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Introduction

Large areas of Austria, like the Central Alps or the
Bohemian Massif, are built up by crystalline hard rocks.
Tectonic deformations of geological units cause the
development of fracture networks forming fissured/
fractured aquifers in hard rocks. The water flow in
fractured hard rocks is predominant within its fracture
network, which mostly consists of several fracture sets.
For the determination of favoured flow directions in
fractured hard rocks, it is necessary to determine the
fracture network and the hydrogeological effectiveness
of the fracture sets. The hydrogeological effectiveness of
fracture sets result from two groups of fracture attri-
butes: the first group contains the geological spatial
attributes like trend, plunge and the frequency of frac-
tures. The second group includes the hydraulic relevant
attributes like aperture, trace length and linear degree of
separation of the fractures. The hydrogeological effec-
tiveness of individual fracture sets is answered with a
new approach. Statistical clustering integrating both
attribute types enhances the determination of the hy-
drogeological effectiveness of the fracture sets. Further
on, the volume of each fracture set can be estimated.

Methodology

The hydrogeological effectiveness of fracture sets can be
estimated by the statistical analysis of two groups of
fracture attributes. The first group contains the geolog-
ical spatial parameters like trend, plunge and the fre-
quency of fractures. The second group includes the
hydraulic relevant attributes like averaged aperture,
length and linear degree of separation of the fractures.
The terms fracture, discontinuity, joint and their net-
works are described by many authors in an inconsistent
way. For example Bridges (1975) defines a fracture as
... a discrete break in a rock which is not parallel with a
visible fabric”. Excluding discontinuities that have been
the result of the exploitation of cleavage Bridges concurs
with Whitten and Brooks (1972). In these studies the
term fracture will be used as a synonym of the term
“discontinuity” in Priest (1993), who defines disconti-
nuity ... as any significant mechanical break or fracture
of negligible tensile strength in a rock.” This term makes
no distinction concerning the age, geometry or mode of
origin of the feature. The only differentiation is between
natural, that are of geomorphologic or geological origin,
and artificial discontinuities, that are caused by drilling
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or blasting in excavation. For the three-dimensional
structure of fractures, the authors use the terms fracture
set and in addition fracture network. The intact,
unfractured rock is referred to as the rock material,
which together with the fracture network form the rock
mass.

Data recording

To record and describe the fracture network of an
exposure, several methods have been developed. The
ISRM (1978) describes two basic levels at which a rock
mass survey may be carried out upon the amount of
detail that is required.

e In a subjective survey only those fractures, which ap-
pear to be important, are described. This level is
biased by the experiences of the person (geologist)
recording the data.

e In an objective level the fractures intersecting a fixed
line (scanline) or area (grid) of rock outcrops are re-
corded. So, this level is standardized and independent
of individual persons experiences recording the data.

At exposures, the attributes of the fractures are re-
corded with the scanline method based on objective and
standardized criterions. As Priest (1993) mentioned,
there is no universally accepted scanline sampling, so the
specific data and the sampling method have to be mod-
ified and adjusted to the concrete demands. Generally, it
is very important to obtain a fixed level of quality of the
recorded data, independent of the person and the

Fig. 1 Outcrop with two more
or less orthographic scanlines
for the data recording

circumstances at the recording time. So, in the run-up to
the data recording, standards for the exposure-logging
and the scanline-logging have to be developed.

For this work the objective level with fixed lines
(scanlines) was adopted. The scanline method is a
commonly used sampling technique, that has been de-
scribed and discussed by a number of authors including
ISRM (1978), Long (1993) and Priest (1993).

Each exposure is marked with a point (white point on
the left exposure end near the scale bar in Fig. 1), that is
the coordinative origin for the localisation of the scan-
lines. Depending on the orientation of the main fracture
sets, the scanlines are fixed by the recording geologist.
The scanlines themselves are simply measuring tapes,
pinned with masonry nails and wires to the rock face.
Two scanlines intersecting more or less orthogonal are
the minimum observing the fracture network at an
exposure. The data of more than 100-150 fractures
should be recorded to enhance statistical analysis.
Additional scanlines, pinned on further different orien-
tated rock faces of the same exposure enable a better
spatial imagination of the fracture network and mini-
mise orientation sampling biases. The length of the
scanline depends on the spacing of the fractures
regarding the quantity of fractures for satisfying statis-
tical analysis.

In advance of scanlines logging some assumptions
have to be defined. The aperture should be measured on
several points along one fracture and then averaged.
Fractures of the exposure face of which the aperture is
immeasurable are marked separately with “n.m.” (not
measurable). For the statistical analysis the attributes of
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these fractures are estimated with data of similarly ori-
entated measurable fractures of the same exposure or
fracture network. The total length is the complete
measurable stretch of a fracture. The linear degree of
separation is the sum of the trace length sections where
an aperture can be observed.

Statistical data analysis: orientation related fracture
volumes

Frequency analysis and structural-geological clustering
are generally used for geological and tectonic interpre-
tation of fracture networks. These statistic methods are
discussed in detail by a couple of authors including
Barton et al. (1993), Priest (1993) and Wallbrecher
(1986). So, these methods will not be discussed closer.
The new approach was to combine the spatial geological
and the hydraulic relevant attributes to determine the
fracture network and additionally to estimate the frac-
ture set volumes.

Pre-processing

In advance to the statistical analysis some biases have to
be corrected by weightings and assumptions/estima-
tions. Biases are caused by: (a) sampling technique
(Kulitulake et al. 1993; Bdumle et al. 1998), (b) the
immeasurable attributes (aperture, length) of fractures
forming the exposure face and (c) the varying orienta-
tion of scanlines to the orientation of the intersecting
fractures.

Weightings The fractures are weighted by their spatial
position to the scanline orientation. In the further for-
mula the fractures are represented by their pole points
(Wallbrecher 1986); so, the weight is related to the angle
between the pole of the fracture and the scanline. There
must be consideration that the higher the angle the
higher the fracture must be weighted. The weighting
function can be written as:

. 1 _ 1
9= Jcos(o)] ~ [(roxs)|

where ¢ ; is the angle between scanline x; and pole x; and
where x;=(xy;, X»;, X3;) are the x,y,z-coordinates on the
surface of the unit sphere. For ¢ ; — 0 this weighting
function goes to o, therefore the authors set a limit at 5,
and the weighting function becomes

o = min (ﬁs)

Because of the dimension of the finite-sized exposures
the length of the scanlines differs. This influences the
number of intersecting fractures along one scanline
depending on the total length of the scanline. For
comparing different scanlines, the fractures must be
weighted by the length of the scanline. The final
weighting function can be defined as

_g (1
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where /; is the length of the scanline, on which the
fracture is detected. So this weighting considers for each
fracture the angle to the scanline and its length.

Estimations and assumptions Estimation of immeasur-
able fracture attributes: The aperture and sometimes
the lengths of fractures forming the exposure face are
not measurable. The rock face is subjected to the
fracture network. As fractures are characterized by a
negligible tensile strength the loosening of hard rocks
follows the fracture network. So, fractures forming
rock faces are assumed to be hydrogeologically rele-
vant and are considered as open. In most cases
exposures have several rock face directions that scan-
lines can be stretched. So, it is possible to measure the
aperture and length of similar orientated fractures.
With that data the immeasurable attributes of frac-
tures forming the rock face can be estimated. The
attributes ao of a fracture forming the rock face are
estimated by the attributes a; of other fractures using
the weighted mean

P :Ziwz‘giai
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where w; is the weight of the individual fractures and
defined as

o — 4 exp(=4(1 = (xo.x;))) @, <30
! 0 else

9

where ¢, is the angle between xq and x;. The weights are
defined in a way that fractures parallel to the main
direction x, influence the equation most strongly. At an
angle greater than 30° the weights are set to zero. That
means fractures with an direction deviation more than
30° are not considered for the estimation. If there are no
other fractures within that angle deviation, then the
estimated fracture attributes are set to zero. One prob-
lem has to be mentioned in that context; a very low
number of fractures having lower angles than 30° do not
give satisfying results. So, there is still some developing
necessary; for the first approach, there are no further
limitations used.
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Assumptions for the weightings and the fracture vol-
ume: Another goal of the fracture analysis is the deter-
mination of the fracture set volume. Therefore the
individual fractures are weighted by the attributes
aperture and linear degree of separation. The authors
assume that the attributes recorded on the surface con-
tinue through the whole rock mass. So the area defined
by the aperture and linear degree of separation can be
regarded as a representative weighting value. The max-
imum aperture is fixed with 1 cm. The maximum length
of fractures extending out of the exposure are stan-
dardized to 2 m.

Considering these assumptions the weights gv; are
given by:

gv; = 0; x d;, (1)

where 0, is the aperture and d; is the standardized linear
degree of separation.

Combining the two weights g; and gv; the total weight
v; for one fracture is:

U = ¢gi X gv;. (2)

This total weight describes the hydrogeological impor-
tance of a fracture based on the fracture volume.

Cluster analysis

The cluster analysis classifies objects to groups (clusters).
The classification is based on the similarity of the objects
attributes. The clusters are characterized by high simi-
larity within the cluster and high dissimilarity between
the clusters.

So the similarity respectively dissimilarity (=dis-
tance) between the objects have to defined.

Distances and similarities The similarity between objects
or object groups can be defined in many ways. The
cluster analysis describes the similarity of two objects
with the distance between this two objects. That means
the stronger the similarity the smaller the distance. The
definitions of different statistical distances is well dis-
cussed by many authors including Hammabh et al. (1998,
1999) and Steinhausen and Langer (1977). Let d; be a
function of two objects x; and x;. The authors write

dij = d(Xi,Xj) with X = (xil,xig, .. .xip)/ and
i=1,2,...,n,

where n is the number of observed objects and p the

number of the attributes. If d; complies with the first
three conditions:

1. dix,y) 20
2. dx,y)=0& x=y

3. d(x,y) =d(y,x)
4. d(x,y) < d(x,2)+d(z,y)

then dj; is a distance. A metric distance also complies
with the fourth condition. As mentioned above, the
attributes of an observed fracture can be separated into
two groups. The measured values of these two different
groups are defined in two different spaces. The measured
values of the spatial attributes are spherical data and can
be represented by the surface of the unit sphere in R
space. The measured values of the hydrogeological
attributes are numeric data in R? space. So, two different
kinds of distances are needed and should be combined in
a suitable way.

For the spherical data the authors consider the sine-
square distance and the Mahanalobis distance of
spherical data (Hammah et al. 1999). Let x; and x; be
two points on the surface of the unit sphere, then the
sine-square distance is defined as

dz(X57XJ) =1- <xi7xj>2.

For the definition of the Mahanalobis distance for
spherical data see Hammah et al. (1999). The common
distance of numeric data is the Euclidean distance

d(xix;) = |Jxi — x|

where ||'|]| is the Euclidean norm. The authors used the
Euclidean distance for analysing the hydraulic attri-
butes.

To combine the different kinds of distances, Stein-
hausen et al. 1977 propose a mixed distance dy;. Let d,
be the distance of the direction (sine-square or Maha-
lanobis of spherical data) and d,. the Euclidean distance,
then dy; is defined as
dyi = myd; + med, :

m m

where m;, is the number of the variables representing the
direction (in the discrete demand m,=3), m, is the
number of variables included in the Euclidian distance
(in the discrete demand m.=2) and out of that
m=m,+ m,.. This means that the distance of the direc-
tion is weighted more strongly. For the hydrogeological
interpretation this fact makes sense because the first goal
is to summarize fractures as clusters with similar orien-
tation. But also includes their hydrogeological relevant
attributes for the discrete classification to the different
clusters.

Clustering Agglomerative hierarchical clustering: The
agglomerative hierarchical clustering leads to an exact
partition of objects, that means that one object is
classified to exactly one group. At the beginning every
cluster is defined by exactly one object. The two
clusters with the lowest distance are combined to a new
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cluster. So, the total number of clusters is reduced by
one. This step is repeated till the demanded number of
clusters is reached. For the distance between two
clusters the authors use the “mixed distance” as
described above. After the first step one cluster can
include one or more than one object. So the authors
derive the distance between two clusters with the cen-
troid method calculating the “mixed distance” between
the mean of the clusters.

Fuzzy c-mean clustering: The fuzzy c-mean clustering
differs from the hierarchical clustering in two points.
The number c¢ of cluster has to be determined before
starting the cluster analysis and each object is classified
to each cluster with a certain degree of membership. So,
the fuzzy c-mean clustering is based on the definition of
diffuse sets by generalised characteristic functions (Bez-
dek 1981; Bick 1994).

Let M be a subset of the real numbers, the charac-
teristic function m,, of the set M is defined by:

. 1 xeM
my : R — {0, 1} with mM(x)—{O else

This gives an exact classification of each element to one
set. The generalised characteristic function m1,, of a set

M is defined by:
my :R—100, 1] and my(x) = {fg)x) x;sé\l

f:R—=]0, 1].

with

That means that the elements can be classified to each
group with a certain degree of membership. For the
better understanding it will be explained by an example:

M is the set of elements which are “approximately 7.
A characteristic function m,; of the exact set M, can be:

ml(x):{(l)

and a generalised characteristic function m, of the set
M, can be:

my(x) = exp(—(x - 7)2> x € (—o0, ).

6.95 <x<7.05
else

With the characteristic function m; all the values be-
tween 6.95 and 7.05 are classified to the exact set M,
(approximately 7). Under the use of the generalised
characteristic function m, only the value 7 is exactly
classified to the diffuse set M, and has a degree of
membership equal one. The remained elements have a
degree of membership less than one.

That means for the cluster analysis, that the objects
are not classified to exactly one cluster. The classification
to the different clusters is defined by the degree of
membership w;; with

OSWUSI and ZWU:L
J

where i=1,2,...n is the number of objects and j=1,2,...c
is the number of clusters. The diffuse partition is un-
iquely fixed by the degrees of membership.

The fuzzy c-mean clustering is an iterative method.
The first step is to determine the number ¢ of cluster and
c arbitrary cluster centeroids (prototypes) FV; with

j=1.2,..c. The next step is to calculate the distances

between the objects x; and V/; and the degrees of mem-
bership

- [1/(d2()(,»71/j))]1/(m71)
[ @ear)]

These new degrees of membership determine new cluster
prototypes by

Do (wy)"xi
S (wy)™

This process has to be repeated as long as the degrees of
membership change less than an established tolerance.
The weighting exponent m > 1 defines the “fuzzyness’ of
the partition. The closer the value is to 1 the exacter is the
partition. Otherwise when the value m becomes bigger
the weighting function gets smoother that leads to a
diffuser partition. Every diffuse partition can be trans-
formed to an exact one. The modified degrees of mem-
bership w*; of the next exact partition are defined by

i

I/jv-:

P =

. { 1wy = max(wy)
w; = j
0 else
This definition classifies the objects to exact one cluster,
so the results of both methods can be compared.

The result of the clustering is the definition of groups
containing fractures with similar spatial and hydrologi-
cal attributes which can be regarded as homogenous
groups (clusters).

Cluster attributes: The centre of gravity describes the
mean orientation of a fracture set (Wallbrecher 1986).
The uncertainty of the centre of gravity can be described
by cones of confidence (95 and 99%). In the structural
geology the cone of confidence is parametrically esti-
mated. Therefore, the data are assumed having a certain
spatial distribution. Before calculating the angle of the
cone of confidence, the parameters of the distribution
have to be estimated. One approach which is not bound
on a certain spatial distribution is based on the non-
parametric bootstrap method (Davison and Hinkley
1997). The advantage of that method is that the shape of
the cone of confidence is a result of the empirical dis-
tribution of the data. So, the shape of the cone of con-
fidence is not bound on the shape of the assumed spatial
distribution.

The orientation related fracture volumes define the
hydrogeological effectiveness of fracture sets. For the
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calculation of the fracture volume, it was assumed that
the aperture and the linear degree of separation continue
into the rock mass as they are recorded on the surface.
Multiplying the aperture and the standardized linear
degree of separation (1) leads to the standardized area
(equal to the weight gv;). Correcting the standardized
area like the weights in (2) leads to a weighted area that
is proportional to the fracture volume. So, the sum of
the weighted areas can be regarded as a first estimation
of the fracture set volume.

Results and discussion

The practical application of this research work has been
carried out in the area of Sonnwendstein/Semmer-
ing—Austria (S6 Semmering tunnel) (Harum et al.
unpublished data). The fracture networks are observed
at 17 exposures. The 1998 fractures and their attributes
are recorded along 48 scanlines with a total length of
126.5 m. The data of each exposure are analysed with
the two clustering methods considering the different
distances. For each exposure a structural plot is gener-
ated by clustering combining the spatial geological and
the hydraulic relevant fracture attributes like Fig. 2b.
Further on, the volume of each cluster (fracture sets) is
calculated.

The clustering combining the geological spatial
attributes and the hydraulic relevant attributes lead
sometimes to a different cluster distribution than the
geological analysis (Fig. 2). The geological clustering is
only bound on the orientation of the fractures. In the

example SA65 the geological analysis determines four
different clusters (Fig. 2a). The fuzzy c-mean clustering
also leads to four different clusters but with a different
distribution (Fig. 2b). Both methods show for Cll and
CI12 the same results. But the strongly scattering cluster
Cl4 of Fig. 2a can be divided into two clusters having
completely different fracture set volumes (Fig. 2b). The
estimated cluster volume of CI3 in Fig. 2b is about
1.68% and the volume of Cl4 in Fig. 2b is about 0.02%.
The fractures of CI3 in Fig. 2a have nearly the same
hydraulic relevant attributes as the fractures dipping S
with an angle about 80°. So these data are summarized
to one cluster Cl4 in Fig. 2b. The hydraulic relevant
fracture sets characterized by a high fracture set volume
strike SW-NE (Cl3) and N-S (CI1) both dipping nearly
vertical.

The new clustering methods enhance (a) the calcula-
tion of the cluster volumes and (b) a more precise defi-
nition of the orientation of hydraulic relevant clusters,
especially by strongly dispersing fracture data.

The analysis of all the exposures determine that the
fuzzy c-mean clustering using the mixed distance
(Euclidean and Mahalanobis), lead to the most satisfy-
ing results considering the geological, tectonic circum-
stances.

Conclusions

The clustering method enhances the description of the
fracture sets in more detail, combining the geological
spatial and the hydraulic relevant attributes. It is an
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Fig. 2 The different spatial positions of the clusters CI3 and Cl4 are figured out comparing the geological clustering (a) and the
hydrogeological clustering (b) including the hydraulic relevant attributes
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objective and comprehensible method which is based on
data observed at surface exposures and boreholes. It
enhances the determination of the hydrogeological rel-
evant (dominant) fracture sets and separates clusters
with equal geological but with different hydraulic attri-
butes (Fig. 2).

Because of the linear sampling technique (scanline),
boreholes can be included as an important complemen-
tary information for the interpretation into depth. So,
this method enhances a better three-dimensional image
of the fracture network and a better characterisation of
hydrogeological units.

The combination of the results of the cluster analysis
and results of hydraulic tests could quantify the
hydraulic capacity of individual fracture sets. It can help
determine and quantify the hydraulic attributes of a
fracture network and their spatial distribution for a
numerical realisation of fractured aquifers. On one side,
the detailed fracture recording enhances the generation
of a discrete fracture network with its attributes. On the
other side, the hydraulic behaviour of the fracture net-
work can be described by the hydraulic capacity of the

fracture network resulted from the combination of
cluster analysis and hydraulic tests. So, the results of this
method can also be used for a continuum approach in
numerical modelling.

The statistical analyses are based on several
assumptions, which should be defined in more detail in
the future. The estimation of the fracture set volumes
has to be regarded as a first approximation and should
be seen as an upper limit of the potential fracture vol-
umes. It is planned to integrate the termination and a
proper geometry of the individual fractures in the next
investigation step and to combine the results of the
clustering and volume estimation/calculation with re-
sults of hydraulic tests along boreholes. This combina-
tion could enable a quantification of the hydraulic
effectiveness of the fracture network expressed in per-
meability and storativity.
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