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INTRODUCTION

The determination of thermodynamic properties of minerals 
plays a central role in the fi elds of mineralogy, petrology, and 
geochemistry. Indeed, after many years of work there exists, 
today, good data for the different thermodynamic functions for 
most end-member oxides and silicates (e.g., Robie and Heming-
way 1995; Berman 1988; Holland and Powell 1998). It is a fact, 
however, that most rock-forming silicates are solid solutions 
and thus it is imperative to determine their mixing properties to 
understand their thermodynamic behavior. However, although 
much effort has been undertaken in this regard, truly quantita-
tive thermodynamic mixing properties for many rock-forming 
silicate and oxide solid solutions are still not available (Geiger 
2001a). This lack of data hinders thermodynamic calculations 
for many problems in the Earth Sciences and, therefore, much 

work needs to be done in this area.
Heat capacity (CP) is a fundamental thermodynamic property 

and it is measured using various calorimetric methods (see for 
example, Gmelin 1987 or Cezairliyan 1988, for a review). Un-
fortunately, there is a dearth of heat-capacity measurements on 
mineral solid solutions and, thus, their entropies of mixing are 
poorly known (Geiger 2001b). Through CP, the vibrational part 
of the third-law entropy (S0) of a substance at 298.15 K can be 
determined via (e.g., Ulbrich and Waldbaum 1976):
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where ΔStrans is any entropy change resulting from a phase tran-
sition between 0 and 298.15 K, and Sr is the residual entropy 
incorporating all quenchable contributions such as frozen-in 
structural disorder (often referred to as confi gurational entropy). 
The CP integral in Equation 1 is generally the most important 
contribution to the entropy and it is accessible by calorimetric * E-mail: edgar.dachs@sbg.ac.at
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ABSTRACT

The low-temperature heat capacities for a series of synthetic garnets along the pyrope-grossular 
(Py-Gr) join were measured with the heat capacity option of the Physical Properties Measurement 
System (PPMS) produced by Quantum Design. The measurements were performed between 5 and 300 
K on milligram-sized polycrystalline garnets that have been well characterized in previous studies. The 
CP measurements indicate positive excess heat capacities (ΔCP

xs) for all solid-solution compositions at 
temperatures <50 K with a maximum value of 2.31 ± 0.18 J/(mol·K) for the composition Py50Gr50 at 
about 35 K. Pyrope-rich garnets (i.e., Py90Gr10 and Py75Gr25) have no or slightly positive ΔCP

xs at higher 
temperatures, whereas grossular-rich garnets (i.e., Py10Gr90 and Py25Gr75) show negative ΔCP

xs values 
in the temperature range between 50 and 150 K. At T > 150 K, ΔCP

xs values scatter around zero for all 
compositions and the experimental error is too large to permit a clear determination of whether ΔCP

xs
 is 

different from zero within 2σ uncertainty. Excess entropies (ΔSxs) at 298.15 K, calculated from the CP 
data of the various solid-solution members, are asymmetric in nature with the largest positive deviations 
in pyrope-rich compositions. An asymmetric Margules mixing model was found to be inappropriate 
for modeling the ΔSxs-X data and, thus, a two-parameter Redlich-Kister model was used to describe 
the excess entropy-composition relationships. Using this macroscopic mixing model for the excess 
entropy, a T-X diagram for Py-Gr garnets was calculated using different published values for the excess 
enthalpies of mixing. The effect of short range Ca-Mg order in the solid solution also was considered 
in the calculations. The calculations give a solvus for the pyrope-grossular join with a higher critical 
temperature in the range 850–1330 °C at XGr = 0.35 compared to previous thermodynamic models 
(Tcrit < 600 °C) that use symmetric mixing models to describe the excess entropy. Unmixing of garnets 
in nature, as documented from occurrences in ultramafi c diatremes may, therefore, have occurred at 
higher temperatures than previously thought. The atomistic and lattice-dynamic properties of Py-Gr 
garnets are reviewed and compared to the macroscopic CP data. Published IR and Raman spectra are 
consistent with the occurrence of positive ΔCP

xs values at low temperatures.
Keywords: Calorimetry, pyrope-grossular garnet solid solutions, thermodynamics, excess heat 

capacities, excess entropies
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techniques and (combined with ΔStrans,) may be termed the ca-
lorimetric entropy Scal

298.15.
Until recently, low-temperature heat capacities mainly have 

been determined by adiabatic or quasi-adiabatic calorimetry. 
This method has the advantage of being very precise, but has 
the experimental disadvantage of requiring at least several grams 
of material for measurement (Gmelin 1987). This explains the 
lack of CP data for many systems of mineralogical, petrological, 
and geophysical importance. In the two binary silicate solid-
solution systems, pyrope-grossular, (Mg,Ca)3Al2Si3O12, and 
analbite-sanidine, (Na,K)AlSi3O8, where the CP of mixing has 
been measured, it has been shown that large positive excess heat 
capacities are present at temperatures below 200 K for inter-
mediate compositions (Haselton and Westrum 1980; Haselton 
et al. 1983). In the case of garnet of composition Py60Gr40, it 
was proposed that the excess CP can be as much as 25% around 
40 K. At temperatures between 300 and 1000 K, the pyrope-
grossular binary shows no excess heat capacity as determined 
by differential scanning calorimetry (DSC) measurements 
(Bosenick et al. 1996). Moreover, the IR spectra of various 
binary aluminosilicate garnet solid solutions can be interpreted 
as indicating that low-temperature excess heat capacities of 
mixing should be present for pyrope-grossular solid solutions 
(Geiger 1998). Thus, these studies demonstrate the urgent need 
for further low-temperature heat-capacity measurements on 
garnet solid solutions.

In this paper, we present low-temperature heat-capacity 
measurements between 5 and 300 K on synthetic pyrope-gros-
sular garnets using low-temperature heat-pulse calorimetry. This 
relatively new method (for the fi eld of mineralogy, see Dachs and 
Bertoldi 2005) allows for the measurement of samples weighing 
milligrams. As a result of this technological advancement, we are 
able to extend the important calorimetric study of Haselton and 
Westrum (1980) on pyrope-grossular solid solutions. This binary 
has received much study both in terms of theory and experiment 
and is relatively well understood in terms of its crystal-chemical, 
lattice-dynamic, and macroscopic thermodynamic properties (for 
a review, see Geiger 1999, 2004; Bosenick et al. 2000, 2001; 
Vinograd et al. 2004 and references therein). It can be argued 
that pyrope-grossular garnets, because of the number of inves-
tigations made on them, serve as a “cutting-edge” system for 
investigating the physical nature of solid-solution behavior. Our 
CP measurements offer the possibility to investigate, once again, 
the thermodynamic mixing behavior of an important silicate solid 
solution from a microscopic to macroscopic level.

EXPERIMENTAL METHODS

Synthesis and characterization of pyrope-grossular garnets
The samples that were investigated by low-T heat-pulse calorimetry come 

from two sources. The fi rst set of garnets used for measurement is that studied by 
Haselton and Westrum (1980), and it includes the two end-members pyrope (Py), 
Mg3Al2Si3O12, and grossular (Gr), Ca3Al2Si3O12, and one solid-solution composi-
tion Py60Gr40. A description of the synthesis conditions and the characterization of 
the garnets can be found in their original publication. As stated in Haselton and 
Westrum (1980), impurities in their garnets occurred in very small amounts (<1%) 
and electron microprobe analysis showed that the garnet compositions are similar to 
their nominal compositions. Thus, we used in our calculations of excess properties 
the nominal compositions of the garnet (i.e., XGr = 0.00, 0.40, and 1.00, where XGr 
is the mole fraction of the grossular component, which in the case of the garnets 

studied equals the site fraction XCa in the garnet structure).
The second set of pyrope-grossular garnets, used in this study, was synthesized 

by C.A. Geiger. Most of these garnets have been exceptionally well characterized 
both chemically and structurally using a variety of diffraction, spectroscopic, and 
calorimetric methods. The garnets studied in this work have the following nominal 
compositions: Py, Py90Gr10, Py75Gr25, Py60Gr40, Py50Gr50, Py25Gr75, and Py10Gr90. A 
description of the synthesis conditions and the characterization for most of the 
compositions can be found in Bosenick et al. (1995, 1999), Geiger (1998), Kolesov 
and Geiger (1998), Boffa Ballaran et al. (1999), and Dapiaggi et al. (2005). The 
garnets Py, Py90Gr10, Py75Gr25, Py50Gr50, and Py25Gr75 are the exact same samples 
used in the DSC study of Bosenick et al. (1996). Based on microprobe data given 
in Bosenick et al. (1995, 1996), the composition of the garnets in terms of XGr for 
Py, Py90Gr10, Py75Gr25, Py60Gr40, Py50Gr50, Py25Gr75, and Py10Gr90 is: XGr = {0.00, 
0.104, 0.264, 0.414, 0.512, 0.76, 0.904}. The grossular studied by Bosenick et al. 
(1996) was not used for PPMS measurement.

Low-temperature calorimetry using a physical properties 
measurement system

Low-temperature heat capacities were measured with a commercially designed 
calorimeter [heat capacity option of the Physical Properties Measurement System 
(PPMS), constructed by Quantum Design], which has been set up at Salzburg 
University. The measurements were performed at temperatures between 5 and 
300 K on synthetic polycrystalline garnets weighing between 17 and 26 mg and 
contained in hermetically sealed Al containers. CP data were collected at 50 dif-
ferent temperatures on cooling from 300 K with a logarithmic spacing, with CP 
measured three times at each temperature (see Appendix1). Details of the experi-
mental method (heat-pulse calorimetry: HPC, e.g., Hwang et al. 1997), as well 
as the data acquisition and evaluation procedures, including a discussion of data 
precision and accuracy for mineralogical samples, are given in Dachs and Bertoldi 
(2005). Therefore, they will only be discussed briefl y here.

The central part of the PPMS calorimeter is the so-called calorimeter puck 
that resides at the base of a sample chamber. This, in turn, forms the inner part of 
a probe that is immersed directly in a liquid helium bath contained within a larger 
liquid-nitrogen-jacketed dewar. The calorimeter puck consists of the puck frame 
and the sample platform that holds the sample. The puck is covered with a cap (i.e., 
thermal radiation shield). The sample holder is a 4 × 4 mm wide sapphire platform 
that has a thermometer and a heater attached to the lower side. This sample platform 
has thin Pt wires attached to it that complete the electrical connection and provide 
for structural support between the platform and the puck frame.

In HPC, as technically constructed in the PPMS calorimeter, a known amount 
of heat is introduced to a sample at user-defi ned set points of T and the resulting 
temperature response is measured. To determine heat capacity quantitatively, two 
separate measurements, an “addenda run” and a “sample run” are necessary. For 
an addenda run, the heat capacity of the empty sample platform, including some 
grease to achieve thermal contact with the sample to be studied, is determined using 
a differential equation based on Fourier’s law of heat conduction and the law of 
conservation of energy (“one-τ model”). The relevant equation is:
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where “pl” stands for platform, dTpl(t)/dt is the thermal response of the sample 
platform to which a square-pulse of heat Pin(t) is applied, Kw is the thermal con-
ductance of the Pt wires (in units of W/K), and Tb the temperature of the puck 
frame. A nonlinear least-squares fi t to the analytical solutions of Equation 2 (Eqs. 
6a and 6b of Dachs and Bertoldi 2005) yields the heat capacity of the empty sample 
platform, CP

pl, at the temperature Tpl. This procedure is then repeated at the desired 
temperature with the sample mounted on the sample platform (“sample run”). The 
thermal model in this case requires an additional term to Equation 2 that accounts 
for the heat fl ow between the sample and the sample platform and is given by:

1 Deposit item AM-05-021, Appendix. Deposit items are avail-
able two ways: For a paper copy contact the Business Offi ce of 
the Mineralogical Society of America (see inside front cover of 
recent issue) for price information. For an electronic copy visit the 
MSA web site at http://www.minsocam.org, go to the American 
Mineralogist Contents, fi nd the table of contents for the specifi c 
volume/issue wanted, and then click on the deposit link there. 
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where Kg is the thermal conductance of the grease located between the sample and 
sample platform and Ts is the temperature of the sample. The temperature change 
in the sample with respect to time, dTs/dt, its heat capacity, CP

s, and the heat fl ow 
to or from it are governed by the relationship:
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Because the PPMS calorimeter measures the temperature of the platform, Tpl, 
Ts is eliminated by inserting Equation 3a into 3b, yielding:
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Because the heat capacity of the platform plus grease is already known from 
the “addenda run”, there remain four unknowns: Kg, Kw, Tb, and CP

s. Based on the 
temperature-time response curve measured during the sample run (40–200 data 
pairs for each measurement at a given temperature), these unknowns are solved 
for by applying the same non-linear least-squares fi tting routine to the analytical 
solution of Equation 4 as used previously to calculate the addenda heat capacity. 
The standard deviation of each measurement, σCP

, can be obtained from this fi tting 
procedure. The heat capacity contribution of the Al-container is evaluated and 
subtracted from the total heat capacity to give the net heat capacity of the unknown 
sample (Dachs and Bertoldi 2005).

Dachs and Bertoldi (2005) showed by comparing CP values measured on 
powders of standard reference materials SRM-720 (corundum), sanidine, and 
fayalite using the PPMS to CP values measured by low-temperature adiabatic 
calorimetry (low-T AC) that the former CP values tend to be systematically lower 
by 1–2% than those measured by low-T AC in the temperature range between 100 
and 300 K. At low T, where the absolute values of CP are small, PPMS-CP values 
may be up to 50% larger than those measured by low-T AC. It was also shown 
that entropies derived from PPMS CP measurements are at most 1–2% lower than 
entropies calculated from low-T AC experiments. These “systematic errors” (as-
suming that the low-T AC technique measures the “true value”), however, will 
cancel out, if excess heat capacities and entropies for a binary solid solution, for 
example, are considered.

Data evaluation
The fi rst step in the data evaluation is to convert from units of [μJ/K] to 

molar units [J/(mol·K)]. One has CP in J/(mol·K) = CP in μJ/K × 10–3 × (formula 
weight)/(sample weight). An uncertainty of ±0.02 mg for the sample weight has 
been applied for this calculation (for details see Dachs and Bertoldi 2005).

The resulting molar CP data (see Appendix) were then fi tted to a CP-polynomial 
of the general form CP = ko + k1T–0.5 + k2T–2 + k3T–3 + k4T + k5T2 + k6T3 using the 
function “LinearFit” of the Experimental Data Analyst Package of Mathematica. 
For this purpose, the data set was divided into three temperature regions, whereby 
each was fi t individually, but such that a certain overlap of data was present (i.e., 
the polynominal CP = ko + k1T–0.5 + k2T–2 + k3T–3 was used for fi tting the high-T 
portion of the data, and the complete polynomial given above for the interval 5–35 
K, and CP = k2T–2 + k4T + k5T2 + k6T3 for the CP data for the interval 35–130 K). This 
procedure resulted in a good description of the experimental data (i.e., deviation 
usually <0.3%). The CP values below 5 K were estimated from a plot of CP/T vs. 
T2 and a linear extrapolation to 0 K (i.e., CP = k6T3). The resulting CP coeffi cients 
and the temperatures for the various “data” intervals are given in Table 1.

The calorimetric entropies at 298.15 K, Scal
298.15, of the pyrope-grossular solid 

solutions were then determined by solving stepwise analytically the CP integral in 
Equation 1. The uncertainty in Scal

298.15 was determined in the following two ways 
and they yielded identical results. The two calculation procedures are:

(1) If a total of n CP-T data pairs have been measured (where n = 150 for this 
study), the integral in Equation 1 can be approximated numerically by:
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where τi = CPi/Ti, ΔTi is the temperature difference between successive measure-
ments, and each τi is regarded as consisting of the unknown true value, τ̂i, with an 
error δi. Thus, one has τi = τ̂i + δi. Rearranging Equation 5 yields:

S T
298 15

1

0

1
1

02 2.

ˆ ˆcal i i

i

n

i
i i

i
≅

+
∑ +

++

=

−
+

=

τ τ δ δ
∆

nn

i

−
∑

1
∆T  (6)

The second term in Equation 6 is necessary for deriving the standard deviation 
of Scal

298.15 from σCpi and can be written in terms of the variances, S, of discrete random 
variables, Θi, for each CP measurement, for which δi is one possible value:
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Equation 7 is valid, if the errors associated with each CP measurement are 
distributed normally and are independent of each other. Applying the rules for 
variances yields:
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The variances, S(Θi), in Equation 8 are calculated by error propagation from 
the CP measurements as:

S
i P i i Cpi i

( )Θ = ( ) = ( )σ σ2 2 21C T T  (9)

The temperature uncertainty in the PPMS CP measurements is about one order 
of magnitude less than σCP and has been neglected in Equation 9.

(2) A Monte-Carlo technique is applied to the measured CP data and their 
standard deviations using the Mathematica functions “RandomArray” and “Normal-
Distribution” to calculate a randomly distributed error for each measurement. In 
this way, a set of artifi cial CP data was created and integrated to get Scal

298.15. This 
procedure was repeated n times and the mean and standard deviation of these data 
give Scal

298.15 and σScal,298.15. It was found that σScal,298.15 derived by this Monte-Carlo 
method converges to σScal,298.15, as calculated above under procedure 1, if n ≥ 1000. 
Note that, because errors in CP tend to cancel out in the integration, the relative 
uncertainty σScal,298.15/Scal

298.15 is smaller than σCP
/CP and is usually around 0.1%.

RESULTS

CP and S0 of pyrope and grossular 

The CP measurements on the two garnet end-members, 
pyrope and grossular, are shown in Figures 1a and 1b, and they 
are in reasonable to good agreement with the data of Haselton 
and Westrum (1980). At low T, the heat capacity of grossular 
is less than that of pyrope (Fig. 1a), whereas at ambient T the 
situation is the reverse (Fig. 1b). The CP crossover occurs at 
around 170 K. Compared to the CP data of Haselton and Westrum 
(1980), most of the PPMS data are 1–2% lower at T > 100 K and 
somewhat higher at T < 100 K (Fig. 2). A similar behavior was 
observed previously for PPMS measurements made on powders 
of corundum (SRM-720), fayalite, and sanidine vs. their values 
determined by low-T AC (Dachs and Bertoldi 2005).

The various CP values at 298.15 K are compared in Table 2 
with those from the literature. The standard third-law entropies, 
S0, are also given in Table 2, and they are in excellent agree-
ment with literature data [the Py–3 has with –0.7% the largest 
deviation, whereas that for Gr–1 is 0.9% lower than S0 according 
to Haselton and Westrum (1980); the agreement of the other 
measurements is better].

Excess heat capacities and entropies of mixing of pyrope-
grossular solid solutions

Excess heat capacities of mixing, ΔCP
xs, were calculated ac-

cording to the equation

ΔCP
xs = CP

ss – [(1 – XGr) CP
Py + XGr CP

Gr] (10)
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TABLE 1.  Coeffi  cients for the Cp polynomial Cp = ko + k1T–0.5 + k2T–2 + k3T–3 + k4T + k5T2 + k6T3 
PPMS run Py-1 Py-2 Py-3 Py-4 Py90Gr10-1 Py90Gr10-2 Py90Gr10-3 Py75Gr25-1
Source HW80 HW80 Geiger Geiger Geiger Geiger Geiger Geiger
FW 403.129 403.129 403.129 403.129 407.955 407.955 407.955 415.716
SW 23.74 23.74 27.17 27.17 22.44 22.44 16.75 21.22
XGr 0.000 0.000 0.000 0.000 0.102 0.102 0.102 0.264
k6 8.7622E–05 9.5293E–05 9.5140E–05 1.4172E–04 9.5416E–05 1.0448E–04 8.2806E–05 7.7958E–05
T1 4.94 6.32 8.35 5.07 6.20 5.92 5.90 5.32
ko 6.1266E+00 –6.7024E+00 –1.0340E+01 –3.9297E+00 –4.9740E+00 –8.5034E+00 –6.1028E+00 1.1268E+01
k1 –1.5085E+01 1.5712E+01 2.4072E+01 8.3704E+00 1.2578E+01 2.0655E+01 1.5356E+01 –2.5158E+01
k2 6.3672E+01 –7.0451E+01 –1.0298E+02 –3.0553E+01 –6.9046E+01 –9.8811E+01 –8.0987E+01 8.7591E+01
k3 –1.1189E+02 1.3764E+02 1.9511E+02 5.5310E+01 1.4813E+02 1.9658E+02 1.6863E+02 –1.4400E+02
k4 –2.2049E–01 3.4151E–01 5.1740E–01 2.4893E–01 2.3134E–01 4.0001E–01 2.7519E–01 –5.4746E–01
k5 2.2090E–03 –1.4139E–02 –1.9856E–02 –1.2339E–02 –1.0461E–02 –1.5670E–02 –1.1412E–02 1.4647E–02
k6 2.1026E–04 4.0184E–04 4.6839E–04 3.8403E–04 3.6882E–04 4.3264E–04 3.7626E–04 6.4288E–05
T2 38.26 34.85 32.84 22.55 33.85 33.26 34.96 33.62
k2 –1.0482E+03 6.2965E+02 8.2777E+02 1.0684E+03 7.8604E+02 8.4687E+02 6.3521E+02 3.2515E+02
k4 –3.5115E–01 –4.4361E–01 –4.5651E–01 –4.6609E–01 –4.2969E–01 –4.3664E–01 –4.1830E–01 –3.5309E–01
k5 1.9031E–02 2.1107E–02 2.1038E–02 2.1125E–02 2.0832E–02 2.1029E–02 2.0677E–02 1.9034E–02
k6 –6.0787E–05 –7.2071E–05 –7.1352E–05 –7.0893E–05 –7.0376E–05 –7.1295E–05 –6.9870E–05 –6.1431E–05
T3 147.69 126.80 129.05 109.83 128.88 128.98 130.99 134.22
ko 7.3447E+02 7.7157E+02 7.4371E+02 7.7987E+02 7.6703E+02 7.6835E+02 7.4054E+02 7.2527E+02
k1 –7.1571E+03 –7.9359E+03 –7.2737E+03 –8.1262E+03 –7.8176E+03 –7.8255E+03 –7.2761E+03 –6.8377E+03
k2 –3.2434E+05 7.2453E+05 –4.4699E+05 1.1073E+06 6.9570E+05 6.6248E+05 4.9575E+03 –1.0184E+06
k3 1.1825E+08 4.9626E+07 1.3231E+08 1.7931E+07 4.2263E+07 4.6081E+07 8.5178E+07 1.6549E+08
T4 298.15 298.15 298.15 298.15 260.11 263.80 257.97 274.50
ko         5.7403E+02 5.7038E+02 5.7196E+02 5.8285E+02
k1         –2.2742E+03 –2.1395E+03 –2.2028E+03 –2.3619E+03
k2         –1.7174E+07 –1.8075E+07 –1.7515E+07 –1.8511E+07
k3         2.0381E+09 2.1966E+09 2.0763E+09 2.3254E+09
Tmax         1200.00 1200.00 1200.00 1200.00
Cp

298.15 320.8 322.0 322.4 322.4 326.0 326.0 325.7 325.6
Scal

298.15 265.94 265.81 264.20 265.01 268.09 268.65 268.06 267.48

Notes: Coeffi  cients for the Cp polynomial Cp = ko + k1T–0.5 + k2T–2 + k3T–3 + k4T + k5T2 + k6T3 derived by fi tting the PPMS Cp data of pyrope-grossular garnets given in 
the Appendix [T in K, Cp in J/(mol·K)]. At the bottom of the table, heat capacity and entropy at 298.15 K are additionally given in J/(mol·K). Diff erent parts of the 
Cp polynomial apply in diff erent temperature intervals, defi ned by temperatures T1 up to T4. At these temperatures, fi ts yield identical Cp. The PPMS data for some 
compositions (Py90Gr10, Py75Gr25, Py50Gr50, Py25Gr75) have been combined with the DSC data of Bosenick et al. (1996) above 320 K and a further set of Cp coeffi  cients 
is given for those allowing calculation of Cp up to Tmax.
Source of samples measured is either Haselton and Westrum (1980, HW80), or garnets synthesized by C.A. Geiger.
FW = Formula weight [g/mol]; SW = sample weight [mg]. 

TABLE 1. —Continued 
PPMS run Py60Gr40-1 Py60Gr40-2 Py50Gr50-1 Py25Gr75-1 Py10Gr90-1 Py10Gr90-2 Gr-1 Gr-2
Source HW80 Geiger Geiger Geiger Geiger Geiger HW80 HW80
FW 422.059 422.059 427.358 439.094 445.722 445.722 450.452 450.452
SW 24.05 21.91 23.22 21.02 25.01 25.01 25.81 25.81
XGr 0.400 0.414 0.512 0.760 0.904 0.904 1.000 1.000
k6 6.9651E–05 9.9837E–05 1.0331E–04 1.8543E–04 2.2054E–04 1.8920E–04 1.0233E–04 6.9161E–05
T1 5.88 6.41 6.06 6.23 6.45 5.43 7.24 5.95
ko 7.7404E+00 4.5351E+00 8.9892E–01 –2.3943E+01 –1.7803E+01 –1.8336E+01 –1.0069E+01 –1.0677E+01
k1 –1.3437E+01 –5.7324E+00 3.3294E+00 5.8291E+01 4.1048E+01 4.2092E+01 2.4437E+01 2.5841E+01
k2 6.8000E+00 –2.7401E+01 –6.3766E+01 –2.5660E+02 –1.6450E+02 –1.6532E+02 –1.1368E+02 –1.1777E+02
k3 3.2167E+01 9.6852E+01 1.5626E+02 4.7853E+02 2.9918E+02 2.9538E+02 2.2369E+02 2.2693E+02
k4 –5.5529E–01 –4.1281E–01 –3.0127E–01 9.6461E–01 8.4074E–01 8.7111E–01 4.4631E–01 4.7118E–01
k5 2.1478E–02 1.7278E–02 1.7728E–02 –2.1210E–02 –2.3783E–02 –2.4727E–02 –1.4218E–02 –1.4807E–02
k6 –8.3552E–05 –3.5213E–05 –8.7353E–05 3.3141E–04 3.9309E–04 4.0393E–04 3.1578E–04 3.2120E–04
T2 25.41 26.78 31.47 30.72 30.46 30.93 29.05 36.48
k2 5.6647E+02 6.3091E+02 1.0051E+03 2.1973E+03 2.7398E+03 2.8266E+03 2.1899E+03 2.1806E+03
k4 –3.0896E–01 –3.1509E–01 –3.1002E–01 –4.0096E–01 –4.9496E–01 –5.0022E–01 –5.1079E–01 –5.1611E–01
k5 1.7537E–02 1.7624E–02 1.7293E–02 1.8079E–02 1.9225E–02 1.9360E–02 1.9878E–02 2.0130E–02
k6 –5.3395E–05 –5.3468E–05 –5.1303E–05 –5.2771E–05 –5.6402E–05 –5.7262E–05 –6.0534E–05 –6.1905E–05
T3 124.01 123.56 144.86 154.05 124.35 124.96 126.45 122.52
ko 7.7636E+02 8.0952E+02 7.5273E+02 7.4573E+02 7.9397E+02 7.7818E+02 7.9318E+02 7.4905E+02
k1 –7.9116E+03 –8.6563E+03 –7.4598E+03 –7.1977E+03 –8.1559E+03 –7.8285E+03 –8.2725E+03 –7.2456E+03
k2 3.5384E+05 1.5533E+06 –4.0585E+04 –7.5903E+05 3.9494E+05 –6.6162E+04 8.3929E+05 –7.6160E+05
k3 7.7572E+07 –6.0548E+06 9.4485E+07 1.4844E+08 7.5630E+07 1.0657E+08 4.2462E+07 1.4992E+08
T4 298.15 298.15 255.68 263.00 298.15 298.15 298.15 298.15
ko     5.9772E+02 5.5952E+02        
k1     –2.9429E+03 –1.4371E+03        
k2     –1.4797E+07 –2.2276E+07        
k3     1.7367E+09 2.7333E+09        
Tmax     1200.00 1200.00        
Cp

298.15 325.1 325.5  326.4 328.8 328.9 328.1 325.1 326.5
Scal

298.15 265.11 265.44 265.480 262.44 259.58 259.23 257.86 259.47



DACHS AND GEIGER: EXCESS HEAT CAPACITIES OF PYROPE-GROSSULAR SOLID SOLUTIONS898

FIGURE 3. Excess heat capacities of pyrope-grossular garnets as function of composition (XGr) at various temperatures. Error bars are 2σ.

using the fi tted CP polynomials for the various garnet solid solu-
tions and end-members (the fi t to the CP data of PY–1 was used 
for pyrope and the fi t of Gr–2 for grossular). The uncertainty 
in ΔCP

xs was determined by applying an error propagation to 
Equation 10 that included the uncertainty σCP  of the PPMS 
measurement and an assumed uncertainty in garnet composition 
of ±0.01. The values of ΔCP

xs as functions of composition at dif-
ferent temperatures are shown in Figures 3a–3d. Figures 4a and 

FIGURE 1. Heat capacity of pyrope and grossular in the temperature 
range 5–150 K (a) and 150–300 K (b). Data are given in the Appendix 
(all pyrope and grossular PPMS measurements).

FIGURE 2. Relative errors in % {= 100 × [CP(PPMS) – CP(low-T 
AC)]/[CP(low-T AC)]} for the heat capacities of pyrope, grossular and 
the solid solution Py60Gr40 compared to the CP data of Haselton and 
Westrum (1980) measured using low-temperature adiabatic calorimetry 
(low-T AC).
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4b display the ΔCP
xs

 values for the various Py-Gr solid solutions 
as functions of temperature.

It can be observed that positive ΔCP
xs start to develop at 

grossular-rich compositions at 10 K (Fig. 3a) and increase in 
magnitude with increasing T. Concurrently, the maximum in 
ΔCP

xs shifts toward the compositionally intermediate part of the 

join and reaches a maximum value of 2.31 ± 0.18 J/(mol·K) for 
the composition Py50Gr50 at about 35 K (Figs. 3a and 4b). The 
composition Py60Gr40 shows a smaller positive ΔCP

xs of 2.00 ± 
0.17 J/(mol·K) at about 35 K. This result may be compared to 
the value of ΔCP

xs = 3.4 J/(mol·K) as determined by Haselton and 
Westrum (1980) for the same composition around T = 40 K. As 
can be observed in Figure 4, positive ΔCP

xs values are present for 
all solid-solution compositions at low temperatures.

It also can be observed that the experimental errors increase 
continuously with increasing temperature (Fig. 4). The ΔCP

xs data 
indicate that pyrope-rich garnets (i.e., Py90Gr10 and Py75Gr25) have 
no or slightly positive ΔCP

xs at the higher temperatures. Grossular-
rich garnets (Py10Gr90 and Py25Gr75—Fig. 4b) show, on the other 
hand, a region of slightly negative ΔCP

xs values, outside the limits 
of experimental error, in the temperature range between 50 and 
150 K. At T > 150 K, ΔCP

xs values scatter around zero and the 
experimental error is too large to determine if ΔCP

xs
 is signifi cantly 

different from zero within 2σ uncertainty (the reason for the 
decrease in the CP values around 250 K is not clear).

The excess entropies for the Py-Gr join at 298.15 K can be 
calculated via the relation:

ΔSxs = Scal
298.15 – [(1 – XGr) S0

Py + XGr S0
Gr] (11)

The resulting values are listed in Table 3. As shown by 
DSC measurements (Bosenick et al. 1996) on pyrope-grossular 
garnets, ΔCP

xs
 is zero above 320 K and thus ΔSxs and ΔHxs are 

temperature independent at these higher temperatures. To make 
calculations of ΔSxs, S0 of PPMS measurement PY–1 was used 
for pyrope and S0 of PPMS measurement Gr–2 for grossular 
(Table 3; Model 1), because they yielded values of S0 similar 
to those reported by Haselton and Westrum (1980). Another 
model fi t using the slightly lower S0 value for grossular based 
on PPMS measurement Gr–1 is discussed below (Model 2). The 
uncertainty in ΔSxs was calculated in a manner similar to that 
described above for ΔCP

xs.
The results show the following: The grossular-rich garnet 

Gr90Py10 has approximately zero or even a slightly negative 
ΔSxs value (Fig. 5). This arises because the positive ΔCP

xs values 
around 40 K are “compensated” for (or even “overcompensated”) 
by negative ΔCP

xs values at higher temperatures (Fig. 4b). The 
other Gr-rich garnet Gr75Py25 has a positive ΔSxs value. With 
increasing pyrope content in garnet, the ΔSxs values generally 
tend to increase and show a value of ~3.3 ± 0.3 J/(mol·K) for 
the composition Gr25Py75. The two ΔSxs values from the PPMS 

TABLE 2. Cp values at 298.15 K and standard third-law entropies So of pyrope and grossular
Garnet PPMS Cp

PPMS Cp
HW80 Cp

B96 So
PPMS So

HW80 So
B88 So

HP98 So
G97

 Run J/(mol·K) J/(mol·K) J/(mol·K) J/(mol·K) J/(mol·K) J/(mol·K) J/(mol·K) J/(mol·K)
Pyrope Py-1* 320.8±0.9 325.31 325.5 265.94±0.23 266.27 266.36 266.3 274.45±0.27‡
 Py-2* 322.0±0.8   265.81±0.22    
 Py-3† 322.4±0.9   264.20±0.23    
 Py-4† 322.4±1.0   265.01±0.24    
Grossular Gr-1* 325.1±1.0 333.17 331.3 257.86±0.26 260.12 255.15 255 257.47±0.24
 Gr-2* 326.5±1.0   259.47±0.25    
Notes: Sample and formula weights are given in Table 1. HW80: Haselton and Westrum (1980); B96: Bosenick et al. (1996); B88: Berman (1988); HP98: Holland and 
Powell (1998); G97: Gottschalk (1997).
* Same sample as studied by Haselton and Westrum (1980).
† Same sample as studied by Bosenick et al. (1996).
‡ Based on the low-T Cp measurements of Kolesnik et al. (1977) on a natural pyrope-rich garnet with 18.8 mol% almandine and 8.2 mol% grossular component.

FIGURE 4. Excess heat capacities of pyrope-grossular garnets as 
function of temperature for (a) the solid-solution members Py90Gr10, 
Py75Gr25, and Py60Gr40, and (b) Py50Gr50, Py25Gr75, and Py10Gr90. Error 
bars are 2σ. The data of PPMS-run Py60Gr40 (sample 1 from Haselton 
and Westrum 1980) are shown. The data for Py60Gr40 (sample 2 from 
C.A. Geiger) yield very similar values and are not shown.
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measurements for the composition Py60Gr40, including a remea-
surement of the original sample of Haselton and Westrum (1980), 
are somewhat lower, both with ΔSxs ~ 2.0 ± 0.3 J/(mol·K). A 
notable experimental result is the substantial positive ΔSxs of 
3.1 ± 0.3 J/(mol·K) for the composition Py90Gr10. To ensure the 
correctness of this result, three separate PPMS measurements 
were performed on this sample and all three yielded similar CP 
(i.e., ΔSxs) values. CP measurements on Py10Gr90 and Py60Gr40 were 
also repeated and confi rm the Scal

298.15 and ΔSxs values (Table 3). In 
conclusion, the CP data show that the Py-Gr join is characterized 
by an asymmetry in its ΔSxs behavior.

THERMODYNAMIC MODELING

Margules and Redlich-Kister description of the ΔSxs-XGr 
data

The ΔSxs data can be modeled in several ways (Ganguly 2001). 
If a subregular Margules mixing model of the type:

ΔSxs = (1 – XGr)XGr [WS,GrPy + (WS,PyGr – WS,GrPy)XGr]
 (12)

is taken to model the data, a plot of ΔSxs/(1 – XGr)XGr
 vs. XGr should 

yield a straight line with the intercept WS,GrPy and a slope given 
by (WS,PyGr – WS,GrPy). Figure 6 shows the relevant data (see also 
Table 3; Model 1). Asymmetric ΔSxs behavior for the Py-Gr join 
is confi rmed by such an analysis. Using the Mathematica function 
“LinearFit,” the Margules entropy parameters WS,PyGr = –7.4 ± 
3.4 J/(pfu K) and WS,GrPy = 27.9 ± 1.4 J/(pfu K) are obtained (pfu 
= per formula unit). These values are compared with estimates 
from the literature in Table 4. We note, however, that the positive 
ΔSxs value for Py90Gr10, and also that ΔSxs for Py25Gr75 are not 
well described by a two-parameter Margules model.

A better description of the ΔSxs-XGr data can be made by use 
of a two-parameter Redlich-Kister solution model of the form:

ΔSxs = (1 – XGr)XGr [A0 + A3(1 – 2XGr)3] (13)

TABLE 3.  Calorimetric entropies at 298.15 K (Scal
298.15) for solid-solution members of the pyrope-grossular join and excess entropies (ΔSxs) derived 

according to Equation 11
 Model 1  Model 2  
Garnet PPMS Composition Scal

298.15 ΔSxs ΔSxs/ ΔSxs ΔSxs/
 Run XGr J/(mol K) J/(mol K) (1 – XGr)XGr J/(mol K) (1 – XGr)XGr

Py Py-1* 0.000 265.94±0.23 0.00±0.33  0±0.34 
Py90Gr10 Py90Gr10-1† 0.102 268.09±0.22 2.81±0.31 30.7±3.4 2.97±0.31 32.5±3.4
 Py90Gr10-2† 0.102 268.65±0.21 3.37±0.30 36.8±3.3 3.53±0.31 38.6±3.3
 Py90Gr10-3† 0.102 268.06±0.27 2.78±0.35 30.4±3.8 2.94±0.35 32.1±3.8
Py75Gr25 Py75Gr25-1† 0.264 267.48±0.24 3.25±0.31 16.7±1.6 3.67±0.31 18.9±1.6
Py60Gr40 Py60Gr40-1* 0.400 265.11±0.22 1.76±0.29 7.3±1.2 2.40±0.29  10.0±1.2 
 Py60Gr40-2† 0.414 265.44±0.24 2.18±0.30 9.0±1.2 2.85±0.31 11.7±1.3 
 HW80*‡ 0.400 268.32 4.50±0.30 18.8±1.3 4.50±0.30 18.8±1.3
Py50Gr50 Py50Gr50-1† 0.512 265.48±0.23 2.85±0.29 11.4±1.2 3.68±0.30 14.7±1.2
Py25Gr75 Py25Gr75-1† 0.760 262.44±0.25 1.42±0.33 7.8±1.8 2.64±0.33 14.5±1.8
Py10Gr90 Py10Gr90-1† 0.904 259.58±0.23 -0.51±0.33 -5.9±3.8 0.94±0.33 10.9±3.8
 Py10Gr90-2† 0.904 259.23±0.22 -0.86±0.32 -9.9±3.7 0.59±0.33 6.8±3.8
Gr Gr-2* 1.000 259.47±0.25 0.00±0.36    
 Gr-1* 1.000 257.86±0.26   0±0.36 
Notes: The datum of HW80 for Py60Gr40 is included for comparison. Model 1 uses So of grossular from PPMS-run Gr-2, model 2 from PPMS-run Gr-1 to calculate excess 
properties, So of pyrope is identical in both models. Sample sources: 
* Same samples as studied by Haselton and Westrum (1980). 
† Same samples as studied by Bosenick et al. (1996).
‡ Original result of Haselton and Westrum (1980) on Py60Gr40.

FIGURE 5. Excess entropies, ΔSxs, of pyrope-grossular garnets as 
function of composition (XGr) at 298.15 K. Data are from Table 3 (Model 
1). Note the asymmetric behavior with a maximum ΔSxs at pyrope-rich 
compositions. Error bars are 2σ. The datum of HW80 is shown for 
comparison.

FIGURE 6. Plot of ΔSxs/[(1 – XGr)XGr] vs. XGr (data from Table 3; Model 
1) showing two mixing models. The two-parameter Redlich-Kister model 
is given by the curve and the two-parameter Margules formalism by the 
straight line. The dashed lines represent 2σ-uncertainties.
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A model fi t using this equation yields Ao = 11.8 ± 0.5 J/(pfu 
K) and A3 = 39.7 ± 3.2 J/(pfu K) for three-cation mixing (Table 
4; Model 1). The resulting model fi t is shown in Figure 6.

Figure 7 compares both the two-parameter Margules and 
the two-parameter Redlich-Kister models. It appears that the 
Redlich-Kister model provides a more appropriate description 
for the excess entropies for the Py-Gr system. A symmetric mix-
ing model is also shown in Figure 7. It is that of Haselton and 
Newton (1980) and is based on the single Haselton and Westrum 
(1980) CP datum for the garnet Py60Gr40. The resulting interac-
tion parameter from a one parameter Margules model is Ws = 
18.79 J/(pfu K) as used, for example, in the data set of Berman 
and Aranovich (1996).

Activity-composition relationships and unmixing behavior

There have been several studies made to model the activ-
ity-composition relationships of pyrope-grossular garnets (e.g., 
Hensen et al. 1975; Haselton and Newton 1980; Ganguly et al. 
1996; Vinograd 2001; Vinograd et al. 2004). The data herein 
allow a further attempt to obtain a quantitative description of 
the thermodynamic behavior of this solid solution. We present 
calculations in which the activity coeffi cients at 1 bar were 
calculated with the equations:

R
Py

xs
Gr

xs

Gr

x

T H X
H

X

T S

lnγ = −
∂
∂

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

−

∆
∆

∆ ss
Gr

xs

Gr

−
∂
∂

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

X
S

X

∆
 (14a)

and

R
Gr

xs
Gr

xs

Gr

T H X
H

X
ln ( )γ = + −

∂
∂

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
−∆

∆
1 TT S X

S

X
∆

∆xs
Gr

xs

Gr

+ −
∂
∂

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦
( )1 ⎥⎥

⎥
⎥

(14b),

which result from decomposing ΔGxs into respective excess 
enthalpy and entropy terms. The pressure effect on the activity 
coeffi cients was calculated from the relationship:

R R v
i i i

xsT T PP,T Tln ln ( ),γ γ= + −1 1∆  (15)

where Δvxs
i is the partial molar excess volume of mixing of 

component i, which was calculated from the Margules volume 

parameters WV,PyGr = 0.184 and WV,GrPy = 0.012 J/bar for three 
cation mixing (Bosenick and Geiger 1997).

In deriving pyrope and grossular activities from Equations 
14 and 15 at P and T, we use

ΔHxs = (1 – XGr)XGr [WH,GrPy + (WH,PyGr – WH,GrPy)XGr] 
(16)

with the Margules enthalpy parameters WH,PyGr = 29502 and 
WH,GrPy = 64881 J/pfu as taken from Ganguly et al. (1996).

 The excess entropy was calculated using either the preferred 
Redlich-Kister model or the asymmetric Margules model with 
the parameters cited above (Model 1). The resulting activity-
composition diagrams are shown in Figures 8a and 8b for P = 1 
bar for temperatures from 400 to 1300 °C (one-cation mixing). 
An important aspect of both diagrams is the nature of the activity 
curves, which indicate that two different garnet compositions 
can have identical activities. Thus, unmixing along the Py-Gr 
binary should occur. It is also apparent that using the Redlich-
Kister model for ΔSxs (Fig. 8a), unmixing will occur at higher 
temperatures compared to the case with the Margules description 
of the ΔSxs data (Fig. 8b). In Figure 9, we show binary solvi, 
using the Redlich-Kister model for ΔSxs, calculated from the 
relationships:

a at t
Py
Gr 1

Py
Gr 2=  (17a)

and

a at t
Gr
Gr 1

Gr
Gr 2=  (17b)

Both conditions must be fulfi lled at thermodynamic equilib-
rium to have coexisting Py-rich and Gr-rich garnets, given here as 
Grt1 and Grt2. The critical temperature for the solvus calculated 
from activities using the Model 1 parameters for ΔSxs is 1247 °C 

TABLE 4.  Redlich-Kister parameters (Ao, A3) and Margules entropy-pa-
rameters (WS,PyGr, WS,GrPy) derived in this study for modeling 
excess entropy of the pyrope-grossular join and compared 
to literature data [three cation mixing, units J/(pfu K)]

Mixing model Redlich-Kister Margules
Parameter Ao A3 WS,PyGr WS,GrPy

Model 1 11.8 ± 0.5 39.7 ± 3.2 –7.4 ± 3.4 27.9 ± 1.4
Model 2 15.1 ± 0.5 27.2 ± 3.1 3.8 ± 3.4 24.8 ± 1.5
BA96   18.79 18.79
G96   17.34 (11.01)* 17.34 (11.01)*
M97   2.49 ± 5.16 20.82 ± 3.23
Notes: Model 1 and 2 values diff er only in the value for So that is taken for 
end-member grossular and used to calculate ΔSxs (see text for further details). 
Parameters were derived using the ΔSxs errors given in Table 3 and assuming 
an error of 0.01 in XGr.
BA96 = Berman and Aranovich (1996), G96 = Ganguly et al. (1996), M97 = 
Mukhopadhyay et al. (1997).
* 11.01 is the optimized and 17.34 is the preferred value (Ganguly et al. 1996).

FIGURE 7. Two-parameter Redlich-Kister (curve labeled RK) and 
two-parameter Margules (curve labeled M) description of the excess 
entropy along the join pyrope-grossular. The experimental data (Table 
3; Model 1) are shown. The dashed lines are 2σ-uncertainty curves. 
The symmetric curve is ΔSxs according to Haselton and Newton (1980) 
calculated with Ws = 18.79 J/(pfu K).
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(1 bar) (labeled M1-G in Fig. 9). It is considerably higher than 
the critical temperature (around 520 °C) for the corresponding 
solvus obtained from a Margules mixing model (critical tem-
peratures of the Margules-based solvi are given in Table 5, but 
not plotted in Fig. 9). The solid points shown in this fi gure are 
the synthesis temperatures for the Py-Gr solid solutions used in 
this study (Bosenick et al. 1996).

DISCUSSION

Model results and mixing behavior

As noted above, we have used the standard entropy values 
of S0 = 265.94 J/(mol·K) for pyrope (PPMS-run PY–1) and S0 = 
259.47 J/(mol·K) for grossular (PPMS-run Gr–2) in calculating 
excess entropies for the pyrope-grossular solid solutions. From 
Table 2 it can be seen that our PPMS-derived S0 value for pyrope 
is in excellent agreement with that measured by Haselton and 
Westrum (1980). Moreover, the S0 value for pyrope is in good 
agreement with those taken from various internally consistent 
thermodynamic databases with the exception of Gottschalk 
(1997), which relies on the CP data of Kolesnik et al. (1977) 
measured on a natural pyrope-rich garnet. The excellent agree-
ment concerning the S0 value of pyrope confi rms its use in the 
calculations made above.

For the case of grossular, however, it is known (Geiger 1999) 
that there is some disagreement regarding its standard entropy 
value. The various values in the literature range between 255.0 
and 260.12 J/(mol·K) (Table 2). If we use S0 = 257.86 J/(mol·K) 
for grossular, the value resulting from PPMS-run Gr–1, the 
magnitudes of the excess heat capacities increase slightly, for 
example, at 50 K from 1.95 to 2.05 J/(mol·K) for the composition 
XGr = 0.512. As a consequence, the excess entropies also increase 
slightly and ΔSxs behavior is positive for all compositions includ-
ing the more grossular-rich garnets. A fi t based on Model 2 data 
yields the Redlich-Kister parameters Ao = 15.1 ± 0.5 J/(pfu K) 
and A3 = 27.2 ± 3.1 J/(pfu K), and gives the Margules entropy 
parameters WS,PyGr = 3.8 ± 3.4 J/(pfu K) and WS,GrPy = 24.8 ± 
1.5 J/(pfu K) (Table 4; Model 2). As the case with Model 1, a 
two-parameter Margules model does not describe well the ΔSxs

 

values for the compositions Py90Gr10 and Py25Gr75. The resulting 
T-X diagram using this Model 2 (Fig. 9, labeled M2-G), yields a 
solvus with a critical temperature of 927 °C (1 bar) at XGr = 0.35. 
Note the difference with the solvus calculated using Model 1.

At this point, we would like to stress that the solvus calcu-

lated with either Model 1 or 2 for ΔSxs is dependent on how the 
data fi tting is done. If, for instance, we had included a linear 
and quadratic term in the Redlich-Kister expression (Eq. 13), 
the critical temperature according to Model 1 would be 110 °C 
higher (1345 °C). The parameters A1 and A2 are not, however, 
statistically signifi cant and the simpler two-parameter descrip-
tion is preferred.

We also adopted different values for ΔHxs to explore their 
effect on pyrope-grossular phase relations. If we accept the 
Margules enthalpy parameters of Berman and Aranovich (1996), 
that is WH,PyGr = 33470 and WH,GrPy = 68280 J/(pfu), the critical 
temperature of the 1-bar solvus calculated according to Model 
1 for ΔSxs is 1327 °C and for Model 2 is 991 °C (solvi labeled 
M1-BA and M2-BA in Fig. 9). The temperature maxima of these 
solvi correspond to the composition XGr = 0.37. If, on the other 
hand, we use ΔHxs taken from Newton et al. (1977), that is WH,PyGr 
= 25104 and WH,GrPy = 47949 J/(pfu), the critical temperature of 
the 1-bar solvus according to Model 1 is 853 °C and for Model 
2 is 614 °C (solvi labeled M1-N and M2-N in Fig. 9).

It should be noted further that any contributions of Sconf, 
which are related to Mg-Ca order-disorder in the solid solutions 

TABLE 5.  Critical temperatures (°C) of the solvi along the pyrope-
grossular binary calculated using ΔSxs

vib of this study (either 
Model 1 or 2 parameters of the Redlich-Kister and Margules 
descriptions from Table 4) and combined with various ΔHxs 
from the literature

∆Hxs ∆Sxs: This study ∆Sxs: This study
 Redlich-Kister Margules
According to: Model 1 Model 2 Model 1 Model 2
Ganguly et al. (1996) 1247 927 523 529
Berman and Aranovich (1996) 1327 991 577 575
Newton et al. (1977) 853 614 335 326
Notes: The solvi based on the prefered Redlich-Kister model for ΔSxs

vib are shown 
in Figure 9 and have their critical temperatures at XGr = 0.35–0.4. The Margules 
based solvi have a temperature maximum at the composition XGr = 0.44–0.49 
for Model 1 parameters and at XGr = 0.36–0.39 for Model 2 parameters and are 
broader.

FIGURE 8. Activities for pyrope and grossular components in pyrope-
grossular solid solutions at temperatures from 400 to 1300 °C and P = 1 
bar using (a) the Redlich-Kister model and (b) the Margules model for 
ΔSxs of this study (one cation mixing). Enthalpic interaction parameters 
of WH,PyGr = 29502 and WH,GrPy = 64881 J/pfu are from Ganguly et al. 
(1996).
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(Bosenick et al. 1995, 1999, 2000; Vinograd 2001; Vinograd et 
al. 2004), have been neglected in calculating activities. If the 
distribution of Mg and Ca in solid-solution compositions is not 
completely random, a confi gurational entropy contribution to the 
total excess entropy arises, in addition to the excess vibrational 
entropy ΔSxs

vib (=ΔSxs used previously). This additional term is a 
measure of the difference between the confi gurational entropy 
of a real solution compared to one with a random distribution 
of Ca and Mg cations (and thus a maximal Sconf):

ΔSxs = ΔSxs
vib + (Sre

co
al
nf  – Sra

co
nd
nf

om) (18)

Based on 29Si NMR spectroscopic measurements and static 
lattice-energy calculations, Bosenick et al. (1995, 1999, 2000) 
proposed that a small degree of Ca-Mg short-range order (SRO) 
is present in intermediate pyrope-grossular garnets with XGr = 
0.15–0.75. Thus, Sre

co
al
nf

 is smaller than in the case of random mix-
ing and, consequently, the difference of Sre

co
al
nf – Sra

co
nd
nf

om is negative 
with a maximum at XGr = 0.5. Vinograd (2001) and Vinograd et 
al. (2004) calculated using the cluster-variation method Sre

co
al
nf

 and 
obtained values between ~4.5 and 5.5 J/(mol·K) for intermedi-
ate compositions and temperatures between 400 and 1400 °C 
(Vinograd 2001). Bosenick et al. (2000) undertook static lattice-
energy calculations, combined with Monte Carlo techniques, and 
computed similar values of Sre

co
al
nf for the Py-Gr solid solution. The 

confi gurational entropy corresponding to the case of complete 
random mixing of Ca and Mg is 5.763 J/(mol·K) for XGr = 0.5 
for one cation mixing using the relationship Sra

co
nd
nf

om = –R ΣXi lnXi. 

To further explore the effect of SRO on pyrope-grossular phase 
relations, we assume a value of Sre

co
al
nf = 5 J/(mol·K) at XGr = 0.5 

that is temperature independent. This is a reasonable fi rst-order 
approximation and should be valid at temperatures around 600 
°C (Vinograd 2001). Thus, a maximum value of (Sre

co
al
nf

 – Sra
co

nd
nf

om) 
= –0.763 J/(mol·K) can be taken for intermediate compositions. 
The compositional dependence can be described by a symmetric 
Margules mixing model:

Sre
co

al
nf – Sra

co
nd
nf

om = (1 – XGr)XGr WS,SRO (19)

with WS,SRO = –3.052 J/(mol·K).
If this value is taken to describe the SRO and then used in 

Equations 14a and 14b, the critical temperature for a solvus 
based on Model 1 for ΔSxs

vib increases by ~120 to ~1350 °C (Fig. 
9—labeled M1-G + SRO). This is the maximum effect that SRO 
will have on unmixing behavior, because the confi gurational 
entropy of a real solution approaches that with random mixing 
at high temperatures. Thus, the difference Sre

co
al
nf

 – Sra
co

nd
nf

om tends to 
zero, which is not taken into account in our fi rst-order model 
calculation.

Summarizing, the pyrope-grossular binary appears to repre-
sent a solid solution where ΔSxs

vib cannot be adequately described 
by an asymmetric Margules model. Instead, a Redlich-Kister 
model is more appropriate for describing the thermodynamic 
mixing properties along this join. In terms of the phase relations, 
previous calculations, based on asymmetric Margules models 
and using previous CP data (Ganguly et al. 1996; Wang et al. 
2000), predict unmixing to occur at temperatures less than 620 
°C. In contrast, based on the present measurements and using a 
Redlich-Kister model to describe ΔSxs

vib, a solvus is obtained that 
has a much higher critical temperature of up to ~1300 °C for 
compositions around XGr = 0.35–0.40.

Petrological implications

Our new calorimetric results have implications for and ap-
plications in various petrological problems. For example, Wang 
et al. (2000) described coexisting garnets of different composition 
in the system pyrope-almandine-grossular in a pyrope-rich single 
crystal collected from an ultramafi c diatreme at Garnet Ridge, 
Arizona. They interpreted the host-inclusion texture to represent 
an immiscible garnet pair, based on the observation that the 
compositional difference between them increased approaching 
the common interface. They estimated temperatures of unmix-
ing in the approximate range between 400 and 450 °C using the 
garnet mixing model presented by Ganguly et al. (1996). These 
estimated temperatures could be too low and in our opinion 
temperatures greater than 600 °C may be more correct. If we 
take the garnet compositions reported by Wang et al. (2000) (i.e., 
host: ~Alm16Py66Gr17Sp1 and inclusion: ~Alm14Py42Gr43Sp1), and 
correct for the almandine component of around 15 mol% and 
the very low spessartine component in both garnets, we obtain 
renormalized compositions of Py80Gr20 for the garnet host and 
Py49Gr51 for the inclusion. According to Figure 9, and using the 
Model 1 ΔSxs solvus (e.g., M1-G or M1-BA), a temperature of 
unmixing around 900 °C is indicated. At this temperature, both 
compositions fall on the solvus limbs. The effect of the almandine 
component on the phase relations will be to lower this value and 

FIGURE 9. T-X phase diagram for the pyrope-grossular binary based 
on the Redlich-Kister model for ΔSxs

vib of this study. Calculations with 
Model 1 parameters for ΔSvib

xs (Table 4) are labeled M1 (solid curves) 
and those with Model 2 parameters M2 (dashed curves). They have been 
combined with ΔHxs values of Ganguly et al. (1996; labeled G), Berman 
and Aranovich (1996; labeled BA), or Newton et al. (1977; labeled N). 
All solvi have been computed for P = 1 bar, with the exception of the 
dashed curve labeled M1-G/40 kbar, for which P = 40 kbar. The dashed 
solvus labeled M1-G + SRO includes the maximal effect of short range 
order. The solid points represent the synthesis temperatures for the 
garnets used in this study. Critical temperatures for the various solvi 
are given in Table 5.
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the temperature of unmixing for coexisting ternary garnets could 
possibly be in the temperature range of 800–900 °C. Of course, 
further calorimetric studies on other binary garnet solid solutions 
are urgently needed (Geiger 1999) before more quantitative 
garnet mixing models can be constructed.

Another application for our results can be made using the 
grospydite xenoliths from the Zagadochnaya kimberlite pipe 
in Siberia, Russia (Sobolev et al. 1968). Here, grossular-rich 
nearly binary Py-Gr garnets show compositions between 0.53 
< XGr < 0.81 (Sobolev et al. 1968). These mantle xenoliths 
probably equilibrated at high temperatures (~1000 °C?) and the 
observed compositions are consistent with our phase-diagram 
for Py-Gr garnets (Fig. 9). Moreover, based on the Redlich-
Kister derived ΔSxs solvi of Figure 9, zoned pyrope-grossular 
garnets, with reported compositions of Alm3Py35Gr60Sp2 for the 
core and Alm7Py48Gr44Sp1 for the rim, found in diamondiferous 
carbonate-silicate rocks of the Kokchetav Massif, Kazakhstan 
(Sobolev et al. 2001), should also have formed at high tem-
peratures (>1000 °C). This condition is compatible with their 
geological occurrence.

Lattice-dynamic properties and microscopic-macroscopic 
relationships

Citing Kieffer (1985, p. 118) in Reviews in Mineralogy “Mi-
croscopic to macroscopic”  “… detailed studies of macroscopic 
thermodynamic properties and of lattice vibrational characteris-
tics should provide rich ground for research for many years.” 

The various thermodynamic mixing properties (i.e., ΔSxs, 
ΔHxs, and ΔVxs) for the pyrope-grossular binary are the best 
determined of the six binaries in the quaternary garnet system 
pyrope-almandine-grossular-spessartine (Geiger 1999), and with 
the new results herein, an even better level of description can be 
obtained. This circumstance permits further investigation (i.e., 
Geiger 2001b) into the underlying physical nature of mixing 
properties of the garnets in terms of their crystal-chemical and 
lattice-dynamic properties. We stress, however, that although 
20 years have passed since Kieffer’s statement, in terms of 
mineralogical solid-solution systems, investigations along these 
lines are still in the beginning stages and must be considered 
simple in nature. Thus, we approach the problem with some care, 
recognizing that future investigations may nullify or contradict 
some of our analysis.

It is possible to calculate Cv (or CP = Cv + TVα2KT, where V 
is the volume, α the thermal expansion coeffi cient, and the KT 
isothermal bulk modulus) from the phonon density of states, 
G(ν), of a substance using quantum-based lattice-dynamic 
models. There are several formulations available, whereby the 
Einstein and Debye models are the simplest and best known 
(Born and Huang 1954; Dove 1993). With an emphasis on oxides 
and silicates, Kieffer (1979, 1985) presented a semi-empirical 
model to calculate heat capacity from the internal energy [i.e., 
Cv = (dUvib/dT)v] using IR and Raman phonon spectra as input 
data and which are taken to represent G(ν). The model contains 
several simplifi cations or approximations (i.e., for the dispersion 
relations, low-energy mode cut offs, etc.), but it appears to pro-
vide reasonable Cv/CP and S0 values for many silicates. Electronic 
and magnetic contributions are not directly considered in the 
formulation (i.e., pyrope-grossular garnets should be the most 

simple to model using this approach). Hence, lattice-dynamic 
models can, together with experimental Raman and IR spectra, 
provide insight into the microscopic vibrational behavior that 
affects or controls macroscopic CP behavior (Geiger and Kolesov 
2002). This allows one to consider the CP (Scal

298.15) mixing behavior 
of the Py-Gr join. Without going into details (see Kieffer 1985; 
Gramaccioli 2002), one can describe the heat capacity by:

C k
v

k T

v v k T
v B

B

B=
⎛

⎝
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⎞

⎠
⎟⎟⎟⎟⎟∫

( )� �

0

2
max exp

exp ��v k T
G v

B( )−⎡
⎣⎢

⎤
⎦⎥1
2
( )υ d  (20)

where h is Planck’s constant, kB is Boltzmann’s constant, ν is 
the frequency of a normal mode, and G(v) is the density of states. 
To demonstrate this approach, we applied the Kieffer model 
and calculated CP for pyrope, grossular and Py60Gr40 as function 
of temperature using the vibrational model of Hofmeister and 
Chopelas (1991, their Table 1) for the end-members and powder 
IR spectroscopic data of Boffa Ballaran et al. (1999) for Py60Gr40. 
This calculation was undertaken to test whether our calculations 
for ΔSxs

vib are reasonable in light of lattice-dynamic behavior. Fig-
ure 10 shows the corresponding ΔCP

xs
  for the Py60Gr40 composition 

derived from the Kieffer-model calculation. The good agreement 
with the measured ΔCP

xs
  values at low temperatures was achieved 

by setting the parameters for Py60Gr40 in the vibrational model to 
those values given in the caption to this fi gure. Above ambient 

FIGURE 10. Excess heat capacities for Py60Gr40 calculated with the 
Kieffer model (Kieffer 1979) in the temperature range 0–1000 K. For 
temperatures <300 K, the ΔCP

xs data derived from the PPMS measurements 
are shown for comparison. Above 300 K the model calculation predicts 
small positive ΔCP

xs that is below the experimental detection limit of 
the DSC method (the range shown assumes an optimistic error of only 
0.25). The vibrational model of Hofmeister and Chopelas (1991) was 
used for pyrope and grossular. The input parameters for Py60Gr40 were 
the following (given as pairs: input wave numbers in cm–1, number of 
modes): Einstein oscillators: (110, 7), (1010, 10), (913, 6), (862, 12), 
(844, 20), calculated according to Boffa Ballaran et al. (1999, Table 4) 
for the high frequency oscillators. Treating the lowest energy vibration 
present in the IR spectra at 110 cm–1 as a separate Einstein oscillator 
(Fig. 7c of Boffa Ballaran et al. 1999) reproduces the experimental 
positive ΔCP

xs for Py60Gr40 around 50 K. Optical continua [given as pairs: 
wave number range in cm–1 (lower to upper cut-off), number of modes]: 
Continuum 1: (200–355, 26), Continuum 2: (205–263, 36), Continuum 
3: (265–476, 24), Continuum 4: (350–402, 36), Continuum 5: (390–557, 
24), Continuum 6: (530–653, 36).
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conditions, the model calculation predicts positive ΔCP
xs

 < ~1.3 
J/(mol·K) that continuously decreases and approaches zero at 
high temperature. The two thin lines in Figure 10 mark the ex-
perimental detection limit given by the DSC technique assuming 
a limit of 0.25% in CP. Clearly, the small but nonzero ΔCP

xs
  given 

by the model calculation would not be detectable by DSC. Thus, 
we cannot exclude the possibility that small nonzero ΔCP

xs
  might 

be present in the pyrope-grossular solid solution above ambient 
temperatures. The purely macroscopic-based thermodynamic 
model for ΔSxs

vib presented in this study, which is based on calo-
rimetric measurements, does not account for possible small ΔCP

xs
 

at high temperatures, and thus, treats ΔSxs
vib as being temperature 

independent, at T > 300 K.
The CP measurements of this study confi rm the fi ndings of 

Haselton and Westrum (1980) that the CP of pyrope is greater than 
that of grossular at temperatures up to 150 K. The CP of pyrope is 
greater, even though it has a smaller unit cell and a lighter mass. 
This unusual behavior is expressed further in the respective stan-
dard entropy values of S0 = 265.94 ± 0.23 J/(mol·K) for pyrope vs. 
257.86 ± 0.26 J/(mol·K) for grossular (Table 2, PPMS-runs Py1, 
Gr1). This situation has led to discussion in the literature (see for 
a review Kolesov and Geiger 2000; Geiger 2004). Two crystal-
chemical and/or lattice-dynamic explanations have been offered 
to account for the larger entropy: (1) static spatial disordering 
of the small Mg cation over subsites in the large dodecahedral 
cavity or (2) high-amplitude, low-energy vibrations of the Mg 
cation. Geiger and Kolesov (2002) and Geiger (2004) concluded 
that the latter explanation (2) best describes the available diffrac-
tion and spectroscopic data, although the former explanation (1), 
which is essentially based on model-dependent lattice-dynamic 
calculations, can still be found in the literature (e.g., Gramaccioli 
in Gramaccioli 2002). A key point, here, is that the vibrational 
behavior of the various dodecahedral E-site cations (Geiger 
2004) plays an important role in the lattice-dynamic behavior of 
the aluminosilicate garnets, and thus, further experimental work 
should be directed to investigating their behavior.

The low-temperature heat capacity is strongly a function of 
G(ν) in the low-energy region, which for silicates can depend 
greatly on the vibrational properties of weakly bonded cations in, 
for example, large polyhedral sites (i.e., the E-site in garnet). This 
behavior is clearly shown in the phonon density-of-state calcula-
tions for pyrope that are based on inelastic neutron scattering 
measurements (Pavese et al. 1998) and is consistent with the IR 
and Raman spectra of pyrope (Geiger 1998; Kolesov and Geiger 
2000). The question then arises, what is the “microscopic” basis 
for the macroscopic ΔCP

xs and ΔSxs behavior of pyrope-grossular 
solid solutions. Two simple explanations have been offered to 
date. The fi rst calls attention to the lowest energy IR and Raman 
phonon behavior for those vibrations that have a strong E-site 
character. Here, these lowest energy modes shift to even lower 
energies for intermediate solid-solution compositions compared 
to their energies in the end-members pyrope and grossular. This 
behavior is linked to the positive ΔCP

xs observed at low tempera-
tures, as shown by our calculation with the Kieffer model (Fig. 
10). A simple lattice-dynamics explanation is that the small 
and light Mg cation increases its amplitude of vibration in an 
“expanded lattice” in solid-solution compositions compared to 
that in pyrope, thereby lowering its energy of vibration relative 

to Mg in end-member pyrope (Geiger 1998). This should cause 
an increase in the heat capacity for the solid solution at low 
temperatures relative to a mechanical mixture of Py and Gr of 
the same composition, because it is, once again, the low-energy 
modes that contribute heavily to CP at low temperature. Indeed, 
IR spectra (i.e., Geiger 1998; Bosenick et al. 1999; Boffa Ballaran 
et al. 1999) indicate that the wavenumber shifts for the lowest 
energy modes to lower energies is greater in Py-rich compositions 
compared to Gr-rich compositions. This observation is consis-
tent with the low-temperature ΔCP

xs mixing behavior that shows 
the greatest positive deviations in Py-rich garnets. The higher 
energy IR (Geiger 1998; Bosenick et al. 1999; Boffa Ballaran 
et al. 1999) and Raman modes (Kolesov and Geiger 1998), in 
contrast, show approximately linear shifts in energy across the 
Py-Gr binary and are consistent with the ideal heat capacities 
of mixing that were recorded at temperatures greater than 300 
K (Bosenick et al. 1996). The second interpretation considers 
phonon energy and volume properties (Boffa Ballaran et al. 
1999; Rodehorst et al. 2004), whereby nonlinear volume satura-
tion and/or high wavenumber phonon behavior as a function of 
temperature could be related to excess heat capacities for a solid 
solution. A weakness in this interpretation lies in the nature of 
Boltzmann statistics and Equation 20. That is, the population 
of the high-energy vibrational levels given by, for example, the 
number of IR and Raman modes located between 800 and 1200 
cm–1 at low temperatures (i.e., T < 300 K) is relatively small 
and it decreases with decreasing temperature. Therefore, it is 
diffi cult to imagine how the temperature saturation behavior of 
high-energy phonons could account for the large excess heat 
capacities occurring in Py-Gr solid solutions around 35 K. Of 
course, we recognize that rigorous lattice-dynamic calculations 
are needed to test this reasoning. In addition, more complete 
phonon-density-of-state measurements on intermediate Py-Gr 
compositions are needed to understand more fully the physical 
basis of the low temperature CP data.
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