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Many natural processes are described by nonlinear
parabolic equations of the thermal conductivity equa-
tion type, in which the coefficient of the medium is a
function of the value sought. Although the class of
these equations is called equations of thermal conduc-
tivity, they are used in the description of absolutely dif-
ferent processes. The general form of these equations in
the 1D case can be written as:

 

(1)

 

where coefficient of the medium 
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(

 

T

 

)

 

 has different
dependences for various classes of problems. Most fre-
quently, 

 

F
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)

 

 is described by the power law 
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) = 

 

T

 

n

 

.
For example, at 

 

n

 

 = 1, Eq. (1) describes the dynamics of
free-flow filtration in a porous medium [8]; at 

 

n

 

 

 

≥

 

 1

 

, gas
filtration through a porous medium [6, 13]; at 

 

n

 

 = 3, a
thin fluid film flowing downward under the force of
gravity [10] and the evolution of long gravity waves of
the tidal type in shallow water [3, 4, 11]; and at 

 

n

 

 = 6,
the Marshak radiation wave [12].

Many papers were dedicated to the study of self-
similar and invariant group solutions of Eq. (1). In par-
ticular, Barenblatt [1] obtained self-similar solutions of
the first and second kind (incomplete self-similarity)
for Eq. (1). However, self-similar solutions are related
to the initial problem. In this paper, we shall be inter-
ested in the boundary value problem for Eq. (1) without
initial conditions.
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 Let us consider a periodical problem for Eq. (1)
on a half-line 

 

x

 

 > 0 with boundary conditions

 

(2)

∂T
∂t
------

∂
∂x
------ F T( )∂T

∂x
------ ,=

T
x 0= f t( ), T x ∞→ C ∞,< <=

 

where 
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 is a periodical function with period 
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 or fre-

quency 

 

ω
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. In such problems, 
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 usually takes the

form 
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cos

 

ω

 

t

 

. This equation can describe
fluctuations of water level as it enters a channel, fluctu-
ations of current velocity at the boundary of a porous
medium, or fluctuations of temperature at the boundary
in the problem of temperature waves. Let us introduce
an operator for averaging over period 

 

τ

 

:

Let 

 

Ψ
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)

 

 be a primitive function of 

 

F
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:
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We shall assume that 

 

Ψ

 

(

 

T

 

)

 

 is a single-valued function.
Then, we can formulate the following

 

Statement

 

: Periodical solution of Eq (1) with bound-
ary conditions (2) at 

 

x

 

 

 

→

 

 +

 

∞

 

 tends to the constant

 

(4)

 

Indeed, taking into account Eq. (3), we can rewrite
Eq. (1)as

 

(5)

 

Let us average the left- and right-hand parts of Eq.(5)
over period 

 

τ

 

. As a result, we get
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and, consequently, 
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. Since 
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 is nothing
other than heat flux averaged over the period, 

 

t

 

 cannot
grow infinitely at 

 

x

 

 

 

→

 

 +

 

∞

 

; i. e., 

 

C

 

1

 

 = 0. It follows from
this that 

 

〈Ψ〉

 

 = 

 

C

 

2

 

; i.e., 

 

〈Ψ〉

 

 is an invariant, which is con-
served for all 

 

x

 

. As a result, we get
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(7)

At x → +∞, oscillations attenuate and we shall get at
infinity

(8)

Let us denote inverse function to Ψ(T) as Ψ–1 and, tak-
ing into account (7), we obtain relation (4) from (8).
Thus, pure harmonic oscillation of the characteristic of
medium T at the boundary of the domain leads to an
increase or decrease in its value in the interior of the
domain with respect to its mean value at the boundary.
Thus, we get the effect of either “pumping in” or
“pumping out” of the substance at infinity by a har-
monic oscillation at the boundary. This can be called
the pumping effect.

In deducing Eq. (6), we assumed that the solution of
Eq. (1) with boundary conditions (2) can contain only
multiple frequencies divisible by ω. The validity of this
assumption can be shown in the case of small values of

ratio ε =  in the relation for f(t), i.e., at ε � 1. Assum-

ing that F(T) is an analytical function, we shall expand
it into Taylor series in the neighborhood of T0. Then, we
get Eq. (1) in the following form:

(9)

We seek the solution of Eq. (9) in the form of asymp-
totic series with respect to ε:

(10)

Substituting (10) into (9) and gathering terms of the
zero, first, etc., orders by ε, we obtain a system of
reduced inhomogeneous linear equations of thermal
conductivity, which would contain only multiple har-
monics.

2. It is easy to find the value of invariant 〈Ψ〉 at infin-
ity, because oscillations attenuate there. However, in
practice, such a problem occurs frequently for limited
regions and when the problem is formulated over a lim-
ited segment 0 ≤ x ≤ L, the procedure of finding the
invariant considered in the previous section cannot be
repeated at x = L. In the general case, solution of Eq. (1)
over a segment can be solved only numerically. How-

ever, if ratio ε =  in the relation for f(t) is a small

value (i.e., ε � 1), it is possible to find an analytical
expression for the pumping effect at the other end of the
segment at x = L. Thus, let us consider Eq. (9) and limit
the expansion of F(T) only by the terms of the first
order with respect to ε:
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where α = F(T0), β = . At the right end of the

segment, we specify the boundary condition of the sec-
ond kind

(12)

which corresponds physically to the condition of a rigid
wall in the problem of the evolution of long waves in
shallow water or lack of thermal flux in thermal con-
ductivity problems. We seek the solution of Eq. (11)
with boundary conditions (2), (12) in the form of
asymptotic expansion (10) with boundary conditions

We seek the solution for the first approximation T (0) as

(13)

where Re denotes the real part and the asterisk denotes
a complex conjugated function.

Substituting (13) into the first approximation of
Eq. (11), we get the solution for

(14)

where λ = (1 + i) . Substituting (14) into (13) and

then into the second approximation of Eq. (11) with
respect to ε, we obtain a solution for T(1) containing a
periodical part and time-independent additive; this
describes the pumping effect:

(15)

Equation (15) gives a quantitative value of the pumping
effect at point x. At the end of segment x = L, the pump-
ing effect would be

(16)

At L → ∞, we get
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Equation (16) allows us to estimate distance L(+),
where the mean temperature approaches asymptotic
solution (17):

In practice, medium function F(T) in Eq. (1) is often
a linear function (propagation of temperature waves in
water, ice, and soil) F(T) = α + βT. In this case, we have
the following relation for the pumping effect:

(18)

If b < 0, one should take a minus sign in Eq. (18); if

b > 0, a plus sign is taken; and if  � 1 and  � T0,

Eq. (21) is simplified and reduced to Eq. (17).

3. Burgers equation. Fluid motion in a thin layer of
saturated ground with a lower and upper inflow of fluid,
as well as flows in perforated tubes with lateral inflow,
are described by the Burgers equation [9]. This equa-
tion is also valid for the pumping effect. Let us consider
a periodical problem for the Burgers equation over a
semi-infinite straight line:

(19)

with boundary conditions

(20)

The Hopf–Cole substitution ς = 2νlnϕ reduces Eq. (19)
to a linear equation of thermal conductivity, whose
solution, taking into account boundary conditions (20),
is written as

(21)

Let us use generating function for the Bessel functions
of the first kind Jn to calculate integral (21). Then, we
can write

(22)

In order to find the limit of function ϕ(x, t) in (22) at
x → +∞, let us use the Riemann–Lebesgue lemma
about integrals of oscillating functions [7]. As a result,
we obtain
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where I0 is Bessel function of an imaginary argument.
Returning to the initial function ς(x, t), we obtain from
(23) the relation for the pumping effect in Burgers
equation (19).

4. APPLICATION OF PUMPING EFFECT 
TO GEOPHYSICAL PROCESSES

4.1. Increase of mean tidal level in shallow water [4].
Transformation of tidal wave with period T, when it
reaches shallow water and depth h does not exceed the

Stokes layer thickness hst =  (A is kinematic coef-
ficient of vertical turbulent exchange), is described by
nonlinear parabolic equation [3, 4] for ζ level elevation

(24)

where ∇ = ,  is the Hamilton operator and g is

acceleration due to gravity.
The 1D analog of Eq. (24) would have a form simi-

lar to (1) with F(ζ) = (h + ζ)3. Fluctuations in level

at the offshore boundary of the shallow zone are deter-

mined by incident tidal wave ζ = ζ0sinωt, ω = . At

h = const, we get the following value of the invariant:

(25)

The level increase at infinity is obtained by calculating
the integral in (25):

(26)

In the case of small values of the ratio of the amplitude

of the incident tide ζ0 to depth h, i.e., ε =  � 1, Eq.

(26) can be simplified:

Thus, the mean level increases as the coast is
approached. In places of wave attenuation, we get a sta-
tionary level increase. At the mouths of rivers flowing
into a tidal sea, the pumping effect leads to the displace-
ment of the headwater further to the mouth of a river.
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4.2. Intrusion of marine waters into the mouths of
rivers and underground levels in tidal seas. Saline sea-
water intrudes the mouths of rivers at bottom levels as
a halocline. The dynamics of a halocline within a two-
layer fluid in a channel of constant depth H is described
by a system of two nonlinear parabolic equations [2] for
the free surface z = ς(t, x) and interface between layers
z = η(t, x):

(27)

(28)

where A is the kinematic coefficient of vertical turbu-
lent exchange, g is acceleration due to gravity, ∆ρ is the
difference between sea and river water, and ρ1 is den-
sity of river water.

In the mouths of rivers flowing into tidal seas, the
pumping effect in Eq. (27) for the free surface z = ς(t, x)
leads to the displacement of headwater further to the
mouths of rivers. The pumping effect in Eq. (28) for the
interface between layers z = η(t, x) leads to an extension
of the halocline and the consequent deeper penetration
of saline water into the mouths of tidal rivers. Numeri-
cal experiments demonstrated [5] that an increase in the
distance of saline water penetration in the mouth of a
tidal river (relative to a similar mouth of a nontidal
river) can reach several kilometers.

A similar effect is manifested during intrusion of
seawater into underground levels in tidal seas, which
leads to distant penetration of the halocline along the
aquifer. It is interesting that in the case of water-satu-
rated ground with upper or lower inflows, in which fluid
motion is described by the Burgers equation, the pump-
ing effect during harmonic oscillation of current veloc-
ity at the lateral boundary of the layer (for example, due
to tidal oscillations of pressure) leads to the formation
of permanent inflow, which is directed deeper from the
outer boundary.

4.3. Effect of mean temperature decrease in ice,
glaciers, and permafrost. The coefficient of thermal
conductivity for freshwater ice is specified by linear
function  of  temperature  F(T) = 5.35 · 10–3(1–4.8 ·

10–3T) cal/(°C cm s). In this case, Eq. (17) can be
applied. As a result, we get

Thus, a negative pumping effect is observed in ice
(including glaciers and permafrost); i.e., heat is
pumped out from the lower layers of the ice at increas-
ing amplitude of temperature fluctuations at the upper
boundary of the ice massif. In the permafrost zone, this
effect can reach significant values. For example, the
amplitude of annual oscillations of air temperature in
Yakutia can reach A = 40°ë, and T (–) = –1.9°C at such
amplitudes.

Thus, we have shown that the pumping effect, man-
ifested in many geophysical processes, plays an impor-
tant role in heat and energy redistribution on the earth.
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