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Seawater is a two-component medium, whose den-
sity depends on temperature and concentration of
admixture (salinity). Numerous measurements of these
variables in the ocean revealed the existence of clearly
manifested horizontal and vertical inhomogeneities
(see, for example, [1-4] and references therein). In par-
ticular, situations with numerous interfaces (steps) on
vertical temperature and salinity profiles (fine structure
of the ocean) are widespread. It is generally accepted
that the main mechanisms of the fine structure forma-
tion are internal wave breaking and convection caused
by double diffusion. In our work, we consider a mech-
anism related to the nonstationary wave process of
mechanical equilibrium establishment, namely hydro-
static adjustment. It is shown that in stably stratified
two-component medium, initial temperature and con-
centration inhomogeneities do not disappear at the find
stage of this process; i.e., the medium conserves the
memory about the initial perturbation (this is excluded
in usual one-component fluids stratified only by tem-
perature). The peculiarities of the structure of final dis-
tributions are studied. The effect of formation of dis-
continuities from smooth perturbations is described.
The mechanism considered here supplements the previ-
ously studied mechanisms.

LINEAR THEORY

The equation of state for saline seawater is written
to a high accuracy in the following form [1]:

p = pu(1-0T +Ps). )

Here, p is density, px is the value of p at constant mean
values of temperature Ty and salinity sy; T, s are corre-
sponding deviations from the mean values; o is the
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coefficient of thermal expansion; and B is the coeffi-
cient of salinity compression. Taking into account Eq. (1),
the adiabatic motions of the medium are described by a
closed system of hydrodynamic equations and transport
of admixture:

du 1 )
= =_= — ok = 2
T pr gk, divu = 0, 2)
dT _ ds _
PR T )

where u is a velocity vector with components u, v, w
along horizontal axes x, y, and upward directed axis z;
p is pressure; g is acceleration due to gravity; Kk is verti-

cal ort; and fl— = 9—

yrial-ri (u, V) is the operator of total

derivative.

Let us analyze the behavior of perturbations induced
in a linearly stratified two-component medium, which
was initially at rest. The corresponding initial condi-
tions for (1)—(3) are written in the following form:

ul,_, =0, T|,_,=vrz+Ti(x),

4
Sli=0 = Vsz+8(X), @
where x = (x, y, 2), T}, s; are specified initial perturba-
tions. Let us consider that the background equilibrium
state is convective stable. This corresponds to a
decrease in background density p (z) = p«(1 —yz) with
height. In the stable state y = oy, — By, > 0.

It is convenient to characterize the relative contribu-
tion of temperature and salinity to the background den-
sity stratification by a dimensionless parameter

_ B,
n= oyr

Usually, 1 = 0 corresponds to a one-component
medium stratified by temperature. It is obvious that y=

oy(1=m).

&)
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In a stably stratified infinite medium, initial horizon-
tal inhomogeneities of the density field p; = —ps(oT; — Ps;)

lead to the appearance of wave motions, which smooth
the density inhomogeneities and attenuate after long
time periods. The corresponding wave process of
hydrostatic adjustment can be most easily investigated
in the case of small amplitude perturbations. Denoting
the small perturbations of thermodynamic variables by
primes and using the Boussinesq approximation, we
shall get the following linear system instead of (1)—(3):

a_u = —in'+g(0cT'—Bs')k, diva = 0, (6)
ot P
aT' _ ds' _
§+’YTW—O, at+](sw—0 @)
with initial conditions
ul,_, =0, 7|, _,=T(x), s, = s:(x).

For dimensionless buoyancy

p

6 =—-— =al'-Bs'
P
system (6), (7) is reduced to one equation
azA N°AyG = 0 8
é-t—z 30+ 20 = U, ( )

where N = A/g_y is the Brunt—Viisila frequency, A; and
A, are 3D and 2D (horizontal) Laplacians. Equation (8)
is the main equation of the linear theory of internal
gravity waves [5] (this equation is usually formulated
for the vertical velocity component). The general solu-
tion of the Cauchy problem for this equation is given in
[6]. It follows from the corresponding solution describ-
ing the process of spatial wave scattering that the den-
sity perturbation attenuates in the course of time: 6 —
Oatt— oo

It is clear that, in a one-component medium (whose
density depends only on temperature), temperature per-
turbation 7' attenuates together with 6. The behavior of
T'in a two-component medium is completely different.
Let us denote the final (at  — oo) perturbations of tem-
perature and salinity as 7', s’ . In order to find these per-

turbations, we shall use a simple local conservation law,
which is obtained by excluding w from equations (7):

or

— =0,

ot
According to (9), the field of r(x) does not change in
time:

r=9T-vrs' )

VST}'—YTS,'," =Y, T, —Yrs;- (10)

In the final state, 6 = 0; i.e., T = s';. From the latter
relation and (10) we get the following relations
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T = on?;-Bs; , _onT;-Ps;
T om0 T M=)

which indicate that perturbations of 7" and s' do not dis-
appear in a two-component medium even at the final
stage of the hydrostatic adjustment. These perturba-
tions compensate each other in the density field (o,=0)
forming stationary thermohaline trace. In a real two-
component medium, the trace would be naturally
destroyed during the characteristic time of dissipation,
but this characteristic time exceeds significantly the
time scale of hydrostatic adjustment.

(1)

We note that conservation law (9) is a linear form of

freezing equation specific for two-component media
cii—l: = (R, V)u for vector field R = VT x Vs, which is

tangent to the lines of intersection between surfaces 7'=
const and s = const. This equation follows from Egs. (3).
For the perturbations of small amplitude,

R = (y;k+VT) x (y,k+Vs')~R' = Vrxk,
oR'
=— = 0.
ot
The latter equation is equivalent to (9).
Let us analyze the peculiarities of final distributions

in case s; = 0 (initial perturbation of salinity is absent):
u L= 7,

T, = —T, s,=2——

T n-1 7 Bn-1

At 1M =0 (one-component medium), the trace of the ini-

tial perturbation is absent: T, = s, =0. Atn #0, taking

account of limitation y > 0, three qualitatively different

situations corresponding to different values of parame-
n

n-1

(1) Background stratifications of temperature and

salinity are stable: y,> 0, v, < 0, n <0. In this case, 0 <

m < 1; i.e., the final perturbation conserves the sign of
the initial perturbation, but its amplitude is smaller.

(12)

ter m = are possible.

(2) Temperature stratification is not stable, but the
system is stabilized by stable salinity stratification:
By, < otyr < 0,m > 1. In this case, m > 1; i.e., the ampli-
tude of perturbation in the final state is always greater
than the initial amplitude, and N1 — 1 + 0 (approxima-

tion to neutral density stratification) T} —> o0 (M — o).

The effect of intensification of perturbations in stably
stratified two-component medium can be understood
from the following considerations. Initial positive per-
turbation of temperature leads to the appearance of
upward motions in the medium, which transport warm
water from below at y; < 0. If density stratification is
close to neutral, it does not prevent intense develop-
ment of these motions, which results in the formation of
an intense trace.
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(3) Salinity stratification is not stable, but the system
is stabilized by stable temperature stratification: ovy; >
By,>0,0<m < 1. In this most interesting case, m >0 and
|m| — oo at 1 — 1 — 0. Thus, final and initial perturba-
tions have opposite signs; for example, a cold trace is
formed in the medium as a response to initial heating.
At first glance, this is an unexpected effect of negative
heat capacity of stratified two-component media [7, 8],
but it has a simple explanation. Intense vertical
motions, which transport cold water from below,
develop at y; > 0 and density stratification close to
neutral.

Let us note one more peculiarity of the final pertur-
bation. It follows from Eqs. (11) that discontinuities
(jumps) in the initial distributions T, s; are also con-
served at the final stage. If a discontinuity exists at the
initial moment only in the field of one variable, then
according to (11), it also appears in the field of another
variable during the hydrostatic adjustment. As shown
below, the universal property of nonlinear dynamics is
in the formation of discontinuities from smooth initial
perturbations.

NONLINEAR THEORY

Let us now investigate the theory of final perturba-
tions in a nonlinear problem. For simplicity, we shall
consider two-dimensional motions occurring on plane
(x, 7). We also assume that, at the initial time moment,
s; = 0, while the temperature perturbation T(x, ) is
localized in a horizontal plane: T; — O at [x| — . The
corresponding initial density distribution is py(x, z) =
p (@) +pi(x, 2), where p = ps(l —72), p; = —0p«T:.

In a nonlinear problem, variables p, 7, s are
Lagrangian invariants, i.e., values conserved in each
fluid particle. Using this fact, one can unambiguously
find the distribution of these variables in the final state.
Let us first show that if mechanical equilibrium is
established in the medium, then in this state pAz) =
p (2); i.e., the final distribution coincides with the back-
ground one (perturbation of density disappears).
Indeed, it follows from the definition of the Lagrangian
invariants that for each > 0 p = py(xo, 2o), Where x, 7, are
initial (Lagrangian) coordinates of a fluid particle.
From here, we get p(z) = po(xo, 20);: i.€.,

P(2) = p(zo) + Pi(xo, 20)- (13)
Proceeding to the limit |x,| — oo in (13) and taking into
account that in this case p; — 0, z, = z, we obtain

PA2) =P (2).
Let us assume that p(z) = p (z) in (13). In this case,
Eq. (13) would be written as
Px(l=72) = px(l =7vz0) —0PsT;(x0, Z0),

From this, we get
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=20t %Ti(x(), Zp)- (14)

The physical sense of Eq. (14) is quite clear. It deter-
mines the dependence of the final (Eulerian) vertical
coordinate z of a fluid particle on the initial
(Lagrangian) coordinates. If this dependence is known,
a similar dependence x = x(x,, z;) for the horizontal
coordinate can be found from the equation of continuity
in Lagrangian variables

a(x,z) _

- (15)
a()C()a ZO)
Seeking the solution of (15) in form x = x(x,, z) we get
-1
é%f—o = (a%go) . From this, x is found by integration.

Thus, Egs. (14), (15) form a closed system of equations
for finding the field of Lagrangian displacements of
fluid particles.

Let us find the final distributions of temperature and
salinity. The following relations follow from the defini-
tion of Lagrangian invariants and initial conditions (4)

Sy = VsZ0 (16)

which together with relations x = x(x,, zy), z = 2(Xy, 2o)
give parametric presentation (x,, z, are parameters) of
functions Ty = Ty(x, z), sy = s/x, z). Equations (16) can
be transformed by taking into account that, according

T = Yrzo+ Ti( X, 20),

to (14), zo = z - %Ti. Substituting the latter equation

into (16), we get

Ty =yrz+ _TJ lTi(an 20)>
" (17)
o
Sp = VsT+ E%Ti(xm Zp)-

Let us compare Eqs. (17) with the results of the lin-
ear theory. It is easy to understand that Egs. (12) follow
from (17) for the deviations from the background dis-
tributions, with the only difference that the left and
right parts of (12) are now expressed in the Eulerian and
Lagrangian coordinates, respectively. Within the linear
theory, x, ~ x, z, ~ z, and Egs. (12), (17) are equivalent.
In the nonlinear problem, relation (15) between the
coordinates determined from (14) leads to a complex
configuration of the initial distributions. The most
clearly manifested peculiarity is related to the forma-
tion of discontinuities (jumps) along the vertical.

Let us consider the case of initial distribution speci-

H

tude and horizontal and vertical scales of T}, respec-
tively. We assume that function h(x), decreasing in
infinity, is even (not negative) and satisfies condition

fied as T, = ATh ({) ‘c(-z—) , where AT, L, H are ampli-
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h(0) = 1. For the dependences between dimensionless
(normalized by L and H, respectively) Eulerian and
Lagrangian coordinates from (14) and (15), we shall get

Z = Zo+ ah(xy)T(zo),

4 h(x0)7T'(z0) »
) 1+ah(x))T(z0)

(18)

X = Xy

in which we introduced dimensionless amplitude

parameter a = %%Z and denoted the derivative by

prime. The integrand in (18) is assumed as z, = zy(X, 2)
(relation for z is solved with respect to z;).

According to (16), (18), the vertical distribution of
Tyover the symmetry axis x, = 0 of the temperature per-
turbation is described by parametric (z, is a dimension-
less parameter) expressions

7 = zo+at(zy), T; = YrH[zo+a(l-m)1(z)]. (19)

Dependence (19) for various values of parameter a
in the case of localized distribution t(z,) > 0 and n < 0
is shown in Fig. 1 (vertically infinite medium is consid-
ered). As seen in the figure, with the increase of a at cer-
tain value a = a,,, a discontinuity is formed at point z =z,
on the vertical profile T A similar discontinuity is also
formed in the vertical profile of salinity. These discon-
tinuities compensate each other so that the vertical dis-
tribution of density remains smooth (linear). It is not
difficult to show that the appearance of the discontinu-
ity is associated with the inflection point z4 on the
graph of dependence z = z(z,). This point is found from
equation 1"(zy) = 0 (prime denotes derivatives). Since

aT
QZ _ aZ()
dz 1 +at(zy)’
we shall find for the critical parameters:

1
Aoy = —Z7 > Zer = 2y +ach(Z*).
T(z4)

In particular, at 1(z)) = —;, elementary calculations
1+2z
yield:

8

Ay é,zch,\/g_

Using these values, it is possible to estimate the crit-
ical value AT. Discontinuity appears when this value is

YH

exceeded: AT = c_zc_&_ (this value linearly depends on

the scale of perturbation H). At H=10m, t=2- 10* K",
¥Y=9-10"m!' (N=3-103s"), we get AT=7- 102 K;
i.e., initial perturbation with an amplitude of the order
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Fig. 1. Vertical temperature distribution along the symmetry

axis of the perturbation at T(z) = 1 =-5, and values

1+ zg ,
of parametera=0.4 (1);a=0.8 2);a=a,, =

a=3(4).

% =1.53(3);

of one-tenth of a degree already leads to the formation
of discontinuity.

Let us emphasize that the effect of discontinuity for-
mation has a universal character unrelated to the details
of the structure T(zy). Its physical interpretation is not
difficult. Indeed, according to (14), the vertical dis-
placement of a fluid particle / = z — z; is determined by
intensity of AT of the initial perturbation 7. At AT >0,
warmer particles ascend and gain the relatively cold
ones, which leads to the formation of a discontinuous
profile resembling the known N-wave in gas dynamics.
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Fig. 2. Vertical temperature distribution along the symmetry axis of the perturbation at T(zy) = cos(Azp), A = 1.5, 1 = -2, and values

of parameters a = 0.2 (1), a., = 0.95 (2)

Such profiles are recorded sufficiently often. They are
characteristic of temperature inversions [1].

Dependence (19) at 1(zy) = cos(Azy) for two values
of parameter a is shown in Fig. 2. This figure demon-
strates that in the case of periodical (by vertical) initial
perturbation, which is generated, for example, by an
internal wave, a stationary sawtooth-shaped tempera-
ture profile can be formed, in which layers with con-
stant gradients are separated by sharp interfaces (inver-
sions). The condition of formation of discontinuities for

L D 1
a periodical perturbation is written as a > a,,. = = . The

e
corresponding critical value AT at A = 1 and the values
of parameters given above are equal to 4.5 - 102 K. It is
clear that if the initial perturbation is aperiodic (it has
positive and negative phases), a profile with irregular
distribution of interfaces would be formed. Such pro-

files are characteristic of the fine structure of the ocean,
which, according to the definition given in [1, page
119], is an irregular or systematic alternation (by depth)
of the intervals with low and high vertical gradients of
a certain property. We note that characteristic values of
temperature jumps are a few tenths of a degree for the
fine structure. This corresponds to supercritical
regimes.

Thus, the scenario of mechanical adjustment of
equilibrium in a stratified two-component medium
(seawater) is different than in usual fluids stratified only
by temperature. Initial horizontal inhomogeneities of
temperature and admixture concentration (salinity) in a
two-component medium do not disappear even at the
final stage of this process and they form a long-living
thermohaline trace. The structure of the trace is not triv-
ial. Depending on the relative contribution of these two
factors to the background density stratification, the sit-
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uations are possible when the deviation from the tem-
perature background at the final stage significantly
exceeds the amplitude of the initial deviation and has an
opposite sign. The universal peculiarity of the structure
of the trace is in the formation of vertical discontinuous
(stepwise) distributions from initial smooth perturba-
tions. Such distributions are characteristic of the oce-
anic fine structure.

It should be emphasized that mutual compensation
of temperature and admixture concentration takes place
in the final states in the density field. In other words,
clearly manifested horizontal and vertical inhomogene-
ities of the temperature and salinity fields can exist in a
stratified ocean in the state of mechanical equilibrium
and smooth density field. Such peculiarity was repeat-
edly noted in the analysis of data of oceanographic
observations [3, 4]. It is easy to make sure that in the
often cited results of Molcard and Williams [1], (Chap-
ter 3, Fig. 3), the steps on vertical profiles of tempera-
ture and salinity are compensated in such a manner that
their contribution to the density field is equal by the
absolute value and opposite by the sign. The authors of
[4] mention compensation (although not complete) in
the density field. It seems reasonable to make an exper-
imental test of the regularities found in this work.
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