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The problem of runup of long nonbreaking waves on
a plane slope is well developed from the mathematical
point of view within the framework of nonlinear theory
of shallow water, which allows for an analytical solu-
tion using the Carrier—Greenspan transform [1]. Vari-
ous examples of incident waves are considered in the
literature. A review of old works is given in [2]. We also
cite the latest publications [3—6]. However, in all the
papers cited, the incident wave was symmetric or anti-
symmetric with equal steepness of the leading and trail-
ing slopes. As a result, the formulas for the runup height
can be parameterized. Parameterization includes the
height and length of the incident wave as well as the
distance to the coast. At the same time, numerous
observations during the 2004 tsunami in the Indian
Ocean indicate that the wave approaching the coast was
strongly deformed with notable steepness of the lead-
ing front. We shall show that a wave with increased
steepness of the leading front penetrates inland over
longer distances than a wave with a symmetric profile.

It is known that the wavelength of a tsunami is suf-
ficiently large. Therefore, the nonlinear theory of shal-
low water is an adequate model for the description of
runup of tsunami waves on the coast. Assuming that the
fluid is ideal and the wave propagates normal to the

@ Institute of Applied Physics, Russian Academy of Sciences,
ul. Ul’yanova 46, Nizhni Novgorod, 603950 Russia;
e-mail: ira_d2000@mail.ru

b Department of Applied Mathematics, Nizhni Novgorod
State Technical University, ul. Minina 24, Nizhni Novgorod,
603600 Russia

¢ Universite des Antilles et de la Guyane, Pointe a Pitre,
97159, Guadeloupe, France

4 Shirshov Institute of Oceanology, Russian Acadeny
of Sciences, Nakhimovskii pr. 36, Moscow, 117997 Russia

¢ Institute of Marine Geology and Geophysics,
Far East Division, Russian Academy of Sciences,
ul. Nauki 5, Yuzhno-Sakhalinsk, 693002 Russia

I Institute of Cybernetics, Tallinn Technical University,
Tallinn, 12618 Estonia

coast, let us write the main equations for the shallow
water as

Jdu Odu
+u=—

MN_y 9N, 9 -
S; Hia ez =0, Sk s ([A(x) +1]u) = 0,(1)

ox ot

where 1 is the elevation of the water surface, u is hori-
zontal velocity of the water flow, g is acceleration due
to gravity, and h(x) is the unperturbed depth of the
basin. Figure 1 shows the geometry of the problem: the
runup zone with a length of L (the slope of the coast is
constant and equal to o) continues as a flat bottom. We
assume that the wave propagates to the coast from the
right side and its form is specified at point X + L (such
a situation is usually realized during laboratory model-
ing of wave propagation from a wave generator).

Let us, first, consider wave motion over a flat bottom
(x > L). In this case, the solutions to the equations of
shallow water can be found in the form of a plane (Rie-
mann) wave (see, for example, [7]):

nix, 1) = no(H)%?ﬂ:)—é) or
)%n_)L = 1(m),

where T(1) is an inverse function to 1() describing the
form of the wave propagating from the ocean at point

)

r+

Fig. 1. Geometry of the coastal zone.
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Fig. 2. Amplitude of harmonics vs. wave steepness (numer-
als at the curves indicate numbers of harmonics).

X + L (or the wave generated by a wave producer). The
characteristic velocity is

v(n) = 3Jg(h+n)-2.Jgh. 3)

The nonlinear wave deformation in shallow water
within (2) is well known and can be analyzed for a wave
of arbitrary amplitude. Nevertheless, further analysis
will be based on the approximation of weak nonlinear-
ity, when the characteristic velocity is approximated by
a linear (with respect to the wave height) expression

3
V(n):c(l +2—2)) ¢ = Jeh )
The steepness of the wave increases with distance, and

its local steepness ((s = a_n) ) can be found easily from

ox
(2):
So

1_X+L—x’
L

&)

s(x) =

where s, is the steepness of the incident wave approach-
ing the coast, and L, is the length of the nonlinearity
determining the distance where the wave breaks. In par-
ticular, if a sinusoidal wave M(#) = asin(®f) approaches
the coast, the wave overturns at a distance

_ 2chy
" 3wa’

(6)

n
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and its steepness turns to infinity (initial steepness is

= ao
0 c .

Nonlinear wave deformation in shallow water leads
to the generation of higher harmonics, which can be
calculated in the approximation of weak nonlinearity
(problems of this kind are actively studied in nonlinear
acoustics [8, 9]):

N, x) = iAn(x)sin[n(o(t+x—:—§—_-£)} %

n=1
where the amplitudes of harmonics depend on distance

L, 7 (n(X+L—x))’ ®

Anx) = 2a T L

n

where J, is Bessel function. However, it is more conve-
nient to exclude the distance and find a relation for the
spectrum of the wave (8) with steepness (5) (this depen-
dence is shown in Fig. 2):

A(s) = 2—“%Jn(n[1 - %OD )

N

The amplitudes of harmonics increase with increasing
steepness and tend to limiting values at high steepness,
while the amplitude of the first harmonic decreases. As
aresult, it is possible to estimate the spectrum of a non-
linearly deformed wave on the basis of the measured
wave steepness and actually exclude the stage of prop-
agation of the wave over horizontal bottom from the
analysis of the runup problem. A wave of type (7) with

amplitudes (9) at point x = L (t - %( can be designated

as new time t) can be considered as the initial wave in

the solution to the problem of transformation and runup
of the wave on a flat slope.

In the region 0 < x <L, it is necessary to return to the
solution to nonlinear equations in shallow water (1). It
is obtained using the Carrier—Greenspan transform
mentioned above. In particular, if we are interested only
in the maximal runup height (as well as maximal draw-
down depth), it is enough to consider a linear problem
about fluctuations of the water level at the shoreline.
The mathematically strict result is described in [2]. The
solution to the linear problem is obtained quite easily,
and the fluctuations of water level along the shoreline
are written as

R(1) = n(0,1) = PZﬁAncos(nwt+§),

(10)
2L
P =21 [=—,
A
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where A is the wavelength over the interval of the flat
bottom determined from the given wave frequency ®

using a linear dispersion relation (k = Z_ZC)C) If the

wave is monochromatic, then it is easy to determine
from (10) that the maximal wave height is Ry, = aP
(see, for example, [2]). The drawdown depth in a sinu-
soidal wave is equal to the runup height. The distances
of runup and drawdown are naturally the same and
equal to X, = % . When nonlinearly deformed wave
(7) approaches the coast, the maximal runup height and
drawdown depth (normalized by the runup height of the
sinusoidal wave Rg,) are calculated numerically using
system (10). The results of calculations are shown in
Fig. 3. We see that the drawdown depth only slightly
depends on the wave steepness (the variation is not
more than 30%), and the estimates for the drawdown
based on expression derived for a monochromatic wave
are satisfactory. On the contrary, the runup height
strongly depends on the wave steepness and tends to
infinity for a shock wave (bore) within this model (actu-
ally, the wave breaking limits the onshore wave height).
In the first approximation, this curve can be shown as
an almost square root dependence

2L s 0.47
Rmax = 2Ta T[a{} .

In the previous modeling of a tsunami wave runup,
it was mentioned repeatedly that the runup height is
related to the amplitude of the approaching wave by a
nonlinear relation (see [2] and references therein). In
particular, for a soliton, the wavelength depends on
amplitude as A ~ a 2, which gives R ~ a®*. However, a
nonlinear dependence is obtained for the wave of any
symmetrical form, although the length is not related to
its amplitude. In [10], a qualitative explanation of this
effect related to nonlinear wave deformation is sug-
gested, but no quantitative explanation and formulation
of the determining parameters are given. Within the
framework of the theory suggested in the present paper,
the role of the wave steepness as a determining param-
eter for the calculation of the tsunami wave runup
height becomes clear. The theory developed here dem-
onstrates that runup of a breaking wave (or at least a
strongly deformed wave) can be significantly stronger
than the runup of a symmetrical wave. The observations
of deep inland penetration of a wave in breaking stage
(including the catastrophic tsunami in 2004 in the
Indian Ocean) can also be interpreted within this the-
ory.

If the runup height and drawdown depth are known,
it is possible to calculate the distance of runup and
drawdown because the angle of the coast slope is
known. Nonlinear theory also makes it possible to

(11)
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Fig. 3. Runup height and drawdown depth vs. steepness of
the incident wave.

study the characteristics of wave breaking on the coast.
In particular, when the wave approaches the coast, non-
linear wave deformation leads to earlier wave breaking.
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