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Abstract: Knowledge on the deformation mechanisms of Mg2SiO4 ringwoodite is important for the understanding of flow and
seismic anisotropy in the Earth’s mantle transition zone. We report here the first numerical modelling of dislocation structures in
ringwoodite. The dislocation properties are calculated through the Peierls-Nabarro model using the generalized stacking fault (GSF)
results as a starting model. The GSF are determined from first-principle calculations using the code VASP. They enable us to
determine the relative ease of slip for dislocation glide systems in ringwoodite. The dislocation properties such as core spreading and
Peierls stresses were determined for the easy dislocation glide systems. Our results show that ½ ‹ 110 8 {110} and ½ ‹ 110 8 {111} are
the easiest slip systems in ringwoodite at 20 GPa and 0 K. These results are used as input of a viscoplastic model to predict the
deformation of a ringwoodite rich aggregate. Calculated crystal preferred orientation (CPO) accounts satisfactorily for experimental
data available from either diamond anvil cell or D-DIA experiments.
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1. Introduction

(Mg,Fe)2SiO4 ringwoodite is a high-pressure polymorph of
olivine with a spinel structure. It is widely considered to be
the most abundant phase in the lower half of the mantle tran-
sition zone in the depth range 550–670 km (Irifune & Ring-
wood, 1987). Understanding crystal defects and plasticity of
ringwoodite is thus critical for modelling the dynamics of
the interior of the Earth. Information on defects in ringwoo-
dite have first been obtained from the microstructural study
of shocked chondrite meteorites. Madon & Poirier (1983)
have reported evidence for ½ ‹ 110 8 {111} dislocation slip
from observations of the Tenham meteorite. ¼ ‹ 110 8 {110}
stacking faults have also been reported in numerous cases
(Putnis & Price, 1979; Vaughan & Kohlstedt, 1981; Madon
& Poirier, 1983; Rubie & Brearley, 1990, 1994) but they are
usually interpreted as resulting from phase transformations
and do not seem to be related to plasticity.

Conducting plastic deformation experiments in P, T con-
ditions of the deep Earth is still one of the most important
challenges for mineral physics. The newly developed defor-
mation experiments dedicated to high-pressure (Deforma-
tion-DIA, Wang et al., 2003; and Rotational Drickamer Ap-
paratus, Yamasaki & Karato, 2001) cannot reach the P, T
conditions prevailing in the lower part of the transition zone.
Above 15 GPa, deformation experiments must be undertak-

en with a multianvil apparatus (e.g. Cordier & Rubie, 2001;
Cordier et al., 2004) or with a diamond anvil cell (e.g. Wenk
et al., 2004). The first deformation experiment on
(Mg,Fe)2SiO4 ringwoodite has been performed by Karato et
al. (1998) at 16 GPa and 1600 K using a shear deformation
assembly in a multianvil apparatus. Two slip systems have
been identified by transmission electron microscopy:
½ ‹ 110 8 {111} and ½ ‹ 110 8 {100}. In contrast, a more re-
cent study of Mg2SiO4 ringwoodite samples deformed at
22 GPa between 1400 and 1500°C (Thurel, 2001) has re-
vealed evidence for slip on ½ ‹ 110 8 {111} and on
½ ‹ 110 8 {110}. Flow laws for ringwoodite at subduction
zone conditions (20 GPa, T ‹ 1350°C) have been obtained
recently by Xu et al. (2003) using a T-cup multianvil appa-
ratus with in situ measurements based on synchrotron-gen-
erated X-rays but no microstructural investigations were
conducted on these samples. Room-temperature deforma-
tion of ringwoodite has been achieved using diamond anvil
cells (Kavner & Duffy, 2001; Wenk et al., 2004). Ring-
woodite transformed in situ from San Carlos olivine is
shown to develop weak preferred orientations with {110}
lattice planes perpendicular to the compression direction
(Wenk et al., 2004). Recently, room-temperature deforma-
tion experiments have been performed on Mg2SiO4 ring-
woodite using the D-DIA (Nishiyama et al., 2005; Wenk et
al., 2005) where stress-strain curves could be measured in
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situ at high pressures. These studies, based on in situ crystal
preferred orientation measurements, emphasize that slip on
½ ‹ 110 8 {111} dominates deformation under those condi-
tions.

Computational materials science is an alternative ap-
proach to study plastic deformation. The Peierls-Nabarro
(PN) model provides a conceptual framework for address-
ing the issue of dislocation structures (Hirth & Lothe, 1982).
The model is essentially based on continuum mechanics (far
from the defect), but inelastic displacements in the disloca-
tion core are given a specific description. A recent approach
for describing forces in the dislocation core is based on the
concept of generalized stacking fault (GSF) surfaces (Vitek,
1968; Christian & Vitek, 1970). The value of the GSF is ob-
tained by shearing half of the infinite crystal over the other
half. The fault is called „generalized” because it is unstable
for most values of shear and must be balanced by a restoring
force (which is introduced in the PN model). The GSF can
nowadays be calculated accurately from first-principles.
The GSF gives access to the ideal shear strength which is the
upper bound on the mechanical strength of a solid. This ap-
proach has been applied to many metallic systems: Al (Pax-
ton et al., 1991; Hartford et al. 1998; Roundy et al., 1999;
Ogata et al., 2002), Cu (Roundy et al., 1999; Ogata et al.,
2002), Pd (Hartford et al. 1998), Fe (Clatterbuck et al.,
2002), Mo (Xu & Moriarty, 1996; Luo et al. 2002), Nb (Luo
et al., 2002), W (Krenn et al., 2001; Roundy et al., 2001), Ta
(Söderlind & Moriarty, 1998) and Zr (Domain et al., 2004).
Recently we have calculated GSF for forsterite (Durinck et
al., 2005) and shown that, despite a complex crystal chemis-
try, this approach could account for plastic anisotropy in this
mineral. It is thus possible to build more realistic models of
dislocations using a PN model in which the inelastic dis-
placements in the dislocation core are described using the
GSF approach. Several examples are available in the recent
literature: Al (Sun & Kaxiras, 1997; Hartford et al., 1998),
Pd (Hartford et al., 1998), NiAl and FeAl (Medvedeva et al.,
1996), TiAl and CuAu (Mryasov et al., 1998), Si (Kaxiras &
Duesbery, 1993; Joos et al., 1994; de Koning et al., 1998)
and MgO (Miranda & Scandolo, 2005).

In the present study, we use the GSF framework to assess
plastic strain anisotropy of ringwoodite at the atomic scale
from first-principle calculations. Dislocation properties are
derived from GSF through the Peierls-Nabarro (PN) model.
This approach is combined with elasticity to infer the possi-
ble slip systems in ringwoodite. Self-consistent viscoplastic
models are finally used to evaluate the crystal-preferred ori-
entation that will result from the activation of these slip sys-
tems and compare our results with ringwoodite crystal pre-
ferred orientations produced in recent low-temperature de-
formation experiments.

2. Crystallography of slip in the spinel structure

Ringwoodite exhibits a spinel structure based on a face-cen-
tred-cubic packing of the oxygen sublattice. Silicon atoms
are located in the tetrahedral sites whereas octahedral sites
are occupied by magnesium and iron atoms. The space
group of Mg2SiO4 is Fd3m and the lattice parameter is

Fig. 1. Ringwoodite structure viewed along ‹ 110 8 with potential
slip planes. The unit cells are shown in dashed lines.

8.071 Å (Ringwood & Major,1970). The slip direction in
spinel is always observed to be parallel to the shortest lattice
vector of the fcc oxygen lattice: ½ ‹ 110 8 . The observed slip
plane is variable. The most commonly observed slip planes
are {111} and {110}, although {100} have been reported in
magnetite, nickel ferrite and chromite (see a detailed review
in Mitchell, 1999). Figure 1 shows the structure of ringwoo-
dite viewed along ‹ 110 8 . The planes usually reported as
slip planes in the spinel structure are indeed potential slip
planes for ringwoodite as they do not require breaking the
strong Si-O bonds. In oxides with spinel structures, disloca-
tions are generally observed to be dissociated into collinear
partials following the reaction: ½ ‹ 110 8 → ¼ ‹ 110 8 +
¼ ‹ 110 8 . The dissociation width increase with increasing
deviation from stoichiometry, implying that the stacking
fault energy decrease (between 180 and 20 mJ/m2, Mitchell,
1999). A variety of dissociation planes have been reported:
{111}, {110}, {100}, and {311}.

3. Computational procedures

3.a Ab initio calculations

Calculations were performed using the ab initio total-ener-
gy calculation package VASP (Vienna Ab Initio Package)
developed by Kresse and Hafner (Kresse & Hafner, 1993,
1994; Kresse & Furthmüller, 1996a). This code is based on
the first-principles density functional theory and solves the
effective one-electron Hamiltonian involving a functional
of the electron density to describe the exchange-correlation
potential. It gives access to the total energy of a periodic sys-
tem with as a single input the atomic numbers of atoms.
Computational efficiency is achieved using a plane wave
basis set for the expansion of the single electron wave func-
tions and fast numerical algorithms to perform self-consis-
tent calculations (Kresse & Furthmüller, 1996b). Within this
scheme, we used the Generalised Gradient Approximation
(GGA) derived by Perdrew & Wang (1992) and ultrasoft
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pseudopotentials (e.g. Vanderbilt, 1990 or Kresse & Hafner,
1994). Using this assumption, the outmost core radius for
the Mg, Si and O atoms are 1.058, 0.953 and 0.820 Å re-
spectively. Computation convergence better than 4.10–5 eV/
atom is achieved in all simulations by using a single energy
cut-off value of 600 eV for the plane wave expansion. The
first Brillouin zone is sampled using a Monkhorst-Pack grid
(Monkhorst & Pack, 1976) adapted for each supercell ge-
ometry in order to achieve the full energy convergence. As
an example, ringwoodite unit cell calculations were per-
formed using a 4x4x4 grid with a convergence energy less
than 0.25 meV for all external pressure conditions.

The ringwoodite crystallographic structure was optimi-
sed (full relaxation of the cell parameters and of the atomic
positions within the cell) for pressure conditions ranging
from 0 to 32 GPa. To determine the athermal elastic con-
stants of the cubic cell, we strained the equilibrium cell us-
ing adapted deformations, which were kept lower than 2%.
To account for the pressure effect, the calculations of the
elastic constants were performed along the lines described
by Barron & Klein (1965). As an illustration, c11 can be ob-
tained by applying a strain e11 = e to the pressurized cell. The
associated elastic energy variation is then:

2 E
V

= – pe + 1
2
c11 e2 (1)

where p is the confining pressure.
For c44 determination, we can apply a strain e12 = e and

deduce c44 from

2 E
V

= 2c44 e2 (2)

c12 can be determined by applying e11 = e22 = e which leads
to

2 E
V

= – 2pe + (c11 + c12 – p)e2 (3)

The elastic constants are then determined from the fit of the
total energy versus strain by a second order polynomial.

Calculating a GSF for a given slip system requires a su-
percell with an adapted geometry. The supercell is built on a
Cartesian reference frame defined by the normal to the
stacking fault plane (located in the middle of the supercell)
and by the shear direction. All our supercells contain a Bur-
gers vector of the spinel structure, ½ ‹ 110 8 , which is the
shortest lattice repeat along that direction. The last direction
is then defined as the cross product of the two previous. De-
spite the fact that ringwoodite has a cubic structure, we de-
cided to build the supercell with only one stacking fault and
it was necessary to add a vacuum buffer parallel to the stack-
ing plane. In this way, the number of atoms in the supercell
was reduced compared to the symmetric construction with
two stacking fault. It is shown that a thickness of 6 Å of the
buffer vacuum and five atomic layers on both sides of the
stacking fault are sufficient to guarantee energy accuracy
better than 0.01 % with a 2x2x2 Monkhorst-Pack grid. The
GSF are then calculated by imposing a given shear displace-
ment value to the upper part of the supercell.

For calculations of relaxed GSF, we tried to allow the
maximum number of degrees of freedoms for the atoms

without performing full relaxations calculations. The super-
cell vectors are kept fixed at the values obtained for a bulk
system submitted to the pressure of interest. Atoms present
on the two surfaces are maintained fixed to mimic the action
of the surrounding bulk atoms in the direction normal to the
shear plane. Using these conditions, we preserve pressure
and shear mostly by imposing conditions on silicon atoms
which are only allowed to accommodate shear perpendicu-
larly to the slip plane. Finally, the remaining atoms are fully
relaxed in the three directions to account for structural de-
grees of freedom associated to the crystal chemistry.

3.b Polycrystalline plasticity models

Development of crystal preferred orientations (CPO) in
ringwoodite polycrystals deformed in simple shear under
high-pressure conditions is simulated using a viscoplastic
self-consistent (VPSC) model (Molinari et al., 1987; Le-
bensohn & Tomé, 1993). In this model, as in all polycrystal
plasticity approaches, CPO evolution is essentially con-
trolled by the imposed deformation, the initial texture, and
the active slip systems. The latter depend on the mineral
structure, but also on the temperature and pressure condi-
tions, which control their relative strength or critical re-
solved shear stress (CRSS). Extensive testing on metallic
alloys (Lebensohn & Tomé, 1993; Logé et al., 2000), halite
(Lebensohn et al., 2003), and garnet (Mainprice et al.,
2004) as well as on highly anisotropic minerals, such as cal-
cite (Tomé et al., 1991), olivine (Wenk et al., 1991; Tom-
masi et al., 2000), clinopyroxene (Bascou et al., 2002), and
wadsleyite (Tommasi et al., 2004) show that this model
produces robust CPO predictions. Detailed information
about the calculation procedure can be found in Tomé &
Canova (2000).

In the present study, we investigate the evolution of ring-
woodite CPO for two end-member deformation regimes:
simple shear and axial shortening. Actual flow in the transi-
tion zone is most likely three-dimensional, but regions sub-
mitted to large deformations probably display a strong shear
component, whose orientation (horizontal or steeply dip-
ping) will depend on the large-scale convection pattern.
Moreover, CPO obtained in axial shortening simulations
can be compared to ringwoodite CPO measured during
compression experiments at high pressure (Wenk et al.,
2004, Wenk et al., 2005). The only tuning parameters are the
active slip systems for ringwoodite, their CRSS and stress
exponent. The CRSS for the various slip systems in ring-
woodite are inferred from the Peierls stress analysis (see be-
low). Hardening is not considered in the present models, be-
cause there are no constraints on the hardening behavior of
ringwoodite. Moreover the high temperatures prevailing at
transition zone conditions should allow for easy recovery.
The actual stress exponent for ringwoodite is unknown,
however, oxide spinels are usually characterized by n = 4
(whatever the stoichiometry, see Mitchell, 1999). Simula-
tions were thus run for n = 3 to 5. Indeed, VPSC simulations
are not very sensitive to variations of n values within this
range; increasing n enhances the plastic anisotropy and
hence slightly accelerates the CPO evolution.
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4. Elasticity
4.a Elastic constants

We have calculated the anisotropic athermal elastic con-
stants cij up to 32 GPa. The results are presented in Fig. 2. In
general, the elastic constants increase linearly with increas-
ing pressure. The slope is more pronounced for c11 com-
pared to c12 and c44. The anisotropy factor for cubic symme-
try crystals A = 2c44/(c11 – c12) decreases from 1.24 to 1.11
when pressure increases from 0 to 20 GPa. The elastic an-
isotropy of ringwoodite is thus small with nearly no anisot-
ropy effect at typical pressure conditions of the transition
zone (around 20 GPa). The Cauchy relation, c12 – c44 = 2P is
valid only when all interatomic forces are central. As pres-
sure increases, the calculated values of c12 – c44 – 2P de-
crease to reach –13 GPa at 20 GPa and –3 GPa at 30 GPa.
This indicates that bonding in ringwoodite exhibits a more
ionic character as pressure increases.

Figure 2 shows that our calculated elastic constants com-
pare well with experimental data from Sinogeikin et al.
(2001) and with Local Density Approximation (LDA) cal-
culations from Kiefer et al. (1997). Our results are systemat-
ically below Sinogeikin et al.’s, as expected from GGA cal-
culations which are known to generally overestimate the
unit cell volume and induce under binding. The unit cell pa-
rameter determined in this study is 8.13 Å at 0 GPa which is
indeed higher than the experimental value of 8.07 Å mea-
sured at 300 K by Ringwood & Major (1970) or Meng et al.
(1994). Conversely, elastic constants calculated using LDA
approach by Kiefer et al. (1997), are higher than the experi-
mental results.

Fig. 2. Elastic constants evolution in function of pressure. (Dia-
monds = C11, triangles = C12 and circles = C44). Results of our GGA
calculations (filled symbols) are compared to experimental data
(open symbols) from Sinogeikin et al. (2001) and to LDA results
(grey symbols) from Kieffer et al. (1997).

4.b Dislocation line energy

The elastic energy Eel per unit length of a straight dislocation
is given by:

Eel = K( ’ )b2

4 ‘
ln ( R

r0
) (4)

where K( ’ ), the energy coefficient is function of the disloca-
tion character which is defined by the angle ( ’ ) between the
line direction and the Burgers vector, b is the Burgers vector,
and r0 and R are the integration boundary limits (Hirth & Lo-
the, 1982). For an isotropic crystal, K( ’ ) is

K( ’ ) = µ (sin 2 ’
1 – r

+ cos 2 ’ ) (5)

where µ is the shear modulus and r the Poisson ratio. The
main effect of elastic anisotropy on the dislocation line energy
is found in the energy coefficient K which can be calculated
within the frame of the Stroh theory (Hirth & Lothe, 1982).
The DisDi software (Douin, 1987; Douin et al., 1986) is based
on this theory. It has been used here to calculate the energy co-
efficients K( ’ ) and the dislocation line energies. The disloca-
tion line energies predicted using elastic constants calculated
at 20 GPa are presented on Fig. 3 for several slip systems:
those corresponding to ½ ‹ 110 8 slip in the three planes
{100}, {110} and {111} as well as two slip systems corre-
sponding to ‹ 100 8 slip in {011} and {001} planes. Using ex-
perimental values for the elastic constants or changing the
pressure has no significant influence on the result. Slip along
‹ 100 8 appears clearly less favourable from the energetic

point of view with a line energy twice as large as those corre-
sponding to ½ ‹ 110 8 slip. Figure 3 confirms that the effects
of elastic anisotropy are very small:
– the ratio between the line energies of edge and screw dis-

locations varies from 1.37 and 1.40 for ½ ‹ 110 8 depend-
ing on the glide plane, which is very close from the value
derived from the isotropic case 1/(1 – r ) » 1.4

– the line energy of a ½ ‹ 110 8 dislocation is almost inde-
pendent of the choice of slip plane

Fig. 3. Dislocation line energies for several potential slip systems
(elastic constants from our calculations at 20 GPa).

5. Plastic shear
5.a Generalized Stacking Faults (GSF)

The GSF excess energies * have been calculated for several
shear configurations. Three of them correspond to the slip
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a) b) c)
Fig. 4. Unsheared supercells of various GSF calculations. The shear planes are presented in light grey. SiO4 tetrahedra are displayed in dark
grey, white atoms corresponding to Mg. Atoms in dark at surfaces are either O or Mg fixed. The supercells are used to calculate the GSF asso-
ciated with the following slip systems:
a) ½ ‹ 110 8 {001}; b) ½ ‹ 110 8 {011}, ‹ 100 8 {011}; c) ½ ‹ 110 8 {111}.

systems commonly reported in the spinel structure,
½ ‹ 110 8 {001}, ½ ‹ 110 8 {110} and ½ ‹ 110 8 {111}, as dis-
cussed in section 2. Possible shear along ‹ 100 8 on {001}
and {001} has also been considered. The supercell con-
structed for the GSF calculations are presented on Fig. 4.
Following the results of Durinck et al. (2005), the fault level
(in the middle of the supercell) is chosen so as not to cut the
strong SiO4 structural units. In case of shear on {001}, two
cutting levels could be considered: one in the Mg layer and
one between the SiO4 tetrahedra. We have chosen to shear
the structure along the Mg layer which corresponds to the
largest interplanar distance.

The unrelaxed GSF are presented on Fig. 5. The energy is
determined for several shear values S between 0 and b with-
out any relaxation of the atomic position. It is shown that
‹ 100 8 slip is very unfavourable due to strong impingement

of magnesium and oxygen atoms (Fig. 5). The three barriers
associated with ½ ‹ 110 8 slip are very similar with a camel-
hump shape. The only significant difference lies in the 50 %
shear excess energy which is higher for slip on {001}.

More realistic values can be obtained by allowing atomic
relaxations at each shear step. We tried to leave the atoms as

Fig. 5. Unrelaxed generalized stacking fault excess energies * as a
function of displacement shear S (expressed as a fraction of the mod-
ulus of the Burgers vector ½ ‹ 110 8 ). Pressure: 0 GPa.

free as possible in their displacements. Shear has to be im-
posed however. This is achieved by using the boundary con-
ditions and the atomic relaxation scheme defined in sec-
tion 3. The excess energy barriers at 0 GPa after relaxation
are presented on Fig. 6. As expected, atomic relaxations re-
sult in a significant decrease of the GSF energies. However,
the barriers keep their shapes. This is important as a camel-
hump barrier suggest the possibility of a core extension
within the plane with potential implications for dislocation
mobility as discussed later. It is interesting to note that the
three barriers shown on Fig. 6 are clearly distinct after relax-
ation. This shows that the relaxation mechanisms are very
sensitive to the actual atomic environments at the shear
plane. The highest energy barrier is associated with
½ ‹ 110 8 {001}, whereas ½ ‹ 110 8 {110} corresponds to the
lowest (see Table 1). It is difficult however to infer the rela-
tive resistance to plastic shear simply by looking at the ener-
gy barriers. The simplest approach consists in calculating
the shear resistance from the derivative of the GSF (Vı́tek,
1974; Medvedeva et al., 1996; Sun & Kaxiras, 1997; Hart-
ford et al., 1998), which gives access to the restoring force:

F
→

(S) = –
→
grad * (S) (6)

Fig. 6. Influence of atomic relaxations on the GSF at 0 GPa.
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Table 1. Parameters issued from the GSF calculations. * max is the
maximum value of the excess energy barrier. S max is the ideal shear
stress. In the last column, the ISS are normalised by the anisotropic
shear moduli calculated from anisotropic elasticity. All values are
presented at 0 and 20 GPa.

Pressure
(GPa)

Slip
plane

b (Å) µ ‹ uvw 8 {hkl}

(GPa)
* max

(J/m2)
S max

(GPa)
S max/

µ ‹ uvw 8 {hkl}

0
{001}

5.75
131 2.4 24 0.19

{110} 105 1.2 17 0.16
{111} 112 1.4 15 0.13

20
{001}

5.57
142 3.3 44 0.31

{110} 128 2.1 26 0.20
{111} 132 2.3 25 0.19

The ideal shear strength (ISS) which is defined as the „maxi-
mum resolved shear stress that an ideal, perfect crystal can
suffer without plastically deforming” (Paxton et al., 1991) is
identified to the maximum stress S max along the shear dis-
placement. The values of S max are presented in Table 1. The
resistance to plastic shear is very comparable on {110} and
on {111} (the maximum of the slope is found at the begin-
ning of the curve which governs the value of the ISS). Nor-
malizing S max by the shear modulus enables comparison
with other structures. Most metals yield values in the range
0.09–0.17 µ (Paxton et al., 1991; Söderlind et al., 1998;
Roundy et al., 1999; Krenn et al., 2001) which compare
very well with our values for the easiest slip planes {111}
and {110}.

The influence of pressure on plastic shear of ringwoodite
is presented on Fig. 7 which shows the relaxed GSF at
20 GPa, a pressure representative of the lower part of the
transition zone where ringwoodite is stable. For this pur-
pose, a new reference state is obtained under pressure,
which is then sheared. Atoms present at the interface with
the vacuum layer (shown in black on Fig. 4) must obviously
be fixed. As expected, pressure makes ringwoodite stronger.
The influence of pressure on plastic deformation can have
two origins however. One is due to the evolution with pres-
sure of the elastic constants. The increase with pressure of
the normalized ISS presented in Table 1 demonstrates that
the elastic contribution is not the only one. The atomic con-
figuration in the shear plane also plays an important role.
The energy barriers of Fig. 7 and the ISS presented in Table
1 suggest that homogeneous plastic shear at 20 GPa is easier
in {110} and {111}. The two planes exhibit very compara-
ble behaviours.

5.b From GSF to dislocations using the Peierls-
Nabarro model

The Peierls-Nabarro model assumes that the misfit region of
inelastic displacement is restricted to the glide plane, where-
as linear elasticity applies far from it. The dislocation corre-
sponds to a continuous distribution of shear S(x) along the
glide plane (x is the coordinate normal to the dislocation line
in the glide plane). S(x) represents the disregistry across the
glide plane. The stress generated by the shear displacement

Fig. 7. Relaxed GSF at 20 GPa.

S(x) can be represented by a continuous distribution of in-
finitesimal dislocations with density ρ(x).

ρ(x) = dS(x)
dx

(7)

The Burgers vector b is the sum of those of all these infini-
tesimal dislocations leading to the following normalisation
condition:

⌠
⌡– ›

+ ›
ρ(x)dx = ⌠

⌡– ›

+ › dS(x)
dx

dx = b (8)

The restoring force F acting between atoms on either sides
of the interface is balanced by the resultant stress of the dis-
tribution of infinitesimal dislocations. This leads to the so-
called PN equation:

K
2 ‘

⌠
⌡– ›

+ › 1
x – x’[dS(x’)

dx’ ]dx’ = K
2 ‘

⌠
⌡– ›

+ › ρ(x’)
x – x’

dx’ = F (S(x)) (9)

where K is the energy coefficient introduced above which
depends on the dislocation character ’ (equation 5). In the
original model, the PN equation was solved by introducing
a sinusoidal restoring force yielding a well known analytical
solution. However, Joos et al. (1994) pointed out that, in a
real crystal, the restoring force could be quite different from
sinusoidal. Christian & Vitek (1970) have suggested that the
GSF could be used to calculate the restoring force. Indeed,
the GSF is usually not stable and must be balanced by a re-

storing force F(S) = – ∂ *
∂S

(see equation (6)), which can be

used to solve the PN equation.
In this paper, we follow the methodology proposed by

Joos et al. (1994) and already applied with success in sever-
al cases (e.g. Hartford et al., 1998). The disregistry distribu-
tion in the dislocation core S(x) was obtained by searching
for a solution in the form:

S(x) = b
2

+ b
‘ 7

N

i = 1
[ i · arctan x – xi

ci
(10)

where [ i, xi and ci are variational constants. Using the previ-
ous form of S(x), the infinitesimal dislocation density ρ(x) is

ρ(x) = dS(x)
dx

= b
‘ 7

N

i = 1
[ i

ci
(x – xi)

2 + ci
2 (11)
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a) b) c)
Fig. 8. Example of a determination of the dislocation density ρ and disregistry S for a ½ ‹ 110 8 {111} screw dislocations calculated at 0 GPa.
(a) GSF and derived restoring force F (dashed line) plotted as a function of S/b (b) Restoring force F (from ab initio calculations) and fitted
solution FPN as a function of disregistry S (equation 10). The restoring force F from ab initio calculations are represented by the open circles
and the curve represents the solution of the fit FPN (equation 12). (c) Disregistry S (dashed line) and dislocation density ρ plotted against the
distance of the dislocation core.

As the disregistry S(x) and the density ρ(x) must be solution
of the normalisation condition, the [ i are constrained by

7
N

i = 1
[ i = 1. Then, the previous disregistry function is used to

solve the PN equation. Substituting the disregistry into the
left-hand side of the PN equation, gives the restoring force

FPN (x) = Kb
2 ‘ 7

N

i = 1
[ i ·

x – xi
(x – xi)

2 + ci
2 (12)

The variational constants [ i, xi and ci are obtained from a
least square minimisation of the difference between FPN and
the restoring force F from our ab initio calculations. Practi-

Fig. 9. ½ ‹ 110 8 {100} slip system. Infinitesimal dislocation density
distributions ρ corresponding to screw and edge dislocations at 0
(dashed line) and 20 GPa.

cally, the restoring force is obtained by derivating the GSF
calculated ab initio. It is then fitted by a sine series. N = 3
(equation 10) is sufficient to describe the disregistry S(x) of
a simple (i.e. with one maximum only) energy barrier where-
as barriers with a camel hump requires more terms: we use N
= 6. An example of calculation for a screw dislocation of the
system ½ ‹ 110 8 {111} is shown on Fig. 8. Figure 8b shows
the adjustment of FPN on the restoring force F derived from
the GSF (Fig. 8a). The disregistry S(x) and the correspond-
ing dislocation density ρ(x) are presented on Fig. 8c.

Following this method, the Peierls model has been ap-
plied to calculate the edge and screw dislocations belonging
to the three slip systems ½ ‹ 110 8 {001}, ½ ‹ 110 8 {110}

Fig. 10. Same as Fig. 9 for ½ ‹ 110 8 {110} slip system.
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Fig. 11. Same as Fig. 9 for ½ ‹ 110 8 {111} slip system.

and ½ ‹ 110 8 {111}. The results are presented in Fig. 9, 10
and 11 with the numerical values being given in Tables 2
and 3. The dislocation cores are always found to be signifi-
cantly spread in the glide plane. The dislocation density
functions exhibit two maxima. Camel-hump GSF corre-
spond therefore to a tendency of the dislocation core to dis-
sociate. The dislocation core width ˇ is defined as the dis-
tance between the two peaks of the density function. At
0 GPa, core spreading is maximum in the {110} planes and
minimum in the {100} planes. Pressure is found to have a
significant effect on the dislocation core geometries. Appli-
cation of a 20 GPa pressure results in a more compact dislo-
cation core. Dislocations in {110} and {111} exhibit very
comparable dislocation cores at 20 GPa.

Finally, the PN model can be used to calculate the Peierls
energy and the stress (called the Peierls stress) required to
overcome this energy barrier. Lattice discretisation must be
re-introduced at this point as previously the crystal was con-
sidered as an elastic continuum medium. Let us consider
that in the perfect crystal the distance between planes in the
x direction is a’. The misfit energy can be considered as the
sum of misfit energies between pairs of atomic planes and
can be written as

W(u) = 7
+ ›

m=– ›
* (S(ma’ – u)) · a’ (13)

The Peierls stress is given by:

c P = max {1
b

dW(u)
du } (14)

Table 2. Parameters for the PN model for ½ ‹ 110 8 screw disloca-
tions. The energy coefficient K (equation 5) and a’ (periodicity of the
Peierls energy W) are input of the PN model. The width of disloca-
tion distribution ˇ is obtained as the distance separating the two max-
imum of the dislocation density function ρ. 2 W and c p are respec-
tively the height of the Peierls energy barrier and the Peierls stress
needed to overcome this barrier.

Pressure
(GPa)

Slip
plane

K(0)
(GPa)

a’ (Å) ˇ (Å) 2 W
(eV/Å)

c p (GPa)

0
{001}

117
a √2/2 10 0.29 6

{110} a 37 0.67 11
{111} a √6/4 20 0.21 4

20
{001}

127
a √2/2 6 1.02 34

{110} a 15 0.65 10
{111} a √6/4 14 0.61 14

Table 3. Parameters for the PN model for ½ ‹ 110 8 edge disloca-
tions. Parameters are defined as in Table 2.

Pressure
(GPa)

Slip
plane

K(90)
(GPa)

a’ (Å) ˇ (Å) 2 W
(eV/Å)

c p (GPa)

0
{001} 158

a √2/2
13 0.32 6

{110} 150 55 0.21 4
{111} 154 26 0.09 1.5

20
{001} 177

a √2/2
9 0.37 12

{110} 174 20 0.18 3.5
{111} 176 19 0.19 5.5

The results of Peierls stresses calculations are presented in
Tables 2 and 3 for both screw and edge dislocations. Pres-
sure is found to increase the Peierls stress of dislocations
gliding in {100} and {111}. Dislocations gliding in {110}
do not present a strong sensitivity to pressure. At 20 GPa,
Peierls stresses determined for edge or screw dislocations
confirm the results of ISS that suggest glide on {110} and
{111} planes is easier than on {100} planes.

6. Prediction of easy slip systems in ringwoodite

A few criteria are usually proposed to predict or account for
the choice of the slip systems in crystals (Cordier, 2002):
– Burgers vectors are chosen among the shortest lattice re-

peats
– Glide planes are chosen among close-packed planes
– The slip plane corresponds to the dissociation plane of

the dislocations
– Easy slip systems correspond to minimum values of «b/

dhkl» (Chalmers-Martius criterion (Chalmers & Martius,
1952), where b is the Burgers vector magnitude and dhkl
the interplanar spacing of the slip plane).
Selecting the smallest Burgers vectors is a criterion of

minimum dislocation energy. It is based on the idea that an
easy slip system is a slip system where the energy increase
yielded by the multiplication of dislocations required for
maintaining plastic deformation is smallest. We have calcu-
lated the elastic energies associated with several slip sys-
tems and shown that, in agreement with the first rule listed
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above, ½ ‹ 110 8 slip is more likely than ‹ 100 8 slip. We
have seen that following crystal chemistry arguments and
recent calculations of Durinck et al. (2005), the criterion of
„close-packed planes” must be replaced in silicates by the
choice of planes that do not cut strong Si-O bonds. The weak
elastic anisotropy of ringwoodite does not allow us to distin-
guish between the possible slip planes which satisfy this re-
quirement: {001}, {110} and {111}.

Our calculations of GSF bring further information on the
possibility of shearing the ringwoodite structure. The occur-
rence of ‹ 100 8 slip is ruled out by strong atomic impinge-
ments. Rigid body plastic shear is intrinsically easier in
{110} and {111}. Plastic shear on {001} seems already
most difficult at this stage. The Chalmers-Martius criterion
assesses the easiness of slip from the Peierls-Nabarro model
in its most simple form (sine profile of the potential). The
search for possible dissociation planes can be assisted by the
GSF calculations. The existence of a minimum of the GSF
curves suggests a possible dissociation. This has been con-
firmed by the Peierls models of the dislocation cores pre-
sented in section 5. Once again, glide is suggested to be easi-
er on {110} and {111} by this approach as a tendency for
core spreading is usually related to a greater mobility. It
must be underlined that the calculations reported here repre-
sent a first approach and do not pretend to give a definite
view of the dislocation core structure in ringwoodite. In par-
ticular, it must be remembered that the Peierls model con-
siders planar cores only, which represent a strong assump-
tion. The strongest tendency for core spreading in {110} and

Fig. 12. Ringwoodite crystal preferred orientations predicted by VPSC models at an equivalent strain of 1 (shear strain of 1.73). Critical re-
solved shear stresses (CRSS) for the 3 slips systems used in the models are displayed to the left of each pole figure. Lower hemisphere equal-
area projections, contours at intervals of 0.5 multiple of a uniform distribution, 1000 grains. Dextral shear; SD = shear direction, NSP = nor-
mal to the shear plane, which is marked by the horizontal line. Black line marks the foliation (main flattening plane, which normal is Z). X
= lineation (main stretching direction).

{111} is however an important information. The calculation
of the Peierls stresses not only gives more realistic values
than ISS, it also allows us to account for the influence of the
core geometry (spreading). As both ISS and core spreading
lead to the same conclusion, it is not surprising that the Pei-
erls stresses provide additional support. All together, our
calculations suggest that at 20 GPa, the easy slip systems of
ringwoodite are ½ ‹ 110 8 {110} and ½ ‹ 110 8 {111}. It
must be noted that those slip systems exhibit a very different
evolution with pressure. ½ ‹ 110 8 {110} softens slightly
while ½ ‹ 110 8 {111} hardens significantly with pressure.
Our calculations compare very well with recent in situ stress
measurements from Nishiyama et al. (2005) considering
that their experiments are dominated by ½ ‹ 110 8 {111} slip
as shown by Wenk et al. (2005). Compared to previous ex-
periments in diamond cells, the measurements of Nishiya-
ma et al. (2005) allows the distinction of the actual influence
of pressure on plastic shear by removing the strain-harden-
ing contribution. Their stress values compare well with our
Peierls stresses, and moreover the pressure evolution of
stress reported by Nishiyama et al. (2005) is in good agree-
ment with their conclusions of dominant ½ ‹ 110 8 {111}.

7. From single crystals to polycrystals

In Fig. 12, we show CPO developed in an aggregate con-
taining one thousand, initially spherical and randomly ori-
ented, ringwoodite grains deformed in simple shear after an
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Fig. 13. Slip systems activity at an equivalent strain of 1 as a function
of relative strength of {100} slip relative to {110} and {111} in the
simple shear VPSC simulations. The activity of a slip system is cal-
culated by averaging over all grains the contribution of this slip sys-
tem to the local strain rate.

Fig. 14. Inverse pole figure showing the orientation of the shortening
direction relative to the ringwoodite crystal axes predicted by VPSC
models with critical resolved shear stresses (CRSS) for slip on
{110}, {111}, and {100} defined as CRSS{110} = CRSS{111} = 1/2
CRSS{100}, after an axial shortening of 25%. Contours at intervals of
0.2 multiple of a uniform distribution, 1000 grains.

equivalent strain of 1, which corresponds to a dextral simple
shear strain of 1.73. The models which are presented in-
volve easy slip along ½ ‹ 110 8 on {110} and {111}, i.e.,
CRSS{110} = CRSS{111} = 1, and increasingly harder slip on
{100}, i.e., CRSS{100} = 1, 2, or 10 and a rate sensitivity, n =
3. Ringwoodite CPO are well developed, but weak (maxi-
mum concentrations are always below 2 multiples of an uni-
form distribution). The CPO are almost insensitive to the
variation of CRSS for {100} slip. ‹ 100 8 axes tend to align
either within or normal to the foliation (main flattening
plane), with a weak maximum close to the lineation (main
stretching direction) in those models in which slip on {100}
planes are hindered. ‹ 111 8 and ‹ 110 8 axes display both a
rough 6-fold distribution with a symmetry axis normal to the
shear plane. However, ‹ 110 8 displays a maximum close to
the shear direction and some dispersion normal to the linea-
tion or within the shear plane, whereas ‹ 111 8 shows two
symmetric maxima at ca. 30° to the shear direction and a
girdle distribution in a plane at high angle to the shear direc-
tion. Once formed, these CPO evolve slowly with increas-

Fig. 15. Slip systems activity as a function of strain in an axial com-
pression VPSC simulation. The activity of a slip system is calculated
by averaging over all grains the contribution of this slip system to the
local strain rate.

ing strain; CPO modelled for an equivalent strain of 5 show
patterns and intensities (maximum concentrations of
‹ 100 8 , ‹ 110 8 , and ‹ 111 8 are 1.7, 1.95 and 1.8 multiples

of an uniform density, respectively) similar to those ob-
served after an equivalent strain of 1. Results for models
with n = 5 show similar patterns, but stronger concentrations
(maximum concentrations of ‹ 100 8 , ‹ 110 8 , and ‹ 111 8
are 1.97, 2.69, and 2.73 multiples of an uniform density, re-
spectively for a model with CRSS{110} = CRSS{111} = 1/2
CRSS{100} at an equivalent strain of 1). In all cases, slip on
{111} dominates the plasticity of the aggregate (Fig. 13).
The higher activity of {111} systems results from geometri-
cal constraints. Indeed, in a cubic mineral, this mode is com-
posed by 12 systems whereas {110} and {100} modes are
composed by 6 systems each.

CPO formed in axial compression models in which
CRSS{110} = CRSS{111} = CRSS{100} or CRSS{110} =
CRSS{111} = 1/2 CRSS{100} reproduce the pattern observed
in room temperature compression experiments in a diamond
anvil cell (Wenk et al., 2004) and in a D-DIA (Wenk et al.,
2005). {110} planes tend to orient normal to the compres-
sion direction (Fig. 14), because deformation in these mod-
els is essentially accommodated by slip on {111} planes
(Fig. 15). The orientation of {110} normal to compression
direction in these models results therefore from a geometri-
cal effect associated with the simultaneous activation of var-
ious ½ ‹ 110 8 {111} systems. Similar geometrical effects
have also been observed to occur in other minerals, like cli-
nopyroxenes (Bascou et al., 2002). These results highlight
that the interpretation of slip system activity from the analy-
sis of measured CPO is not straightforward when deforma-
tion is essentially accommodated by prismatic or pyramidal
slip systems, emphasising the importance of TEM data and
of forward simulations, like the ones presented here, in the
evaluation of the slip systems’ activity.

8. Concluding remarks

It is now possible to use first-principle calculations to assess
the resistance of minerals to plastic shear from GSF calcula-
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tions. We show in this study that GSF can be used as input data
to infer dislocations properties from the Peierls model. This
approach has been used here for the first time to predict the
plastic properties of a mineral under high-pressure conditions.
Our calculations suggest that ½ ‹ 110 8 {110} and
½ ‹ 110 8 {111} are the easiest slip systems in ringwoodite at
20 GPa. VPSC calculations of CPO using these data are
shown to account satisfactorily for experimental data obtained
at room temperature in diamond anvil cell and D-DIA experi-
ments. The approach illustrated in the present work opens a
new field in the study of plasticity of minerals under extreme
pressure conditions. The next step will be of course to incorpo-
rate the influence of temperature on plastic slip. Our approach
cannot predict if a change of slip system occurs with tempera-
ture. We observe that our predictions are in agreement with the
HP-HT deformation experiments of Thurel (2001), but not
with those of Karato et al. (1998) who reported slip on {100}.
It is not clear whether the discrepancy between those results is
due to a sampling problem or if other parameters (differences
in the iron content for instance) are involved. In any case, the
deformation of ringwoodite seems to produce relatively weak
crystal preferred orientations. Given the modest elastic anisot-
ropy of ringwoodite at pressure and temperature of the transi-
tion zone (Mainprice et al., 2000) and the weak crystal pre-
ferred orientations it develops, it is unlikely that plastic defor-
mation of ringwoodite generates a marked seismic anisotropy
in the transition zone between 520 and 670 km depth.
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