment and derived the expres-
sion for the vertical variation of momentum flux similar to
Eq. (33).
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Another formulation separates a forced plume into jet-
like and plume-like regions to perform numerical integra-
tion, as demonstrated in Woods (1988). Woods (1988) used
the value kj=0.125 for the jet-like region and εp=0.09 for
the plume-like region, corresponding to kp=0.108. Thus,
the ratio of the radius spreading was

kp

k j
= 0.864. (35)

This indicates that Woods (1988) took an inter-
mediate path between that based on constant radius
spreading and that based on the constant entrainment
coefficient.

Turbulent plumes in a stratified environment

Plumes in a linearly density-stratified environment

I next consider a flow discharged into an environ-
ment in which the fluid density varies linearly with
height. Such a flow always includes some features of
a plume because density stratification affects the flow
via buoyancy forces. Thus, I briefly describe here only
a plume not affected by the momentum flux at the
origin.

The main difference between a turbulent plume in a strat-
ified environment and one in a uniform environment is that
the former has a maximum height to which it can rise. The
density in the plume increases as the fluid rises because
it mixes with the ambient heavier fluid. The ambient fluid
is, on the other hand, less dense at higher levels when the
fluid is stably stratified. Thus, the plume in a stratified fluid
should reach a height at which the density in the plume
is equal to that in the surroundings. This height is often
referred to as the neutral buoyancy height. The direction
of buoyancy forces change to downward above this height,
and thus the fluid tends to stagnate near this height and
spread horizontally.

Simple similarity arguments cannot be applied to the
plumes in a stratified environment in the strict sense be-
cause the neutral buoyancy height characterizes the length
scale of the flow. Nevertheless, Morton et al. (1956) re-
ported that a one-dimensional model using the entrain-
ment assumption exhibited good agreement with experi-
mental results, even though the entrainment assumption
is an alternative expression of self-similarity. This im-
plies that density stratification has little effect on the dy-
namics of turbulent plumes below the neutral buoyancy
height.

The above argument can be confirmed by comparing the
Morton et al. (1956) model with the numerical model using
the assumption that the radius is directly proportional to
the height. The Morton et al. (1956) model consists of
Eqs. (16), (20), and (26), i.e.,




d

dz

(π

2
αo L2w2

)
= πλ2�ρgL2,

d

dz

(
π

λ2

1 + λ2
�ρL2w

)
= π L2w

dα

dz
,

d

dz
(π L2w) = 2πεp Lw,

(36)

where αo denotes the density of the ambient fluid at z=0.
The relation in which the radius is directly proportional to
height can be used instead of the entrainment assumption.
The equation set is then given by




d

dz

(π

2
αo L2w2

)
= πλ2�ρgL2,

d

dz

(
π

λ2

1 + λ2
�ρL2w

)
= π L2w

dα

dz
,

L = kpz.

(37)

Figure 1 depicts the numerical integrations of the two
equation sets above. The physical variables are normalized
as with Morton et al. (1956) by




z = 2−3/4π−1/4(1 + λ2)−1/8ε
−1/2
p B1/4

o N−3/4x,

L = 21/4π−1/4(1 + λ2)−1/8ε
1/2
p B1/4

o N−3/4 R,

w = 21/4π−1/4(1 + λ2)3/8ε
−1/2
p B1/4

o N 1/4U,

g
�ρ

αo
= 2−3/4π−1/4λ−2(1 + λ2)7/8ε

−1/2
p B1/4

o N 5/4�,

(38)

where Bo is the buoyancy flux given at the origin and N
is the parameter that characterizes the stratification of the
environment, defined by

N 2 = − g

αo

dα

dz
. (39)
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Fig. 1 The variation of the non-dimensional upward velocity (U),
radius (R), and reduced gravity (�/2) with height calculated for a tur-
bulent plume in a uniformly and stably stratified fluid. The solid lines
are calculated by Eq. (37), which assumes the radius to be directly
proportional to the height. The dashed lines signify the calculation
with the equation set derived by Morton et al. (1956) shown in
Eq. (36). Note that two lines of �/2 are too close to be distinguished
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This parameter is often referred to as the Brunt-Väisälä
frequency.

The radius obtained from the Morton et al. (1956) model
is almost the same as that from Eq. (37) below the neutral
buoyancy height, x=2.1, as shown in Fig. 1. This indicates
that the entrainment assumption can be applied because the
density stratification has little effect on the spreading rate of
the plume radius. The upward velocity and reduced gravity
as well as the radius obtained from the two equation sets
are consequently very similar.

Note that the similarity solution to the turbulent plume
in a uniform environment can also be regarded as a fairly
good approximation. I can clarify that by estimating the
neutral buoyancy height using Eq. (25). The density at the
centerline in the turbulent plume, β, is given by

β = αo − αo

λ2g

[
2(1 + λ2)2 B2

o

3π2k4
p

]1/3

z−5/3. (40)

The density of the ambient stratified fluid can be written
as

α = αo + dα

dz
z. (41)

Since the density inside and outside of the plume becomes
equal at the neutral buoyancy height, i.e., α=β, the height
can be estimated from

z =21/83−1/8π−1/4λ−3/4(1 + λ2)1/4k−1/2
p B1/4

o N−3/4. (42)

Letting λ=1.0 and kp=1.2 εp gives a value of 1.9 in non-
dimensional form as the neutral buoyancy height, while
the numerical integration of Morton et al. (1956) yields
2.1.

Plumes in an isentropic atmosphere

I next discuss turbulent plumes rising in an isentropic at-
mosphere to examine the effect of a decrease in atmo-
spheric pressure with height. Air is compressible, and thus
the atmospheric pressure decreases with increasing height,
even if the atmosphere is in neutral equilibrium. This com-
pressibility makes the fluid in the turbulent plumes expand
as they rise. This requires substantial modification in the
model for turbulent plumes because the models in the previ-
ous sections are based on the assumption that the discharged
fluid and its surroundings do not change their volume.

Since the pressure in a plume, P, is assumed to be equal
to the pressure of the ambient atmosphere, it is given by
the hydrostatic equation:

dP

dz
= −αg. (43)

Combining Eq. (43) with a simple thermodynamic rela-
tion, Ca dT=dP/α, which is always satisfied in an adiabatic

process, yields the temperature of an isentropic atmosphere
at a given height z:

T ∗ = To − g

Ca
z, (44)

where Ca is the air specific heat at a constant pressure,
and To is the air temperature at ground level. The density
of the atmosphere decreases with increasing height as the
pressure and temperature decrease with height.

The conservation of fundamental physical variables, i.e.,
momentum, mass, and volume fluxes, are re-examined to
take the volume change due to the air compressibility into
account. Equations (16) and (18) can be used as they are
written because the momentum and mass fluxes are not af-
fected by the air compressibility. However, the volume flux
equation in Eq. (17) must be modified to add the volume
change due to compressibility, δV, to the right hand side.
Thus, the equation set for a turbulent plume in an isentropic
atmosphere can be written by




d

dz

(π

2
αL2w2

)
= πλ2�ρgL2,

d

dz

[
π

(
α − λ2

1 + λ2
�ρ

)
L2w

]
= αVe,

d

dz
(π L2w) = Ve + δV .

(45)

Note that the density difference �ρ is neglected on the
left hand side of the momentum flux equation in the same
manner as in Eq. (16).

Morton et al. (1956) suggested that the one-dimensional
model for incompressible turbulent plumes can be applied
to turbulent plumes in the atmosphere by replacing the
in-situ density with potential density. The potential density,
α∗, is the density that a fluid element would have if moved
adiabatically to a constant reference pressure; here, the
pressure at ground level, Po. The potential density of an
ideal gas can be written as

α∗ =
(

P

Po

)−1/γ

α, (46)

where γ is the ratio of specific heats for air. The potential
density, α∗, is now constant at all heights and equal to the
air density at the ground level from the definition of an
isentropic atmosphere.

The replacement of the in-situ density by potential den-
sity in the one-dimensional model implies that Eq. (45) is
transformed to



d

dz

(π

2
α∗L∗2w2

)
= πλ2�ρ∗gL∗2,

d

dz

[
π

(
α∗ − λ2

1 + λ2
�ρ∗

)
L∗2w

]
= α∗V ∗

e , (47)

d

dz

(
π L∗2w

) = V ∗
e ,
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with the parameters defined by

L∗ =
(

P

Po

)1/2γ

L , (48)

and

V ∗
e =

(
P

Po

)1/γ

Ve. (49)

Here, �ρ∗ is the potential density that corresponds to the
density difference between the fluid on the centerline and
the undisturbed surroundings. The ratio of specific heats of
the outside the plume is assumed to be equivalent to that
in the plume. The third expression in Eq. (47) includes the
volume change due to compressibility (see Appendix A for
details). The form of Eq. (47) is the same as the equation set
from which the similarity solution for a turbulent plume in a
uniform environment is derived. Accordingly, the similarity
solution can be obtained in a comparable manner if the
modified radius L∗ is assumed to be proportional to the
height, although the validity of this assumption is unclear.

The simple similarity arguments cannot be directly ap-
plied to a turbulent plume in an isentropic atmosphere be-
cause the temperature profile in the isentropic atmosphere
yields a parameter with the dimensions of length, ha, given
by

ha = CaTo

g
. (50)

Furthermore, Eq. (47) suggests that a decrease in the
atmospheric pressure causes the expansion of the plume
radius without any major departure of the vertical motion
from that predicted by the similarity solution of a turbulent
plume in a uniform environment. This greatly simplifies
the mathematical treatment and allows us to use the model
with the potential density to estimate the height to which a
plume in a stratified fluid can rise, as is the case in a plume
of an incompressible fluid. However, the validity of this
modification is unclear, mainly because the difference in
pressure between inside and outside of a plume may con-
siderably affect the motion under the conditions considered
here.

It should also be noted that L∗ and V ∗
e have the following

relationship if the entrainment assumption in the form of
Eq. (26) holds:

V ∗
e = 2π

(
P

Po

)1/2γ

εp L∗w. (51)

This indicates that the formulation using the entrainment
assumption cannot preserve the mathematical equivalence
between the turbulent plumes in a uniform environment and
that discussed in this subsection. This discrepancy makes
little difference when the plume height is lower than the
height ha, at which (P/Po)1/γ is considerably less than unity.
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Fig. 2 The variation with height of the non-dimensional upward
velocity (U∗) and radius (R∗) calculated for a turbulent plume in an
isentropic atmosphere. The dotted lines are calculated by Eq. (47)
with the assumption that the modified radius is proportional to the
height, while the dashed lines are obtained from the entrainment
assumption in Eq. (51). The solid lines signify the result with the
original radius proportional to the height

Figure 2 illustrates the vertical variation of the radius and
upward velocity obtained from Eq. (47) with three different
conditions. Figure 2 is drawn with non-dimensional vari-
ables derived in Appendix B. The original radius L expands
with increasing height following Eq. (48) if L∗ is propor-
tional to the height. The corresponding upward velocity is
the same as that given by Eq. (24). If L is directly pro-
portional to height, the upward velocity sharply increases
with height above x∗=0.5, i.e., a half of the height ha. The
velocity is almost the same as that for L∗=kp z only below
x∗=0.1. The calculation using the entrainment assumption
yields intermediate results between the above two con-
ditions as expected from Eq. (51). It is noteworthy that
the calculation with the entrainment assumption also pre-
dicts that the upward velocity increases with height above
x∗=0.5.

Volcanic eruption columns

I now discuss a one-dimensional model for volcanic
eruption columns consisting of a hot gas-particle mix-
ture. The effects of thermal expansion of the mixed
air as well as the decrease in the atmospheric pres-
sure are taken into consideration by using an argu-
ment comparable to that in the preceding subsection.
This derives a model equivalent to the Woods (1988)
model.

The solid particles suspended in an eruption column are
assumed to be so fine that the particles and the ambient gas
are in thermal and dynamic equilibrium, as considered in
many theoretical studies on eruption columns. This implies
that the temperature of the particles is the same as that of the
ambient gas, and settling of the particles is negligible. The
gas-particle mixture can then be treated as a homogeneous
continuum, the bulk density of which can be represented
by averaging the density of each component. The equation
of the state of the gas-particle mixture can be described as
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1

β
= n RgT

P
+ 1 − n

ρs
, (52)

where the gas component in an eruption column is assumed
to behave as a perfect gas. n is the mass fraction of the
gas component, Rg is the bulk gas constant for the gas
component, T is the temperature in an eruption column,
and ρs is the density of the solid particles. Alternatively,
the equation of the state can be described with the volume
fraction of the gas component, φ, as

β = φρg + (1 − φ)ρs, (53)

where ρg is the density of the gas component in the eruption
column, i.e., ρg=P/RgT.

The pressure in an eruption column is assumed to be the
same as the ambient atmosphere at all heights. This assump-
tion should be used with caution because the exit velocity at
the volcanic vent may be supersonic during some volcanic
eruptions. A one-dimensional model should be modified to
include the decompression at the basal part of an eruption
column, as discussed in Woods and Bower (1995), though
this is beyond the scope of this paper. This paper also does
not consider the effect of the inner dense core, which is
thought to be immediately above a volcanic vent, due to
insufficient mixing with the surroundings. These assump-
tions allow us to directly extend the similarity arguments
to the model of an eruption column.

The momentum and mass fluxes in Eqs. (16) and (18)
can be directly applied to the volcanic eruption columns,
as is the case with plumes in the isentropic atmosphere.
It is assumed here that the time-averaged profiles in the
horizontal cross-section are a top-hat distribution instead
of a Gaussian distribution to compare the obtained results
with those in Woods (1988). Equations (16) and (18) are
then modified to

d

dz
(πβL2w2) = π�ρgL2, (54)

and

d

dz
(πβL2w) = αVe. (55)

Note that the Boussinesq approximation is not applied to
Eq. (54) because a typical bulk density of a juvenile gas-
particle mixture immediately above a volcanic vent is sub-
stantially larger than the surrounding air density.

The equation of volume flux was used in previous sub-
sections on the assumption that the volume of the fluid
in question can be specified even if the thermodynamic
state is not completely determined. The equation of energy
conservation should now be combined with the equation
of state to consider volume change due to a change in
temperature as well as pressure. Also considered here is
the equation for volume flux of the gas component in an
eruption column to compare the one-dimensional model
for an eruption column with that described in previous

subsections. The volume flux equation is actually required
to complete the model because the gas mass fraction is in-
cluded as an additional variable in the system of an eruption
column.

The volume of gas in an eruption column changes as the
temperature and pressure change with height even if the
surrounding air is not entrained at all. Also, the air entrained
into an eruption column changes its volume because the
air is heated and expands. Accordingly, the equation for
volume flux of the gas component is given by

d

dz
(πφL2w) = Ve + δV + δVe, (56)

where δV is the volume change of the gas component in
the eruption column due to the temperature and pressure
change, excluding the influence of the entrained air, which
can be written as

δV = −πφL2w
T

P

d

dz

(
P

T

)
. (57)

Note that the bulk gas constant does not vary with height
unless the surrounding air is entrained. The volume change
of the entrained air due to its thermal expansion, δVe, is
given by

δVe = −Ve

α

dα

dT
(T − Ta), (58)

where Ta is the temperature of the ambient air. Combining
Eqs. (56) to (58) yields

d

dz
(πφL2w) = T

Ta
Ve − πφL2w

d

dz

[
ln

(
P

T

)]
. (59)

The energy flux equation is that in Woods (1988):

d

dz

[
πβ

(
C pT + w2

2
+ gz

)
L2w

]

= α(CaT + gz)Ve, (60)

where Cp is the bulk specific heat at constant pressure.
Heat transfer without mass transfer, such as thermal dif-
fusion and radiation, is neglected to derive Eq. (60), on
the assumption that the heat transfer due to a mass trans-
fer caused by vigorous turbulence (i.e., entrainment) is
predominant over other heat transfer processes. Equation
(60) can be easily transformed to the equation for enthalpy
flux:

d

dz
(πβC pT L2w)

= α

(
CaTa + w2

2

)
Ve − παgL2w. (61)
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As a result, the equation set to be solved becomes




1

β
= n RgT

P
+ 1 − n

ρs
,

d

dz
(πβL2w2) = π�ρgL2,

d

dz
(πβL2w) = αVe,

d

dz
(πφL2w) = T

Ta
Ve − πφL2w

d

dz

[
ln

(
P

T

)]
,

d

dz
(πβC pT L2w) = α

(
CaTa + w2

2

)
Ve − παgL2w,

(62)

where Rg and Cp are the functions of n given by

Rg = Ra + (Rm − Ra)
no(1 − n)

(1 − no)n
, (63)

and

C p = Ca + (C po − Ca)
1 − n

1 − no
. (64)

Ra is the gas constant for air, Rm is the gas constant for
the gas component at a volcanic vent, no is the gas mass
fraction at the vent, and Cpo is the bulk specific heat at con-
stant pressure at the vent. The derivations of Rg and Cp are
described in Appendix C with some other notes on Woods
(1988). Equation (62) becomes equivalent to the equation
set in Woods (1988) when combining the entrainment as-
sumption used in Woods (1988):

Ve =




2πε j Lw

(
β

α

)1/2

if α(z′) < β(z′) for all z′ ≤ z,

(65)
2πεp Lw otherwise.

I next transform Eq. (62) to find a form that corresponds
to Eq. (47). As described in Appendix D in detail, Eq. (59)
is equivalent to

d

dz
(πnβL2w) = αVe. (66)

By introducing

L† =
(

nβ

αo

)1/2

L , (67)

and

V †
e = α

αo
Ve, (68)

Eq. (66) can be rewritten as

d

dz
(π L†2w) = V †

e . (69)

Similarly, Eq. (62) can be rewritten as




1

β
= n RgT

P
+ 1 − n

ρs
,

d

dz

(
π L†2w2

n

)
= π

�ρ

nβ gL†2,

d

dz

(
π L†2w

n

)
= V †

e ,

d

dz

(
π L†2w

) = V †
e ,

d

dz

(
πC pT L†2w

n

)
=

(
CaTa + w2

2

)
V †

e

−π
α

nβ
gL†2w.

(70)

It is obvious that the modified radius L† is the straight-
forward extension of L∗ even though the equation set in
Eq. (70) does not use the potential density. Equation (67)
can be rewritten in a form similar to Eq. (48) as

L† =
(

φRaT ∗

RgT

)1/2 (
P

Po

)1/2γ

L . (71)

It should be noted that T∗ is different from Ta, in con-
trast to a plume in an isentropic atmosphere described in
the preceding section, because I am now considering the
motion in a more realistic atmosphere.

The model is completed by combining Eq. (70) with the
entrainment assumption or an alternative relationship be-
tween the radius and height. I numerically investigate the
sensitivity of the dynamics of volcanic eruption columns to
the formulation of the model with the entrainment assump-
tion and its alternatives in the next section.

Numerical investigation

Integration conditions

Numerical integrations under the following three different
conditions were performed to examine the sensitivity of
the physical properties in an eruption column to the radius
variation with height. The first condition combines Eq. (62)
with the entrainment assumption described in Eq. (65).
Obviously, this yields the same results as Woods (1988).
The result of the Woods (1988) model is shown here only
for reference as it was extensively discussed in the original
paper. The second condition is the numerical integration of
Eq. (70) with the assumption that the modified radius L†
can be described as

dL†

dz
=




(
β

α

)1/2

k j if α(z′) < β(z′) for all z′ ≤ z,

(72)
kp otherwise.
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This is referred to as an inflation model. The inflation model
can be regarded as an extreme case in which a decrease in
the atmospheric pressure and a thermal expansion of the gas
component increases the plume radius as much as possible
without affecting the vertical motion. The third condition
is the numerical integration of Eq. (62), in which the radius
L is given by

dL

dz
=




(
β

α

)1/2

k j if α(z′) < β(z′) for all z′ ≤ z,

(73)
kp otherwise,

which is referred to as a cone model. The decrease in the
atmospheric pressure and the thermal expansion of the gas
component in the cone model do not affect the plume radius
at all. The cone model can be regarded as another extreme
case, opposite to the inflation model.

The numerical integrations were performed under the
atmospheric conditions described in Appendix E. I used a
fourth-order Runge-Kutta scheme with a step size of 5 m
in the calculations.

Note that the inflation model and cone model give unreal-
istic results above the neutral buoyancy height because the
radius is prescribed as a function of height, regardless of the
value of the upward velocity in an eruption column. This
inconsistency occurs because the fundamental assumption
that lateral motion is negligible compared with vertical mo-
tion becomes invalid near the neutral buoyancy height. In
fact, this violation of the assumption may even limit the
validity of the Woods (1988) model, as Glaze and Baloga
(2002) noted. Thus, the focus in this paper is on properties
below the neutral buoyancy height.

In addition, the cone model may make the volume of
entrained air a negative amount. This is clearly dynami-
cally inconsistent, because a minus value of entrained air
indicates that some fluids in the turbulent region abruptly
become at rest as they rise. To avoid this discrepancy, I
replace the momentum flux equation in Eq. (62) with the
condition that V†=0 if the cone model makes the entrained
volume a minus value. This treatment allows the upward
velocity in an eruption column to increase with height.
This may occur in actual eruption columns because the
pressure in the column would become greater than the am-
bient pressure when the column cannot sufficiently expand
in the lateral direction. The calculation under this condition
is indicated by a dotted line in the figures.

Effect of the vent radius

The first calculation was performed with the following vent
conditions at ground level: a temperature of 1000 K, exit
velocity of 300 m s−1, gas mass fraction of 0.03 and vent
radii of 20, 100, and 300 m. These conditions yield a bulk
density at the vent of 7.25 kg m−3. The results of the in-
flation model and the Woods (1988) model are presented
in Fig. 3. The fundamental features obtained from the two
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models are similar. For example, the larger the vent radius,
the higher the eruption column reaches. The column prop-
erties predicted by the inflation model for a vent radius of
Lo=20 m in particular are almost the same as that of Woods
(1988). The differences between the two models become
significant as the vent radius increases.

The inflation model predicts wider column radii than the
Woods (1988) model at the upper part. The column radius
of the inflation model was only 0.10 km larger than that
of the Woods (1988) model at z=9 km for Lo=20 m. The
differences in the column radii between two models were
0.20 km at z=10 km and 3.17 km at z=20 km for Lo=300 m.
The difference of column radii between two models became
significant about 10 km above the vent. This implies that
the radius expansion above 10 km in the inflation model
causes greater entrainment of the surrounding air than the
Woods (1988) model.

The qualitative nature of the relative density variation of
the inflation model is similar to that of Woods (1988). This
makes the column height of the inflation model almost
the same as that of Woods (1988). The neutral buoyancy
heights obtained from the inflation model were 9.48, 15.1,
and 22.2 km for Lo=20 m, 100 m, and 300 m, while the
Woods (1988) model yielded 9.25, 15.5, and 24.0 km,
respectively.

The velocity of the inflation model was lower than that
of the Woods (1988) model at the upper part of the erup-
tion columns while the inflation model yielded the gentler
slope of velocity decrease with height at the lower part. It
is notable that the inflation model indicates a monotonic
decrease of column velocity with height for Lo=20 m and
100 m. This implies that deceleration due to momentum
transfer to the entrained air tends to exceed acceleration
due to upward buoyancy forces in the inflation model, and
thus the velocity decreases with height throughout the erup-
tion column over a wider parameter range than that of the
Woods (1988) model.
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Figure 4 presents the properties of the lower 5 km of the
column obtained from the same calculation as that shown
in Fig. 3. The result of the inflation model is very similar
to that of the Woods (1988) model at the region in which
the bulk density in the column is greater than the ambient
density. This implies that the formulation of the entrainment
assumption in Woods (1988) for α<β includes an effect
similar to the modification of the radius described in Eq.
(67). The inflation model makes the radius smaller for the
region presented in Fig. 4 than that of the Woods (1988)
model. As a result, the velocity and temperature remains
greater than that obtained from the Woods (1988) model.
The relative density is also greater than that of Woods
(1988) model for the region in which the relative density
decreases with height.

Figure 5 illustrates the results of the cone model in a
manner similar to Fig. 3. The radius is directly propor-
tional to the height, as prescribed for the model condition.
This condition significantly inhibits ambient air from being
entrained into the eruption column. As a result, the vertical
variation of column properties differs considerably from
that of Woods (1988), in particular for Lo=300 m. The
calculation for Lo=300 m indicates that the columns con-
tinue rising above 30 km, whereas the bulk density remains
greater than the ambient density. The upward velocity con-
tinues increasing with height above 5 km and becomes
645 m s−1 at 30 km. The temperature remains higher than
750 K at a height of 30 km. In contrast to the result of the
inflation model, the calculation for Lo=20 m also differs
significantly from that of the Woods (1988) model. This is
clearly evident at the lower part of the eruption column in
Fig. 6. The radius of the cone model is 233 m less than that
of the Woods (1988) model for Lo=20 m at 5 km, while
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the inflation model yields a radius only 29 m less than that
of the Woods (1988).

Figure 7 presents the neutral buoyancy height as a func-
tion of the vent radius. The conditions at the vent were the
same as those shown in 3–6 except for the vent radius. The
cone model yields the greatest neutral buoyancy height of
the three models. The heights of the cone model results are
24% higher for Lo=10 m and 76% higher for Lo=150 m
than those of the Woods (1988) model. The inflation model
yields smaller heights than the Woods (1988) model, al-
though the difference is only 16% at most.
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The bulk density may remain greater than the ambient
density in a calculation with a large vent radius, and thus
we cannot define the neutral buoyancy height. That explains
why none of the three lines reach the right end of the graph.
The line for the result of the Woods (1988) model is closest
to the right end in Fig. 7. This implies that the Woods (1988)
model predicts that column collapse does not occur for a
relatively larger vent radius, if following Woods (1988) in
which a similar figure is used to determine the conditions
for column collapse. However, an eruption column may
continue rising while the bulk density remains greater than
the ambient density as illustrated in Fig. 5. Thus, Fig. 7
should be interpreted with caution. I will discuss this further
in the discussion section.

Effect of gas mass fractions at a vent

Next is an examination of how the column properties vary
with the gas mass fractions at a vent. The calculation is
performed with a temperature of 1000 K, exit velocity of
300 m s−1, vent radius of 100 m, and gas mass fractions
at the vent of 0.01, 0.03, and 0.05. These conditions make
the bulk density at the vent 21.43, 7.25, and 4.36 kg m−3.
The results of the inflation model are presented in Fig.
8, and those of the cone model in Fig. 9. The results of
the Woods (1988) model are also provided in the figures
for comparison. The fundamental tendency of the results
obtained from the Woods (1988) model is relatively similar
to those of the inflation model. The vertical variation
of the relative density of the Woods (1988) model is, in
particular, almost the same as that of the inflation model.
As a result, the two models yield similar column heights.

As the gas mass fraction decreases, the results of each
model deviate from those of the Woods (1988) model in a
similar manner to the results of each model obtained with
increasing radius. These results are expected because the
terms including βL2 play important roles in the governing
equation set described in Eq. (62). The mass, momentum,
and enthalpy fluxes are all directly proportional to βL2.
Besides, β can be regarded as inversely proportional to n
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if n is large enough (see Eq. (52)). A detailed paramet-
ric study shows that the calculations of each model with
different values of Lo and no yields similar results except
for the bulk density immediately above the volcanic vent
as long as Lo

2/no remains constant. For example, the re-
sult of the calculation with Lo=100 m and no=0.01 dis-
played in Fig. 8 is similar to that with Lo=173 m and
no=0.03.

Mass, momentum, and buoyancy fluxes

Figure 10 illustrates the variations of the mass, momentum,
and buoyancy fluxes with height, which were obtained from
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a calculation with a vent temperature of 1000 K, exit ve-
locity of 300 m s−1, gas mass fraction of 0.03, and vent
radius of 100 m. Each flux is normalized by the value at
the vent such as Q/Qo, M/Mo, and B/|Bo| in Fig. 10. Each
of the three fluxes of the Woods (1988) model exhibits a
variation similar to that of the inflation model.

The mass flux increases with increasing height as a result
of the entrainment of the ambient air. The mass flux of the
cone model is less than a half of that of the Woods (1988)
model above 3 km and only 30% at a height of 15 km,
while the differences between the inflation model and the
Woods (1988) model are less than 30% at all heights. The
increasing rate of the mass flux of the inflation model is
the greatest of the three models above 3 km. This implies
that the pressure decrease with height suppresses the air
entrainment not only in the cone model but also in the
Woods (1988) model.

The momentum flux also increases with increasing height
in most of the column. However, the momentum flux
slightly decreases with height at the basal part of the col-
umn, at which the bulk density in the column is greater
than the ambient density. This occurs because the momen-
tum flux increases due to buoyancy forces. The cone model
has a wider basal part than others at which part the eruption
column retains the bulk density greater than the ambient
density, and thus its momentum flux remains small. The
momentum flux of the cone model is less than that at the
ground surface below 3.25 km and twice as much as that
at 7.60 km. The Woods (1988) model yields the greatest

momentum flux among the three models in most of the
column. The momentum flux above 1.30 km is greater than
that at the ground surface and twice as much as that at
3.93 km.

The profiles of the buoyancy flux in Fig. 10 exhibit
the most essential difference between volcanic eruption
columns and turbulent plumes of an incompressible fluid.
The buoyancy flux in an eruption column significantly in-
creases with height at the lower part, while that in incom-
pressible plumes cannot increases with height in a stably
stratified fluid (see Eq. (20)). This occurs because the ther-
mal expansion of entrained air and the decrease in the
atmospheric pressure with height considerably change the
volume of the gas component in an eruption column.

Examining the above three fluxes enables us to clarify
the distinguishing characteristics of the dynamics of
volcanic eruption columns. The result indicates that the
generation of momentum flux due to buoyancy is sup-
pressed at the basal part of the eruption columns because
volcanic eruption columns sustain many solid particles
that minimize the buoyancy forces at the lower part. This
makes the height at which the momentum flux generated
by buoyancy becomes as large as that given at the vent, i.e.,
the height where M=2Mo in an eruption column, much
higher than hj, which represents the corresponding height
for a typical forced plume of a constant buoyancy flux (see
Eq. (33)). The height of M=2Mo is also much greater than
the height where the bulk density in the column exceeds
the ambient density. This implies that a volcanic eruption
column can be regarded as a turbulent jet over wider ranges
of parameters than previously thought, if the implications
of the laboratory experiments by Papanicolaou and List
(1988) can be applied.

The transition condition from a gas-thrust region to a
convective region has been treated ambiguously in previ-
ous studies. Woods (1988) considered that the transition
occurred at the height at which the density in an eruption
column becomes less than the ambient density. Sparks and
Wilson (1976) defined the limit of the gas-thrust region as
the height at which the minimum upward velocity occurs.
While each of the above two heights provides meaning-
ful information, the abrupt transition at each height brings
unrealistic discontinuity to the vertical profiles of physi-
cal variables, as discussed in Glaze (1999). The smooth
transition near a height of M=2Mo is consistent with the
discussion in this paper and, thus, this height may be useful
as an alternative index.

Discussion

The dynamics of volcanic eruption columns have been
discussed in previous studies primarily using the entrain-
ment assumption, which was originally introduced for an
incompressible turbulent plume. However, the underly-
ing physics stated in the entrainment assumption are de-
rived from similarity arguments based on the fact that the
buoyancy flux of an incompressible turbulent plume re-
mains constant in a uniform environment. In contrast, the
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buoyancy flux of an eruption column varies significantly
with height, as illustrated in Fig. 10. Accordingly, great cau-
tion is required when applying the entrainment assumption
to a one-dimensional model of a volcanic eruption column.

Furthermore, volcanic eruption columns generated in the
real atmosphere include some length scales by which the
motion of the eruption columns may depart from self-
similar motion. This difference can be verified in the equa-
tion sets for an incompressible plume and an eruption col-
umn. The combination of the equation of state and enthalpy
flux used in Eqs. (62) and (70) is considerably more com-
plicated than the volume flux equation in Eq. (36). This
implies that the system of an eruption column may not
have a simple relation in which the volume of mixed air at
a given height is exactly proportional to the product of the
upward velocity and radius at that height.

Nevertheless, one-dimensional models based on the en-
trainment assumption have been widely employed to ex-
amine the dynamics of eruption columns. This is primar-
ily because the model yields the relationship between the
eruption column height and heat flux, which agrees well
with the observation of actual volcanic eruptions. Briggs
(1969) used the observation data of large oil fires to suc-
cessfully demonstrate the usefulness of the Morton et al.
(1956) model for estimating plume heights in the actual at-
mosphere from the heat flux. Settle (1978) and Wilson et al.
(1978) accepted this idea and applied it to volcanic erup-
tion columns to obtain results in reasonable agreement with
the observation. Furthermore, Sparks (1986) discussed the
influence of air compressibility with an approach similar to
that for plumes in an isentropic atmosphere in this paper.

The relationship between the column height and heat flux
derived from the Morton et al. (1956) model can be regarded
as a result of a dimensional analysis for predominant vari-
ables. An alternative model based on similarity arguments
predicts a comparable column height as described in Fig.
1 and Eq. (42). This suggests that the relationship may be
more robust than the entrainment assumption. Thus, the
relationship does not necessarily verify the entrainment as-
sumption. Since other observation data, such as the velocity
and temperature profiles in a volcanic eruption column, are
sparse, there is little information regarding whether an ac-
tual eruption column obeys the entrainment assumption.

This paper examines the difference between the direct
extension of similarity arguments and the Woods (1988)
model, which is based on the entrainment assumption. The
Woods (1988) model yields a result almost the same as that
of the inflation model at the lower part of the column, where
the bulk density in the column is greater than the ambient
air. The discrepancy between the two models becomes sig-
nificant as the column height becomes sufficiently high for
the decrease in atmospheric pressure with height to affect
the expansion rate of the column. This result is interpreted
in the following discussions.

The analogy with the similarity solutions for simple
plumes and jets leads us to expect that the entrainment
rate in Eq. (65) has a simple relation with the spreading
rate of the modified radius. If the entrainment assumption
holds in the same way as Woods (1988), the modified ex-

pression of the entrained volume Ve
† at the higher part of

the column where β < α can be written with the modified
radius L† as

V †
e = 2π

(
α

β

)1/2 (
α

nαo

)1/2

εp L†w. (74)

Equation (74) has a form similar to Eq. (51), which is easily
identified by recalling the definition of the potential den-
sity in Eq. (46). Equation (74) indicates that the entrainment
rate for an eruption column described by a modified radius
varies with the density ratio between inside and outside of
the column at a given height, the ratio of the air density at
that height to that of the ground surface, and the mass frac-
tion of the gas component in the column if the entrainment
assumption is satisfied.

The fact that inflation model yields a result similar to
that of the Woods (1988) model at the gas-thrust region
implies that the Woods (1988) model corresponds to the
formulation in which the density difference between the
inside and outside of the eruption column does not affect
the expansion rate of the column radius. Thus, the vertical
gradient of the modified radius at the convective region
written as

dL†

dz
=

(
α

nαo

)1/2

kp (75)

may yield a result more similar to that of Woods (1988)than
that of the inflation model. The calculation using Eq. (75)
is called the imitation model. The lower part is the same as
that of the inflation model. This calculation is depicted in
Fig. 11. As expected, the result of this model is in fairly
good agreement with that of the Woods (1988) model.
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The coincidence between the imitation model and the
Woods (1988) model reveals the underlying mathematical
structure of the Woods (1988) model. The density strati-
fication in the atmosphere causes the difference between
the results of the inflation model and Woods (1988) model.
The temperature at the region high in the atmosphere up
to 30 km is at most 25% lower than the temperature at the
ground surface, while the pressure is about one-fourth at
10 km and one-hundredth at 30 km less than the pressure at
the ground surface. Thus, the decrease in the atmospheric
pressure can be regarded as the major cause of the dif-
ference in the results of the inflation model and Woods
(1988) model. Further observations are required to deter-
mine which model is more realistic.

It should be noted that the Woods (1988) model and im-
itation model yield significantly different conditions for
column collapse, although the two models provides simi-
lar results for stable eruption columns. Figure 12 depicts
the calculation using the Woods (1988) and imitation mod-
els with a vent temperature of 1000 K, exit velocity of
200 m s−1, gas mass fraction of 0.01, and vent radii of
225 m and 250 m. The calculation with the imitation model
yields results of Lo=225 m and 250 m which are simi-
lar. The radii increase with height with almost a constant
rate. The upward velocities decrease with height through-
out heights illustrated in Fig. 12. In contrast, the calculation
for Lo=250 m with the Woods (1988) model reveals a rapid
increase of the radius at a height above 3 km. The upward
velocity decreased with height and the column ceased to
rise at 3.6 km. The calculation using Lo=225 m yielded the
upward velocity that increased with height above 4.3 km.
The radius decreased at heights between 4.7 and 6.9 km.

The above differences exist because the radius in the
Woods (1988) model may vary with the upward velocity
following the entrainment assumption, while the radius in
the imitation model is prescribed independently of the ve-
locity. This difference in the formulation yields significant
differences in the results particularly when the upward ve-
locity approaches zero with the bulk density in the eruption
column greater than the ambient density. The high density
makes the buoyancy forces negative and thus reduces the
momentum flux. This causes an abrupt reduction of the
upward velocity, while the mass flux continues increasing

with height due to air entrainment. As a result, the radius of
the Woods (1988) model sharply increases with height to
compensate for the velocity reduction to continue increas-
ing the mass flux if the density remains greater than the
ambient air density.

This indicates that column collapse conditions derived
from the Woods (1988) model are governed by the alge-
braic structure of the entrainment assumption, although
the assumption is not thoroughly verified for such specific
conditions. In fact, the horizontal motion is no longer negli-
gible at a height at which the radius of the eruption column
sharply increases with height. This violates a fundamen-
tal assumption of one-dimensional models; thus, it may be
beyond the ability of one-dimensional models to prescribe
conditions for column collapse.

The principal uncertainty inherent in one-dimensional
eruption column models is directly related to the shape of
an eruption column if the boundary conditions at a vol-
canic vent can be specified by the constraint on the flow in
a volcanic conduit. If the governing equations of eruption
columns in Eq. (62) are combined with actual observation
data of the vertical variation of column radius, the model
provides more realistic features of eruption columns. Fortu-
nately, fine solid particles suspended in an eruption column
allow us to easily determine the outer shape of the erup-
tion column. This suggests that appropriate observations of
eruption columns can reduce the uncertainty of the model.
Existing photographs and video recordings may provide
meaningful information regarding the dependences of the
entrainment coefficient on gas compressibility.

Thorough physical measurements during actual volcanic
eruptions are important to clarify the relationship between
column shape and the vertical variations of other physical
variables. The analysis performed by Sparks and Wilson
(1982), for example, should be extended to stratosphere-
penetrating eruption columns. An accumulation of observa-
tional data is crucial particularly for examining the column
collapse condition.

Conclusions

This paper extends the similarity arguments for turbulent
jets and plumes to volcanic eruption columns to explicitly
describe the underlying physics stated in the entrainment
assumption. This enables examination of the effect of
compressibility of the gas component in an eruption
column. The buoyancy flux in an eruption column varies
significantly with height due to gas compressibility.
This causes considerable uncertainties in the similarity
solution. The uncertainties cause at most 70% of the
errors in estimation of column height. Although the new
model and the Woods (1988) model yield similar results
for stably sustained eruption columns, there are marked
discrepancies in the prediction of column collapse. The
uncertainty of the model is directly related to the variation
of column radius with height, and thus it is essential
to capture the column shape during actual eruptions to
obtain reliable information from one-dimensional models.
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Appropriate diagnostic measurements of eruption column
shapes are required, particularly during the eruptions
under conditions close to those causing column collapses.
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Appendix A: Derivation of modified radius

The modified radius L∗ introduced in Eq. (48) can be ob-
tained by considering the steady mass flux of an ideal gas
flowing adiabatically without entrainment of the surround-
ings. Let us consider a vertical flow in a disk with a radius
of L and a density of α, as in the main body of this paper.
The mass flux in the disk remains constant if no ambient
air is entrained into the disk, and then it can be written
as

d

dz
(παL2w) = 0. (A1)

The potential density described by Eq. (46) remains con-
stant if the air in the disk is moved adiabatically. Combining
Eq. (A1) with Eq. (46) yields

d

dz

[
π L2w

(
P

Po

)1/γ
]

= 0. (A2)

Equation (A2) can be transformed to

d

dz
(π L2w) = −π L2w

γ P

dP

dz
, (A3)

which represents the volume flux variation with height. This
indicates that the right hand side of Eq. (A3) corresponds
to δV in Eq. (45). Since Eq. (A2) is obviously equivalent to
Eq. (A3), the volume flux equation can be described with
the modified radius L∗ as

d

dz
(π L∗2w) = 0. (A4)

Note that we have a simple relation

αL2 = α∗L∗2, (A5)

and thus Eq. (A1) can be described in a similar form by
using L∗ instead of L:

d

dz
(πα∗L∗2w) = 0. (A6)

The modified radius for volcanic eruption columns defined
by Eq. (67) can be derived in a similar way.

Appendix B: Derivation of non-dimensional variables

The model for a turbulent plume in an isentropic atmo-
sphere is transformed to a non-dimensional form to derive
the parameters used in Fig. 2. If the entrainment assumption
is satisfied, Eq. (47) can be deduced as




d

dz
(L∗2w2) = 2(1 + λ2)B∗

πw
,

d

dz
(L∗2w) = 2(

P

Po
)1/2γ εp L∗w,

(B1)

where B∗ is constant, defined by

B∗ = π
λ2

1 + λ2

�ρ∗

α∗ gL∗2w. (B2)

Equation (B1) can be rewritten as follows by introducing
new variables defined by X=L∗w and Y=L∗2w:




dX4

dz
= 4(1 + λ2)B∗

π
Y,

dY

dz
= 2(

P

Po
)1/2γ εp X.

(B3)

When I choose the following variables,




z = ha x∗,

X = 2π−1/3(1 + λ2)1/3ε
1/3
p h2/3

a B∗1/3ξ,

Y = 4π−1/3(1 + λ2)1/3ε
4/3
p h5/3

a B∗1/3ψ,

(B4)

I can transform Eq. (B3) to the simplest non-dimensional
form:




dξ 4

dx∗ = ψ,

dψ

dx∗ = (1 − x∗)5/4ξ.

(B5)

Here, I use the approximation

Ca = 7

2
Ra. (B6)

The above transformation yields the non-dimensional
forms of the radius and upward velocity used in Fig. 2
as

{
L∗ = 2εpha(1 − x∗)5/4 R∗,

w = π−1/3(1 + λ2)1/3ε
−2/3
p h−1/3

a B∗1/3U ∗.
(B7)
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Appendix C: Note on Woods (1988)

Woods (1988) derived a number of useful relations among
physical variables to discuss the dynamics of volcanic erup-
tion columns. I will interpret some of the relations here be-
cause the physical background of the mathematical treat-
ment in Woods (1988) is not always clear.

I first derive Eq. (63), which corresponds to Eq. (5) in
Woods (1988), by considering the total volume of the gas
component in an eruption column at a given height. The
gas component in an eruption column consists of the vol-
canic gas ejected from a vent and the air entrained from
the surroundings. If the gas component in an eruption col-
umn behaves as an ideal gas, then the volume of the gas
component can be written as

mg RgT

P
= mm Rm T

P
+ (mg − mm)

RaT

P
, (C1)

where mg is the total mass of the gas component in an
eruption column at the height, and mm is the mass of the
volcanic gas at a vent. Equation (C1) yields

Rg = Ra + mm

mg
(Rm − Ra). (C2)

The total mass of the gas component mg has the following
relations with the total mass of solid particles ms:

n = mg

mg + ms
, (C3)

1 − n = ms

mg + ms
. (C4)

Similarly, the mass of the volcanic gas mm has the following
relations:

no = mm

mm + ms
, (C5)

1 − no = ms

mm + ms
. (C6)

Combining Eqs. (C3) to (C6) yields

mm

mg
= no(1 − n)

(1 − no)n
. (C7)

Equation (63) can be obtained from Eqs. (C2) and (C7).
The bulk specific heat at a constant pressure of the whole

substance in an eruption column can be derived in a similar
way. The enthalpy variation with temperature in an eruption
column is written as

(mg + ms)C pdT = (mg − mm)CadT

+ (mm + ms)C podT . (C8)

Thus,

C p = Ca + mm + ms

mg + ms
(C po − Ca). (C9)

Combining Eqs. (C4), (C6), and (C9) yields Eq. (64).
Next, I consider the expression for the bulk density in

Woods (1988):

β = βo L2
o

L2

[
wo

w
+ no

Rm

Ra

(
φL2 PTo

φo L2
o PoT

− wo

w

)]
, (C10)

where each variable with a subscript o represents a value
evaluated at a volcanic vent. This expression can be ob-
tained from the relation for the volume flux of the gas
component at a given height, φL2w, which can be regarded
as the sum of the volume flux of the gas component from the
volcanic vent and that of the total air entrained throughout
heights lower than the given height, i.e.,

nβL2w

ρg
= noβo L2

owo

ρm
+ βL2w − βo L2

owo

ρb
, (C11)

where the relation of nβ=φρg is used. Here, ρm represents
the density of the gas at the vent and moved to the height,
i.e., P/RmT. Similarly ρb represents the density of the mixed
air in the eruption columns at the height, P/RaT. Equation
(C11) can be rewritten as

(
n Rg

Ra
− 1

)
βL2w =

(
no Rm

Ra
− 1

)
βo L2

owo, (C12)

which is easily transformed to Eq. (C10).
I introduce here the equation of the mass flux of solid

particles. The mass of solid particles does not change with
height because the air entrained into the eruption columns
from the surroundings contains no solid particles. Thus, the
equation of solid mass flux can be expressed as

d

dz
[π(1 − n)βL2w] = 0. (C13)

From Eq. (C13), I can easily deduce

(1 − n)βL2w = (1 − no)βo L2
owo, (C14)

which is equivalent to Eq. (4) in Woods (1988). Note that
Eq. (A10) in Woods (1988) is also equivalent to Eq. (C13).

In addition, using a relation of (1−n)β=(1−φ)ρs with
constant ρs can transform Eq. (C13) to

d

dz
(π L2w) = d

dz
(πφL2w). (C15)

Equation (C15) indicates that the total change of volume
flux in an eruption column is equal to that of the gas com-
ponent. Combining Eqs. (55), (59), and (C15) to eliminate
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Ve yields

d

dz
(πβL2w)

= ρg
Rg

Ra

{
d

dz
(π L2w) +πφL2w

d

dz

[
ln

(
P

T

)]}

(C16)

which is easily transformed to Eq. (A6) in Woods (1988).

Appendix D: Alternative derivation of the volume flux
equation for volcanic eruption columns

The equation of volume conservation for the gas component
in a volcanic eruption column presented in Eq. (59) can be
derived more easily although I carefully considered the
thermodynamic conditions in the main body of this paper
by following Woods (1988).

Similar to the mass conservation equation for the whole
substance in an eruption column described by Eq. (55), the
mass conservation equation for the gas component can be
given by

d

dz
(πnβL2w) = αVe. (D1)

Note that Eq. (D1) can be derived from Eqs. (55) and
(C13). The relation nβ = φρg allows transformation of
Eq. (D1) to

d

dz
(πφL2w) = α

ρg
Ve − πφL2w

ρg

dρg

dz
. (D2)

We can easily determine that Eq. (D2) is equivalent to
Eq. (59) by combining two simple relations:

1

ρg

dρg

dz
= d

dz

[
ln

( P

T

)]
− 1

Rg

dRg

dz
, (D3)

and

dRg

dz
= (Ra − Rg)

αVe

πnβL2w
. (D4)

Appendix E: The ambient atmospheric conditions

A numerical investigation of volcanic eruption columns
was performed with the same atmospheric conditions
as those in Woods (1988). The atmospheric conditions
are explicitly shown here because there are some errors
in the description of the conditions in Woods (1988).

The temperature profile is given by

Ta =
{

To + �1z for z ≤ H1,
T1 for H1 < z ≤ H2,
T1 + �2 (z − H2) for H2 < z,

(E1)

where H1 is the height of the tropopause (11 km) and H2 is
that of the stratopause (20 km). �1 and �2 are the tempera-
ture lapse rate in the troposphere and stratosphere. T1 is the
temperature at H1, corresponding to To+�1H1. Combining
Eq. (E1) with the hydrostatic equation in Eq. (43) yields
the pressure profile as

P =




Po

(
Ta

To

)− g
Ra�1

for z ≤ H1,

P1 exp

[
−g(z − H1)

RaT1

]
for H1 < z ≤ H2,

P2

(
Ta

T1

)− g
Ra�2

for H2 < z,

(E2)

where P1 and P2 are the pressures at H1 and H2.
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