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It is well known that earthquake recurrence plots are
well described by the exponential function 
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 is the seismic activity reduced to
surface and time units; 
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 = 

 

 is the energy class;
and 
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 is the angle factor. The relation 
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 on a double-logarithmic scale appears
as straight lines. However, for the given time interval,

 

A

 

0

 

 is a function of coordinates and, therefore, a variable
value even in a single seismoactive region but in differ-
ent unit areas. Therefore, the arising challenge is to find
such a representation of the law of recurrence (LR), in
order to make it statistically invariable in terms of the
transformation of coordinates. Such an opportunity
appears in the case of expansion of theoretic-probabi-
listic concepts on event catalogues of random seismo-
active regions. The present paper is devoted to the solu-
tion of this problem on the basis of a Kamchatka cata-
logue case study and the discussion of certain
relationships revealed by the analysis of seismic
regimes based on the proposed method.

In the theoretic-probabilistic approach, an earth-
quake is examined as elementary event 
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 in elementary
event space 

 

Ω

 

 [2]. Each single event 
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 is characterized
by a system of continuous stochastic variables (energy
class 
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, latitude 
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, longitude 
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, depth 
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, and time 

 

t

 

). In
this paper, time is excluded from the system of stochas-
tic variables. The seismicity of either the entire region
or a selected part thereof is regarded as a complete
group of events and described as distributions of condi-
tional and unconditional probabilities 

 

P

 

 represented in
frequency form. Stochastic events are defined as com-
binations of the system of stochastic variables 
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 within the set . Thus, one can present the cata-
log of seismic events for the observation period as a sto-

chastic space of three objects {

 

Ω

 

, , 

 

P

 

} and calculate
probability distributions for various stochastic events.
If the law of distribution of a system of stochastic vari-
ables is analytically specified by the distribution func-
tion 
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 or by its density 
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, then dis-
tribution patterns for individual variables can be found
from standard formulas. In our formulation, an inverse
representation of the problem will be the most logical
one: deduction of the law of system distribution from
the distribution patterns of stochastic variables. The
density of distribution for continuous variables can be
represented as either the 4th-order mixed partial deriv-
ative of 
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 or the product of conditional and
unconditional 

 

f

 

 functions by the following relation:
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 is the unconditional density of the distribu-
tion of events as a function of 
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an event’s distribution along 
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 is the density of distribution along 
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, pro-
vided the longitude, latitude, and depth are 
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, and 
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,
respectively. Knowing the analytical formula (1), it is
possible to compute the probability of an event falling
within the given intervals of latitude 
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(2)

where i, j, m, and n are indices of intervals of the
respective stochastic variables. Numerical values of
P(∆ki, ∆ϕj, ∆λm, ∆hn) based on the seismic event fre-
quency data catalogue are easily computable. One can
similarly calculate unconditional distribution patterns
for all the stochastic variables k, ϕ, λ, and h, as well as
various combinations for conditional distribution pat-
terns of this variables. Catalogue processing based on
Eq. (2) makes it possible to compute frequencies of
seismic event occurrence within a given interval of sto-
chastic variables k, ϕ, λ, h and to obtain values of the
distribution function F(∆ϕ, ∆λ, ∆h, ∆k).

On the basis of a raw catalogue of Kamchatka earth-
quakes and Eq. (2), we plotted a bar chart of seismic
events within the energy class intervals ki ± 0.5 and
∆k = 1 beginning with the representative class k0 = 9.5
for the January 1, 1962 to December 31, 1999 period
(T = 37 yr). Epicenters of the events (Nr = 21845) fall at
the area S1 (∆ϕ = 50°–59° N, ∆λ = 153°–168° E). The
smoothed bar chart is approximated by the formula:

(3)

=  P ∆ϕi( )P ∆λi ∆ϕi( )
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On a double-logarithmic scale, Eq. (3) takes the follow-
ing shape:

(4)

The relationship (4) is presented in Fig. 1. The interval
12.5 ± 0.5 shows a plot bend dividing the recurrence
pattern into two segments with different plot inclination
angles γ. Formulas (3) and (4) refer to the following k

variation ranges: 9.5 ≤ k1 < 12.5 with γ1(  = 9.5), and

12.5 ≤ k2 < 16 with γ2 (  = 12.5). Although Eqs. (3)
and (4) are similar with well-known equations based on
the RP, the former equations lack the dependence on the
seismic activity A0. Since density f(k0) is the initial vari-
able in Eqs. (3) and (4), the question arises of how f(k0)
varies depending on the study area. Figure 2 shows the
smoothed density distribution histograms f(k) for epi-
centers situated at time T in areas S1 > S2 > S3 (S2: ∆ϕ =
51°–56° N and ∆λ =156°–163° E; S3: ∆ϕ = 52°–53° N
and ∆λ = 159°–160° E). The histograms correspond to
the raw (dashed lines) and aftershock-free catalogues
with initial k0 = 9.5. The earthquake data were kindly
placed at our disposal by the Kamchatka Branch, Geo-
physical Service, Russian Academy of Sciences. This
catalogue for the period T with epicenters located in
area S1 was cleared of aftershocks of large Kamchatka
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Fig. 1. A smoothed double-logarithmic plot of distribution
density f(k). Marked along the x-axis are mid-intervals (ki ±
0.5). The total number of seismic events for area S1 of the
raw earthquake catalogue Nt = 21845.
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Fig. 2. Distribution density f(k) of the earthquake RP of the
aftershock-free and raw earthquake catalogues with hypo-
centers located at areas S1 (50°–59° N, 153°–168° E), S2
(51°–56° N, 156°–163° E), and S3 (52°–53° N, 159°–160° E).
(N0) the number of events in the aftershock-free catalogue;
(Nr) the number of events in the raw catalogue; (k0 = 19.5)
the initial value of energy class.
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events (algorithm compiled by G.M. Molchan and O.E.
Dmitrieva; program compiled by V.B. Smirnova; data
provided by V.A. Saltykov). For ∆k = 1, the probabili-
ties P(k) = f(k)∆k are numerically the same as f(k0).
Analysis of Fig. 2 reveals an interesting stability of the
respective frequencies. The given minimum k values
show a virtual coincidence of the plots, irrespective of
the involved area and the earthquake catalogue type
(aftershock-free or raw). Insignificant differences are
noted for the recurrence plot with the least area S3, for
which the number of seismic events is one order of
magnitude less than for areas S1 and S2. The higher is
the number of involved events N, the better the coinci-
dence. This conclusion is consistent with limiting theo-
rems of probability theory. Therefore, it is possible to
suggest a statistical description of the earthquake RP in
probabilistic representation based on the invariant Eqs.
(3) and (4), irrespective of the area involved. This is an
important distinction as compared with the recurrence
plots, with their representation based on the concept of
seismic activity A0 [1], [3]. Under such an approach, the
recurrence pattern acquires a probabilistic interpreta-
tion, does not depend on the study area, and character-
izes features of the medium during its destruction.

Figure 3 shows averaged double-logarithmic plots
of the density distribution f(k) for the aftershock-free
and raw catalogues (k0 = 9.5) drawn on the basis of Fig. 2.
For comparison sake, we also present similar plots for
k0 = 10.5 and average f(k) values with the initial k0
equal to 8.5 (areas S3, S4: ∆ϕ = 52°–52.5° N and
∆λ =159°–159.5° E) and 11.5 (areas S1, S2, and S3),
respectively. Quite noticeable is the practical coinci-
dence of f(k) plots for the aftershock-free and raw cata-
logues under the same k0 values equal to 9.5 and 10.5,
respectively. The calculations show that the average
probabilities for various initial k0 values based on pro-
cessing of the aftershock-free and raw earthquake cata-
logues for S1 > S2 > S3 > S4 (∆k = 1) are practically the
same:  (k0 = 8.5) = 0.648,  (k0 = 9.5) =

0.662,  (k0 = 10.5) = 0.674, and  (k0 =
11.5) = 0.678 (the preference for S3 and S4 was deter-
mined by their correspondence to the areas of reliable
registration of events with k ≥ 8.5).

An important feature of probabilistic representation
of the recurrence pattern is the integral of f(k) over the
interval from the initial value k0 to kmax (in a mathematic
sense, k = ∞) being equal to one. Calculating from (3)

the sum of integrals of f(k1) and f(k2) over the  – 

to  and  to ∞ intervals, respectively, and keeping in
mind that γ2 < 0, we will obtain:

(5)

PS3 S4, PS1 S2 S3, ,

PS1 S2 S3, , PS1 S2 S3, ,

k0
1 ∆k

2
------

k0
2 k0

2

f k0
1( )

γ 1 10ln
---------------- 10

γ 1∆k /2
1 10

γ 1 k0
2

k0
1 ∆k /2+–( )–

–[ ]
f k0

2( )
γ 2 10ln
---------------- = 1.–⋅

Eq. (5) demonstrates the obvious similarity of the
plots shown in Fig. 3 with the practically similar com-

puted initial values of f( ). Indeed, when the distribu-
tion density f(k) is integrated from the fixed value k0 to
infinity, and the integral is normalized to unity, the
lower limit bias on the finite ±∆k will not entail any

modification of the initial values of f( ).

From the condition of equality of the two functions
specified by (3), we obtain the second equation at the

point :

(6)

Expressions (5) and (6) allow us to easily compute

f( ) and f( ) from known initial values γ1 and γ2. For

the initial k0 = 9.5, we have f( ) = 0.662; for  = 12.5,

we have f( ) = 0.029. From (5) and (6), we obtain γ1 =
0.453 and ϕ2 = 0.679. From the similarity of Fig. 3
plots, it follows that inclination factors γ for various ini-
tial k0 will also be practically equal.

However, an alternative solution is possible. Having
processed an earthquake catalogue for intervals (ki ± 0.5),
we evaluate f(ki) and (ki) and plot the respective
relationships for each linear segment by the least-
squares method. Figure 4 provides such relations for
the initial k0 = 9.5. It also gives their mathematical rep-
resentations for each segment of the dashed curve
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Fig. 3. The averaged for areas S1, S2, and S3 double-loga-
rithmic distribution densities f(k); dashed lines show aver-
aged distributions f(k) for the aftershock-free and raw cata-
logues, k0 = 8.5, 9.5, 10.5, and 11.5.
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(ki), as well as the respective numerical values for
γ1 and γ2. In a similar way, for the initial k0 = 10.5, the
relationship (ki) can be plotted in the following
way:

For the first segment 10.5 ≤ k ≤ 12.5:

For the second segment 12.5 ≤ k ≤ 15.5:

Comparing the values of the inclination factor γ for
respective segments of the dashed lines (ki) with
different initial k0 values, we note that γ2 = 0.617 for
both relations with k ≥ 12.5. For the relations with k ≤
12.5, the γ values are slightly different, which can be
attributed to the different numbers of points involved in
the least-squares calculation of inclinations for k0 = 9.5
(4 points) and k0 = 10.5 (3 points). Having compared
the factors γ obtained by the least-squares method for k0
= 9.5 with those computed from the (5) and (6) system,
we note that γ1 values are practically equal (discrepancy
0.003), but the difference between γ2 values amounts to
0.062. The least-squares calculation of γ2 in the second
segment of (ki) is more physical, because we use
the real events falling at the interval with ki = max, in con-
trast to the mathematical approximation with kmax → ∞.
Precisely, this reason is responsible for the difference in
γ2 values obtained by two different methods.

flog

flog

f 1 k( )log 0.175– 0.447 k k0
1–( )–=

=  4.5185 0.447k; f 1 k0
1( )log 0.175;–=–
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2( )log 1.1445; γ 2– 0.617.–= =

flog

flog

Let us multiply by ∆k both the left and right part of
Eq. (1). Having omitted the numerical indices “1, 2" for
the sake of simplification and keeping in mind that
f(ki)∆k = P(ki), where f(ki) and P(ki) are the i-th ∆k mid-
interval values of f and P, we obtain:

(7)

Relation (7) shows what the probabilities of earth-
quakes are falling at the i-th energy interval for the

known probability P(k0), where (ki) = 1 (a com-

plete group of events). In frequency representation, the
probability of seismic events falling at the given inter-

val is P(ki) = . Therefore, Eq. (7) obtains the fol-

lowing shape:

(8)

(NΣ is the total number of earthquakes recorded in the
area S for time T within the energy class interval from

k0 to kmax; i.e., NΣ = (ki). In (8), the following des-

ignations were adopted: N(ki) is the number of earth-
quakes of the energy class within the interval ∆ki; N(k0)
is the number of earthquakes at the initial interval k0 ± 0.5.
In logarithmic scale, we obtain for (8)

(9)

In expressions (8) and (9), as distinct from (7), there is

no normalizing factor . Therefore, they are rigidly

bound to the number of events N(k0) within the interval
k0 ± 0.5 in the studied area S for the given T.

Let us express the recurrence pattern in logarithmic
form via magnitude M evaluated from surface waves.
The M–k relationship for Kamchatka earthquakes is
determined from the relation k = 4.6 + 1.5M [5]. There-
fore, for (9), we have:

(10)

Let us introduce the following designations: A =

(M0) + bM0 = N(M0)] and b = 1.5γ,

where å0 =  (M0  = 3.27 at k0 = 9.5, M0 = 5.27

at k0 = 12.5, and ∆M = 0.67 at ∆k = 1. Therefore, the
number of events falling at these intervals is the same.)
Relation (10) obtains the following shape:

(11)

Expression (11) is congruent with the Gutenberg–Rich-
ter law [4], while the sense of coefficients A and b fol-
lows from expressions (9) and (10): A is the logarithm
of the number N of seismic events falling at the initial
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Fig. 4. Double-logarithmic analytical relations f(k) based
on least squares fitting of averaged distributions for the
aftershock-free and raw catalogues (k0 = 9.5).
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interval M0 ± 0.335 for the given area S and the time
interval T; b is the product of the inclination factor γ and
the multiplier 1.5, which characterizes the relationship
with magnitude M for the Kamchatka earthquakes of
class k [5]. A least-squares computation of b for ki ≤
12.5 provides  = 0.684 (γ1 = 0.456);  = 0.679 (γ1 =
0.453) based on Eqs. (5) and (6). In turn, at ki ≥ 12.5

 = 0.925 (least-squares method, γ2 = 0.617) and  =

1.018 (system (5), (6); γ2 = 0.679). The values of  and

 are close to unity. Let us calculate A1, 2 in Eq. (11)
for two areas with magnitude M ≤ 5.27 and M ≥ 5.27.
For this purpose, let us determine the number of events

falling at the interval  = 3.27 ± 0.335: N0( ) =
P(3.27 ± 0.335)NΣ = 0.662 · 21 845 = 14 461 (in our
case, for the raw catalogue Nr = NΣ and f(ki) = P(ki) at
∆k = 1). And finally we obtain: A1 = (M0) + bM0 =

14461 + 0.684 · 3.27 = 6.397. Let us calculate A2.

Since  = 5.27 ± 0.335, N0( ) = P(5.27 ± 0.335)NΣ =

0.029 · 21845 = 633. Thus, A2 = 633 + 0.9255 ·
5.27 = 7.68.

Let us write down the equations in the Gutenberg–
Richter form based on the least-squares computed γ:

(12)

(13)

Numerical values of A and b in (12) and (13) correlate
well with the respective factors of the Gutenberg–Rich-
ter law provided in [4]. However, the derivation of these
relations more substantially justifies the explanation of

division of the –M relationship into two expres-
sions with distinct definition of the interface condi-
tioned by the recurrence pattern bend, when M = 5.27
(k = 12.5).

Let us evaluate the maximum magnitude Mmax of an
earthquake intrinsic to the area S1 for the time period T.
As the real number of events must be integer, then

adopting it to be equal to 1, we obtain Mmax =  = 8.3.

Therefore, we should expect, in general, one earthquake
(M 8.3 ± 0.375) in the ~40-yr-long period (T = 37 yr) in
the area S1 (∆ϕ = 50°–59° N, ∆λ = 153°–168° E).
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