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Principal trends in the development of mathematical
geophysics at the modern stage include the comprehen-
sive development of the approximation approach [1].
Researchers widely use approximations of external ele-
ments of gravitational and magnetic fields by equiva-
lent source assemblages (

 

source-like approximations

 

 [2])
and 

 

numerical field simulations

 

 [3]. We propose a new
method for the approximation of geopotential fields by
grid distribution of sources. This method takes into
account the fractal structure of the fields and is based on
the quadrotree technique used for the compression of
digital graphic images [4].

The essence of the considered approximation trans-
formations is as follows: all information related to the
observed geophysical field 
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of sources creating the simulation field 
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which is practically equivalent to the field 
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The unknown parameters of sources are found by solv-
ing an inverse problem (IP) usually consisting in mini-
mization of the functional

within the ensemble 

 

µ

 

 of the field specification points.
In the process of minimization, we solve a system of
linear algebraic equations (SLAE) for the linear IP for-
mulation and a sequence of SLAE for the nonlinear IP
formulation. At 
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small value comparable with the measurement accu-
racy, the IP solution is considered to be attained.

The greatest difficulties in developing analytical
approximations of the field 
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 are related to large
and superlarge dimensions of SLAE [1, 2], since 
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 when many practical problems are solved.
Consequently, in order to create efficient computational
algorithms implementing a 

 

sourcelike approximation

 

,
it is necessary to use a minimal number 

 

k

 

 of field
sources 
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*(
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 and reduce the number 

 

n

 

 of the vec-
tor 

 

P

 

 parameters.
There are a number of approaches to this problem:

for instance, development of an approximation con-
struction represented by fixed-geometry point masses
located under each field specification point [5, 6] or a
set of 3D singular sources with their parameters defined
by the nonlinear programming method [7]. However, in
the former instance, the number of field sources 

 

k
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µ

 

 is
excessive. In the latter case, a manual modeling of the
initial spatial distribution of disturbing objects is
required, and a relatively complicated nonlinear IP is
solved.

It is well known that the spatial distribution of grav-
itational and magnetic field anomalies has an approxi-
mate scale invariance [8]. Geopotential fields are mul-
tifractals, because they have a self-similar hierarchi-
cally ordered structure that can be taken into
consideration in the process of approximation.

It is possible in one way or another to compare the
spatial distribution of equivalent sources with charac-
teristic features of the approximated field 
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revealed in particular scales of its investigation. It is
expedient to start building the approximation construc-
tion from the roughest (small-scale) field approxima-
tion and maximum source location depths, i.e., to carry
out simulation of the highest-energy regional field com-
ponent and then gradually proceed to a detailed field
analysis and modeling of local anomalies of various
orders in larger scales.

Thus, the scale-invariant irregular features of the
simulated field will correspond to scale-irrelevant frag-
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ments of the 3D model of sources that will be a multi-
fractal as well.

The principal concept of the quadrotree technique
consists in representation of the initial field specifica-
tion region 
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 in the form of nonoverlapping
subregions 
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which is growing in geometrical progression with tran-
sition from a smaller to a larger scale (higher detailing).
Let us further call the subregions 

 

S

 

α

 

 

 

as rank blocks and
the process of their successive diminution as an
increase in the quadrotree depth 

 

N

 

. Distribution of
equivalent sources can be related to splitting the region

 

S

 

 into rank blocks controlled, in turn, by morphologic
features of the approximated field.

Let us examine the algorithm of the approximation
of a gravitational field with its values specified on the
physical surface of the earth within a square region 

 

S

 

with the side 

 

L

 

 in the nodes of a regular grid. The initial
data are two square matrices containing the values of
the observed gravitational field 
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 and the
observation surface elevations 
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Initially, the region S is split into four rank blocks S1
of the first level and has a square shape with the side

l1 =  (the subindex corresponds to the quadrotree

depth). Point sources (spheres) are distributed in the
rank block centers at a depth of l1 ≤ h1 ≤ 2l1 from the
earth’s surface. The field ∆g1 values are calculated by
averaging the respective values within the rank blocks
and are related to their centers. Values of the height H1
in the centers of the blocks are calculated by bilinear
interpolation on the nearest four points. The masses M1
of the four spheres are determined by solving the SLAE
GM1 = Dg1, where G is the solution operator for the
direct gravimetric problem for a sphere with M1 = 1.
The rather sufficient SLAE conditionality is ensured by

the above relation . In all the µ points of the initial

field specification, we calculate the model field D
related to sources with the known masses M1. The dif-
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ference of the observed and model fields D  = Dg –

D  substitutes for the initial field Dg at the second
level of the quadrotree depth.

Further, the quadrotree depth is increased: each rank
block SN is split into four smaller square blocks SN + 1

with sides lN + 1 = . However, if within any rank block

, 1 ≤ k ≤ 4N, we have attained the required accuracy

of approximation of the field ,

where µN =  is the number of the field points within

the block, the source is not placed in the block center
(Fig. 1). Then, we reiterate all of the above described
procedure of determination of equivalent source masses
MN + 1 and the calculation of the difference field
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Fig. 1. Scheme of region S splitting into rank blocks for the
quadrotree depth Nmax = 3. (1) Initial field specification
points; (2) equivalent sources (figures correspond to split-
ting levels).

Parameters characterizing the approximation of the ∆g field in the Yuryuzan–Sylva Depression

Quadrotree depth
N

Number of field 
∆gN points

Source location 
depth hN, km

Number of sources
k

Approximation
accuracy ε, mGal

Ratio , %

1 16 24.0 16 ±2.54 100

2 64 12.0 60 ±1.00 93.7

3 256 6.0 228 ±0.51 89.0

4 1028 3.0 668 ±0.27 65.0

5 4096 1.5 1790 ±0.13 43.7

6 16384 0.75 2791 ±0.06 17.0

k
∆gN
----------
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The iteration process of the development of approx-
imation construction is completed when the a priori
specified mean-square approximation error ε is attained
in all the field specification points µ or when the maxi-
mum quadrotree depth Nmax is reached and the rank
block size  begin to match the internode interval of

the initial field matrix .

lNmax

L
m 1–
-------------

Thus, the source distribution network is adjusted to
morphological features of the initial gravitational field.
The resulting model is a set of k balls located at several
depth levels h1, h2, …,  with compact horizontal
distribution of sources near regions of the most compli-
cated field pattern.

The explained algorithm can be upgraded for opera-
tion with data defined within regions of casual geome-

hNmax

Ä B

C D

min max

0 20 40 km
Fig. 2. Initial data and transformers of the gravitational field of the Yuryuzan–Sylva Depression. (A) Terrain contour map;
(B) observed Bouguer gravity field ∆g; (C) the upper half-space field ∆g at level H = 10 km; (D) vertical derivative Vzz at level H = 5 km
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try in irregular network nodes. For this purpose, when
determining values of ∆gi, i = 1, 2, …, Nmax in the cen-
ters of rank blocks, it is sufficient to use interpolation
(for instance, by the weighted distance method) instead
of averaging. In this case, the choice of interpolation
method is not important, because, irrespective of the
adopted method of the initial field ∆g decomposition in
“variable scale” components, the quality of problem
solution in the initial field points is controlled by the

value 

Let us examine a model example demonstrating the
scope of the algorithm. The field ∆g is a gravitational
effect of seven balls located at different depths. The size
of the initial matrix Dg is 128 rows and 128 columns
(µ = 16,384); the field ∆g variation range is –10 to
19 mGal. Application of the above algorithm yields a
grid model incorporating 1013 balls, ensuring the
mean-square discrepancy ε = ±0.019 mGal for the fields
∆g and ∆g*. As it is obvious from the example, the
number of equivalent sources in the model is one order
of magnitude smaller than the number of the initial field
specification points.

The quadrotree technique was used for interpreta-
tion of the Bouguer gravity field over a large tectonic
structure (Yuryuzan–Sylva Depression) with petroleum
potential. The depression is situated in the Ural Fore-
deep. The study region was characterized by the follow-
ing parameters: area ~ 4000 km2; altitude 100–450 m
(Fig. 2A); number of the initial field points µ = 16384;
and variation range of ∆g values >35 mGal (Fig. 2B).

Application of the algorithm yielded a high accu-
racy of the observed field approximation ε =
±0.06 mGal based on 5553 sources (table). Figures 2C
and 2D show the gravitational field transformers calcu-
lated with the application of respective solution opera-
tors for the direct gravimetric problem from the devel-
oped approximation structure [5, 6].

The proposed approximation method has the fol-
lowing advantages:

(i) decomposition of a problem in the form of
sequential solution of a SLAE series of relatively small
dimensionality;

(ii) automatic location of sources without cumber-
some computational works; and

(iii) development of an approximation structure
characterized by a small number of parameters (P = {x,
y, z, M}, where x, y, z are coordinates of centers of grav-
ity; M are ball masses; k � µ; and µ is the number of
field points) ensuring a high match accuracy ε of the
observed and simulated fields.

Especially interesting is the application of the algo-
rithm for the compilation of data bases in geoinforma-
tion systems. In addition to an array of observed field
values, we propose to save an approximation of the kP
type (with a significantly smaller dimensionality). This
will make it possible to restore the field in arbitrarily
selected points in the space beyond the sources and to
carry out asymptotically optimal accuracy transforma-
tions that take into account the pattern of observation
surface topography H = H(x, y).
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