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ABSTRACT

As geophysicists rely increasingly on effective media theo-
ries to characterize naturally fractured reservoirs, they become
more and more interested in evaluating the accuracy of differ-
ent theories, estimating their limits of applicability, and assess-
ing their usefulness for practice. With this in mind, we compare
two popular seismological theories of Hudson and Schoenberg
with the theory of Kachanov developed in the context of me-
chanics of materials. By performing finite-element simulations
of effective media for models that contain several sets of non-
intersecting, circular, vertical fractures embedded in otherwise
isotropic host rock, we examine the accuracy of these theories.
Our numeric study reveals that predictions of both the first- and
second-order Hudson’s theories are typically inferior to those
of others, especially when the fractures are dry. While, on aver-
age, the theories of Schoenberg and Kachanov fit finite-element
computations with comparable accuracy, the latter appears to
be more useful for fracture characterization. The reason is that

it correctly predicts the proximity of crack-induced anisotropy
to orthotropy, whereas the other theories do not. Kachanov’s re-
sults not only yield approximate effective orthotropy regardless
of the number of fracture sets, their crack densities, and orien-
tations, but they also lead to a substantially reduced number of
independent parameters that govern the effective stiffnesses.
This number is only four for dry cracks, compared to nine re-
quired for general orthorhombic media. These four quantities
can be chosen as two Lamé constants of the isotropic back-
ground and two principal crack densities. If fractures are filled
with a compressible fluid, the number of independent param-
eters increases. After numeric verification of the accuracy of
crack-induced orthotropy, we invert the NMO ellipses and
zero-offset traveltimes of P-waves and two split shear waves
for the parameters characterizing multiple fracture sets. Our in-
version reveals the fracture parameters that can be unambigu-
ously estimated from multiazimuth, multicomponent surface
reflection data.

INTRODUCTION

The almost ubiquitous presence of fractures in the subsurface
and their tendency to provide natural pathways for hydrocarbon
flow makes them an important target in the exploration and exploi-
tation of oil and gas reservoirs. Seismic data typically can image
only relatively large faults whose size is greater than or compa-
rable with the seismic wavelengths. Many smaller fractures of ex-
ploration interest that have subseismic lengths cannot be imaged
directly, and nearly all information about them is inferred from
seismic data by applying some effective media theories. Thus, de-
veloping sufficiently accurate effective media theories becomes a
critically important task when characterizing fractures.

The problem of finding the effective elastic properties of crack-
ed materials was first addressed, in the general context of solid me-

chanics, by Bristow �1960� and, in the context of rock mechanics,
by Walsh �1965a, b�. Both developments rested on two assump-
tions: �1� the elastic interactions between cracks were neglected
�the so-called noninteraction approximation� and �2� the crack ori-
entations were assumed to be random, resulting in the overall isot-
ropy. Importantly, both Bristow �1960� and Walsh �1965a, b� iden-
tified scalar crack density as the parameter governing the effective
elastic constants.

Kachanov �1980� extends the noninteraction approximation to
general effective anisotropy, attributable to arbitrarily oriented cir-
cular dry cracks embedded in an otherwise isotropic background.
He draws a somewhat counterintuitive conclusion: The effective
elasticity is approximately orthorhombic �orthotropic� for any ori-
entational distribution of the fractures. Moreover, the orthotropy
turns out to be of a simplified type, with the number of independent
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constants reduced from nine to only four. These results point to the
proper crack-density parameters — a second-rank crack density
tensor that generalizes the scalar crack density and a fourth-rank
tensor.

The discussed noninteraction approximation is rigorously cor-
rect at small crack densities when fracture interactions in the stress
and strain fields can be ignored. At higher crack densities, the local
interactions become strong and might contribute to the effective
elasticity �Grechka, 2005�. The overall influence of interactions,
however, seems to be less pronounced when multiple, differently
oriented fracture sets are present because the shielding interac-
tions, which dominate for stacked arrangements, and the amplify-
ing interactions, which tend to take over for coplanar cracks, pro-
duce opposite effects that nearly cancel each other �Kachanov,
1992, 1993�. The noninteraction approximation also deserves dis-
cussion for another reason: Many effective media schemes �self-
consistent, differential, etc.� utilize it as a basic building block
�Mori and Tanaka, 1973; O’Connell and Budiansky, 1974; Ben-
veniste, 1986�.

In seismic exploration where a parallel work took place, two po-
pular effective media theories have been proposed by Hudson
�1980� and Schoenberg �1980�. These theories originally were de-
veloped for a single set of rotationally invariant cracks embedded
in isotropic host rock and later were extended to several fracture
sets �e.g., Hudson 1981; Nichols et al., 1989; Schoenberg and
Muir, 1989; Jakobsen et al., 2003� and to anisotropic backgrounds
�e.g., Schoenberg and Helbig, 1997; Bakulin et al., 2000; Grechka
and Tsvankin, 2003�. Both the developments of Hudson �1980� and
Schoenberg �1980� and their multiple extensions are not exact for a
finite crack density; they are approximations based on certain addi-
tional assumptions. An approximate nature of the effective media
theories leads to the first goal of our paper: numerical verification
of their accuracy. Once accuracy is established and the best theo-
ries are selected, our second, more practical goal emerges: We in-
vert seismic signatures for proper combinations of the microstruc-
tural parameters that control the effective stiffnesses. This inver-
sion process is known as fracture characterization.

The predictions of effective-media theories can be verified by
direct computations of effective elasticity done on sufficient num-
bers of crack arrays. Such studies have been published for ran-
domly oriented cracks �Kachanov, 1992; Saenger et al., 2004� and
for a single fracture set �Grechka, 2005�. Here we continue this
general line of work. Since direct measurements of fracture distri-
butions �for instance, core analysis, outcrop studies, and borehole
televiewer data� typically indicate the presence of multiple fracture
sets, we build numeric models that contain several sets of vertical,
nonintersecting, and noninterconnected fractures. To test the effec-
tive-media theories and eliminate the complicating issues of vari-
ous crack shapes, we choose fractures that are thin, circular ellip-
soids. With these simplified models of cracks, we analyze the accu-
racy of the first- and second-order theories of Hudson �1980,
1994�, the linear slip theory of Schoenberg �1980�, and the theory
of Kachanov �1980�. The latter predicts that the symmetry of effec-
tive anisotropy induced by dry cracks is close to orthorhombic re-
gardless of the number of fracture sets, their crack densities, and
their orientations, whereas the other theories do not identify this
symmetry.

Being numerically verified, effective orthotropy becomes an ex-
tremely useful property for fracture characterization because it sig-
nificantly reduces the number of quantities that control the seismic

signatures. We numerically confirm the theoretical conclusion of
Kachanov �1993� that, for dry vertical cracks, the effective stiff-
nesses are governed by only four, rather than nine independent pa-
rameters. We choose these parameters to be two Lamé constants of
the isotropic background and two principal crack densities. Fur-
thermore, we show that these parameters can be estimated uni-
quely from multiazimuth, multicomponent seismic reflection data.

Our paper is organized in the following way: First, we give an
overview of theoretical results of Kachanov �1980, 1992, 1993�,
Schoenberg �1980�, and Hudson �1980, 1981�. Then, we compare
their theoretical predictions with finite-element simulations of ef-
fective media �done with FEMLAB software; Comsol, 2006�. We
conclude that the orthotropic approximation of Kachanov �1980,
1992, 1993� is supported by numeric modeling and proceed with
estimating parameters governing the crack-induced orthotropy
from the P- and split shear-wave NMO ellipses.

NONINTERACTION APPROXIMATION
FOR FRACTURED MEDIA

Circular dry fractures

The quantities governing the influence of cracks on effective
elasticity are most easily identified from the elastic potential f ,
whose derivative with respect to the stress is the strain. If a solid
contains many circular fractures of diverse orientation and size,
and interactions in the stress fields of the adjacent cracks are ig-
nored, the fracture contribution �f to the elastic potential has the
form �Kachanov, 1980, 1992�

�f =
16�1 − �2�
3E�2 − ��

�„� · �…:� + � :� :�� . �1�

Here, � is the background Poisson’s ratio, E is the Young’s modu-
lus, � is the remotely applied stress, the colon denotes a double dot
product �a contraction over two indices�,

� =
1

V
�

k

�a3nn��k� �2�

is the symmetric second-rank crack-density tensor, and

� = −
�

2

1

V
�

k

�a3nnnn��k� �3�

is the fourth-rank tensor that emerges as another crack-density pa-
rameter. The sums in equations 2 and 3 are taken with respect to all
fractures k in the representative rock volume V, a�k� are the crack
radii, and n�k� are the unit normals to the crack faces.

Tensors � and � contain all of the information about the crack
statistics — the distribution over orientations and size — relevant
for the effective properties in the noninteraction approximation.
The crack openings, or the aspect ratios do not enter equations 1–3.
Thus, the effective properties of solids with dry cracks are almost
independent of the aspect ratios, provided that the latter are small.

The influence of � in equation 1 is relatively minor because of
the multiplier �/2 � 1/4 �equation 3�. Hence, neglecting this term
and retaining � as the sole crack-density parameter is a satisfactory
approximation. Since � is the symmetric second-rank tensor, a sol-
id with arbitrarily oriented circular cracks is approximately orthor-
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hombic, and the axes of crack-induced orthotropy approximately
coincide with the principal directions of �. Moreover, this orthot-
ropy is close to elliptical and is characterized by the background
parameters E and � �or, equivalently, Lamé constants �b and �b�
and three eigenvalues of tensor �. Schoenberg and Sayers �1995�
call such fractures scalar. For vertical fractures examined later, one
of those eigenvalues is zero and the effective orthotropy is gov-
erned by only four rather than nine independent parameters.

Equation 1 can be rewritten for the extra compliance because of
cracks �Kachanov, 1980; Sayers and Kachanov, 1995; Schoenberg
and Sayers, 1995�

�sijlm =
8�1 − � 2�
3E�2 − ��

��il� jm + �im� jl

+ � jl�im + � jm�il + 4	ijlm� , �4�

�i, j,l,m = 1,2,3� ,

where � jm is the Kronecker delta. Approximating the components
	ijlm in equation 4 with −���il� jm + �im� jl + � jl�im + � jm�il�/8, we
obtain the effective elliptical orthotropy,

�sell =
16

3E
�1 − � 2�� . �5�

Liquid-filled fractures

The influence of liquid infill on the overall compliance is de-
scribed by Kachanov �1992, 1993� and Shafiro and Kachanov
�1997�. They generalize equation 4 to

�sijlm =
8�1 − � 2�
3E�2 − ��

��il� jm + �im� jl + � jl�im

+ � jm�il + 4	ijlm� � , �6�

�i, j, l, m = 1,2,3� ,

where

�� = � −
1

V
�1 −

�

2
��

k

�
a3nnnn��k�. �7�

The dimensionless parameters 
�k�, called the fluid factors, account
for the infill of the kth crack. They are given by


�k� =
1

1 + � �k��E/K − 3�1 − 2��
, �8�

where K is the bulk modulus of the fluid and � �k� are the crack as-
pect ratios.

Equations 6–8 allow us to identify two important complications
introduced by the presence of fluids in cracks. First, the fluid fac-
tors 
�k� are not small compared to unity; consequently, � and ��
�equations 2 and 7� have comparable magnitudes. Therefore, ��
cannot be ignored and the effective orthotropy may be lost, making
the overall symmetry lower than orthorhombic. Second, individual
contributions of liquid-filled cracks to the effective compliance

strongly depend on their aspect ratios � �k�, which may be as di-
verse as the crack radii a�k�. These additional microstructural pa-
rameters are captured by the fourth-rank tensor ��; however, their
estimation from the effective properties is obviously ambiguous.

EFFECTIVE-MEDIA THEORIES

Next, we discuss the effective-media theories for L sets of verti-
cal cracks embedded in otherwise isotropic host rock. We denote
the orientation of each set by vector n��� �� = 1, . . . , L� and the
number of fractures there by L�. Then, equation 2 yields the partial
crack densities

e� = �
k = 1

L� �a3��k�

V
�9�

for each fracture set.

Kachanov’s theory

The effective compliance tensor of the fractured material is rep-
resented as a sum

se
K = sb + �s . �10�

where K stands for Kanchanov. Here, sb is the background compli-
ance tensor and the fourth-rank tensor �s is given by equation 6
�Kachanov, 1980, 1993; Kachanov and Sevostianov, 2005�. For L
vertical fracture sets, tensors � and � �equations 2 and 3�, take the
form

� = �
� = 1

L

e��nn����, �11�

� = −
�

2 �
� = 1

L

e��nnnn����, �12�

where e� are the partial crack densities �equation 9� associated with
each fracture set.

Tensor �� does not depend solely on e� when distributions of the
crack radii a�k� and the fluid factors 
�k� are correlated. Assuming
that n��� a�k� and 
�k� are uncorrelated, we rewrite equation 7 in a
form similar to equation 12,

�� = � − �1 −
�

2
�
 �

� = 1

L

e��nnnn����, �13�

where 
 = mean�
�k��.

Dry fractures: Approximate effective orthotropy

For dry fractures, whose infill has the zero bulk modulus K, fluid
factors 
�k� defined by equation 8 disappear and �� = �. As a result,
the contribution of cracks �s to the effective compliance is given
by equation 4. As we have discussed, it can be approximated by the
effective elliptical orthotropy �equation 5�, which yields the effec-
tive compliance tensor
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sK,ell = sb + �sell. �14�

The effective orthorhombic anisotropy implied by equation 14 is
of a special type. It can be fully characterized by only four inde-
pendent quantities rather than by the nine needed for general or-
thotropy �Kachanov, 1992, 1993�. For vertical cracks, these quan-
tities can be chosen as the background Lamé parameters �b and �b

and as two nonzero eigenvalues ẽ1 and ẽ2 of the crack-density ten-
sor �. We call ẽ1 and ẽ2 the principal crack densities.

Liquid-filled fractures

The noninteraction approximation predicts two types of issues
caused by the presence of compressible fluid infill in cracks. First,
comparable magnitudes of tensors �� and � imply that effective
orthotropy might be violated. However, this may not be important
because these tensors partially compensate each other, yielding an
overall weaker anisotropy than that for dry cracks. The net result is
that anisotropy of se

K is close to orthotropy again, but this time,
mainly because of its proximity to isotropy. We present a numeric
verification of this statement later. Second, the crack aspect ratios
� �k�, which become important parameters in the presence of fluid
�Shafiro and Kachanov, 1997�, cannot be estimated uniquely from
the effective elastic constants if these aspect ratios are diverse.
Still, extracting some average fluid factor 
 would be useful for
fracture characterization. We introduce it with equation 13. The es-
timated value of 
 is expected to be close to zero if cracks are dry
or have sufficiently large � �k� �so that the influence of fluid is
weak� and close to unity if the liquid-filled fractures are narrow.

The fact of approximate effective orthotropy can be exploited
further by replacing multiple vertical fracture sets with two or-
thogonal ones that have some effective crack densities ẽ1 and ẽ2. In
the rotated coordinate frame whose axes coincide with the normals
to these two fracture sets, equation 10 takes the form

se
K,orth = sb + �sorth. �15�

The nonzero elements of tensor �sorth are

�s11
orth =

16ẽ1�1 − �2�
3E

�1 − 
�, �s55
orth =

32ẽ1�1 − �2�
3E�2 − ��

,

�s22
orth =

16ẽ2�1 − �2�
3E

�1 − 
�, �s44
orth =

32ẽ2�1 − �2�
3E�2 − ��

,

�s66
orth = �s44

orth + �s55
orth. �16�

Schoenberg’s theory

The linear slip theory of Schoenberg �1980� has many similari-
ties with Kachanov’s theory. Schoenberg �1980� also represents the
effective compliance tensor as

se
S = sb + s f , �17�

where s f is the excess fracture compliance tensor. For a single frac-
ture set with the crack density e1 and normal to the crack faces
pointing in the x1-direction, s f has only three nonzero elements,

sf ,11, sf ,55, and sf ,66 �we use Voigt notation here�. Their expressions
are derived in the low crack-density limit by inverting the results of
Hudson �1981� for effective stiffnesses �Schoenberg and Douma,
1988�:

sf ,11 =
U33e1

�b
, sf ,55 = sf ,66 =

U11e1

�b
, �18�

where

U11 =
16

3�3 − 2g��1 + M�
, U33 =

4

3�1 − g��1 + K�
,

�19�

M =
4�i

���3 − 2g��b
, K =

�i + 2�i

���1 − g��b
, �20�

g =
�b

�b + 2�b
, �21�

and �i and �i are the Lamé parameters of the infill.
For dry cracks ��i = �i = 0�, equations 18 coincide with equa-

tions 6, 11, and 12,

s f = �s . �22�

Such an equality, however, no longer holds for liquid-filled cracks.
Extension of the above results to L differently oriented fracture

sets is accomplished according to the following scheme: the
fourth-ranked tensor s f is replaced with a sum

s f → �
� = 1

L

s f
���, �23�

where s f
��� are the properly rotated excess-fracture tensors corre-

sponding to the individual fracture sets. Substitution 23 explicitly
ignores any influence of details of spatial distribution of fractures
on the effective parameters exactly as it should in the noninterac-
tion approximation.

Hudson’s theory

In contrast to the formulations of Kachanov and Schoenberg,
Hudson �1980� derives the effective stiffness ce rather than the
compliance se. The stiffness tensor is constructed as a power series
with respect to the crack density.

The first-order result of Hudson �1980, 1981� is

ce
H1 = cb + �c , �24�

where cb = sb
−1 is the stiffness tensor of the isotropic background

rock. The term �c represents the usual noninteraction approxima-
tion, that is, the result for compliances which is inverted and linear-
ized with respect to the crack density. For a single set of penny-
shaped fractures that has a crack density e1 and normal n�1�

= �1,0,0�, �c is given by
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�c = −
e1

�b	
��b + 2�b�2U33 �b��b + 2�b�U33 �b��b + 2�b�U33 0 0 0

�b��b + 2�b�U33 �b
2U33 �b

2U33 0 0 0

�b��b + 2�b�U33 �b
2U33 �b

2U33 0 0 0

0 0 0 0 0 0

0 0 0 0 �b
2U11 0

0 0 0 0 0 �b
2U11


 .

�25�

The quantities U11 and U33 are defined by equations 19 �also Pea-
cock and Hudson, 1990, their equations 2�. In the presence of sev-
eral differently oriented fracture sets, their stiffness contributions
�c��� are summed up following recipe 23 �Hudson, 1981�.

The second-order theory of Hudson �1980, 1991� extends the li-
near approximation 24 by adding the quadratic term in the crack
density:

ce
H2 = cb + �c + ��c , �26�

where

��c =
1

�b
�c: �: �c , �27�

ijkl =
1

15
��ik� jl�4 + g� − ��il� jk + �ij�kl��1 − g��,

�i, j, k, l = 1, 2, 3� , �28�

and g is given by equation 21.

NUMERICAL VERIFICATION OF
EFFECTIVE MEDIA THEORIES

The goal of this section is to test the theoretical models dis-
cussed above by direct computational studies on a number of ar-
rays of circular cracks. To construct the effective stiffness ce

N, we
solve equations of static equilibrium for a microheterogeneous
elastic solid with the FEMLAB �Comsol, 2006� finite-element mod-
eling package and follow the methodology described by Grechka
�2003, 2005�. In addition, we apply both the traction and periodic
displacement conditions at outer boundaries of the computational
domain. Our typical meshes contain from 100,000 – 500,000 tetra-
hedron elements. The meshes are generated and adjusted automati-
cally to fit the fracture surfaces and interiors. Normally, about 70%
of the finite elements lie inside the cracks and their immediate vi-
cinities, where the stress and strain fields change most rapidly.

For our comparison of theoretical and numeric results to be
meaningful, we must maintain randomness of the fracture loca-
tions and ensure that the cracks neither overlap nor intersect each
other. We meet both of these requirements by inserting the frac-
tures into V randomly in a sequential manner and by accepting
each new fracture only after verification that it does not intersect
the already existing ones. Still, the crack faces can almost touch
each other, and no model volume is excluded artificially.

We compute the effective stiffnesses for a suite of models that
contains three vertical fracture sets. The fractures are either dry or
filled with water. Parameters of their infills and the background are
listed in Table 1. Fracture normals have azimuths �1 = 0�, �2

= 20�, and �3 = 60� with respect to the coordinate axis x1. The
crack density e1 of the first set varies from 0 to 0.09, while the den-
sities of other two sets are kept fixed for all models at e2 = 0.02 and
e3 = 0.03. This allows us to examine the effective properties as
functions of e1. Once the crack densities of the fracture sets that
comprise a given model are specified, we perform 10–15 numeric
simulations of effective media by changing the number of cracks
and their spatial locations. Our models have from 10–100 indi-
vidual cracks; their aspect ratios � �k� vary randomly in the range
0.05 � � �k� � 0.15.

Figure 1 shows a typical field of the stress component �11�x�,
where x1 is the direction of uniaxial remote loading. This figure can
be regarded as an illustration of strong local disturbances in the
field �11�x� that usually involve several adjacent fractures. Despite
that and similar phenomena in two dimensions, which have been
known for a long time, Kachanov �1992, 1993� suggests that com-
peting interaction effects of stress shielding �blue� and amplifica-
tion �yellow and red� largely cancel each other if the centers of
cracks are distributed randomly in V. Indeed, Figure 1 demon-
strates that the zones of shielding and amplification alternate. The
shielding appears to slightly dominate amplification, thus indicat-
ing that interactions tend to stiffen the effective medium compared
to the predictions given by the noninteraction approximation.

Table 1. Parameters of background and fracture infill.
Relationships between the Lamé constants � and �, the P-
and S-wave velocities VP and VS, and the density � are given
by conventional expressions � = �„VP

2 − 2VS
2… and � = �VS

2.

VP

�m/s�
VS

�m/s�
�

�kg/m3�
�

�GPa�
�

�GPa�

Background 2500.0 750.0 2200.0 11.28 1.24

Wet cracks 1500.0 1.0 1000.0 2.25 1.0 · 10−6

Dry cracks 330.0 1.0 1.29 1.4 � 10−4 1.3 � 10−9

Figure 1. Vertical and horizontal cross sections of stress compo-
nent �11�x� through a typical model that contains three dry fracture
sets characterized by crack densities e1 = 0.09, e2 = 0.02, and e3

= 0.03 and azimuths �1 = 0�, �2 = 20�, and �3 = 60�. Background
and infill parameters are listed in Table 1.
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Dry fractures

Let us begin our comparison of effective media theories with
models containing vertical dry fractures and then turn our attention
to the water-filled fractures. We will not explicitly specify the
boundary conditions applied to crack arrays discussed below be-
cause the empty volume between the outer model edges and the
domain containing the cracks �Figure 1� effectively eliminates the
influence of boundary conditions on the results of our computa-
tions. The effective media caused by vertical fractures are mono-
clinic with a horizontal symmetry plane. Their description can be
simplified in a specially chosen coordinate frame x̃k. The x̃1 and x̃2

axes of this new frame point along the polarization vectors of two
vertically propagating shear waves �this makes the effective stiff-
ness coefficient ce,45 vanish, e.g., Grechka et al. �2000��, and the
x̃3-axis is vertical.

Comparison of theoretical predictions

Figure 2 shows predictions of the effective stiffness component
ce,11�e1� made by different theories. Its most notable feature is that
all theories except those of Hudson �marked with � and �� indi-
cate similar behavior of ce,11�e1� and closely match the results of
finite-element computations ���. Clearly, both first- and second-
order Hudson’s theories are in significant error. His first-order the-
ory �equations 24 and 25� yields negative ce,11 values at e1

� 0.035. This feature is also observed for a single fracture set �Ap-
pendix A�.

The second-order theory of Hudson �equations 26–28, marked
with �� results in monotonically growing ce,11�e1�, which implies
that adding fractures stiffens rather than softens the rock. This the-
ory leads to another, equally unphysical prediction: ce,11 exceeds
the corresponding background value cb,11 = �b + 2�b = 13.75
GPa �Table 1� at e1 � 0.03, thus indicating that a solid containing
fractures is stiffer than the uncracked one. The tendency of the
second-order Hudson’s theory to produce the unreasonably high
effective stiffness displayed in Figure 2 has been known for a long
time, both for a single fracture set and for randomly oriented cracks
�Sayers and Kachanov, 1991; Cheng, 1993�. Jakobsen et al. �2003�
show that the same tendency holds for an arbitrary distribution of
fractures.

Figure 2 illustrates how unfavorably Hudson’s predictions com-
pare with those of others. For this reason, we refrain from display-
ing Hudson’s results in Figures 3–5 and 7 for dry cracks; often-
times, his theory predicts the effective properties that fall out of the

scale ranges of our plots. Figure 2 also indicates that theories of
Schoenberg ��� and various modifications of Kachanov’s theory
�� , � , and �� yield very similar values of ce,11. To see these dif-
ferences better and to relate our computations to seismic signatures
more directly, hereinafter we present the elastic properties of effec-
tive monoclinic media in terms of the vertical velocities and Thom-
sen-style anisotropic coefficients introduced by Grechka et al.
�2000�.

Figures 3 and 4 show the effective parameters that fully charac-
terize monoclinic media obtained with different theories. Similarly
to Kachanov �1992� and Grechka �2005� we observe that the theo-
ries always predict unique effective values for any given crack
density e1, whereas the results of finite-element computations
�marked with �� exhibit some scatter. The reason for this scatter
lies in the finite number of cracks �from 10 to 100� used in our
simulations.
Concerning Figures 3 and 4, let us observe the following:

• While all theories overestimate the shear-wave vertical ve-
locity �Figure 3b�, the elliptical approximation of Kachanov
�� , equation 14� encounters greater errors. Such a result
stems from ignoring the nonzero crack aspect ratios by the
theories. It can be shown that theories that take finite � �k�

into account �e.g., Mori and Tanaka, 1973; Kachanov and
Sevostianov, 2005� are much more successful in predicting
the behavior of VS0�e1� displayed in Figure 3b.

• As follows from equation 22, we observe no difference be-
tween the theory of Kachanov ��� and the linear slip theory
of Schoenberg ���.

• Given typical errors in the interval velocities and anisotropic
coefficients estimated from seismic data, theoretical predic-
tions of both Kachanov and Schoenberg are satisfactory.

Elliptical anisotropy and orthotropy

Now we turn our attention to the ellipticity of effective anisot-
ropy established by the simplified theory of Kachanov �equation
14�. Figures 3d, 3e, 3g, and 3h reveal that ��1� � ��1� and ��2�

� ��2�. To assess the anellipticity of effective anisotropy quantita-
tively, we examine the coefficients � �1�, � �2�, and � �3� displayed in
Figure 5. The greatest absolute value obtained in finite-element
modeling is about 0.02 for � �1� �Figure 5a�. Such a small anellip-
ticity can easily go unnoticed in seismic data. Therefore, the effec-
tive anisotropy is essentially elliptic for seismic applications.

Table 2. Symbols that mark results of effective media
theories in Figures 2–6 and 6–12.

Symbol Theory or its approximation Equations

� – N Numerical �finite element� modeling

� – K Theory of Kachanov 6, 10

� – K,ell Theory of Kachanov, � elliptical anisotropy 5, 14

� – K,ort Theory of Kachanov, � orthotropy 15, 16

� – S Theory of Schoenberg 17–23

� – H1 First-order theory of Hudson 24, 25

� – H2 Second-order theory of Hudson 25–28Figure 2. Effective stiffness component ce,11�e1�. The legend indi-
cates the methods applied to compute ce,11, listed in Table 2.
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Approximations 14 ���, 15, and 16 ��� indicate that the sym-
metry of effective media is orthorhombic. This statement is justi-
fied by Figure 4, which shows deviations from orthotropy quanti-
fied by the anisotropic coefficients ��1�, ��2�, and ��3�. Clearly, the
magnitudes of all ��i� are smaller than those of other anisotropic co-
efficients. Are they small enough for seismics? This question can
be addressed by looking at the NMO ellipses from a horizontal re-
flector whose misalignments give another measurement of the dif-
ference between orthorhombic and monoclinic symmetries �Gre-

chka et al., 2000�. Figure 6 displays these ellipses for the largest
crack density e1 = 0.09 used in our computations. It indicates that
the azimuths of semiaxes of numerically computed NMO ellipses
�solid� are close to the polarization directions �0� and 90�� of verti-
cally propagating split shear waves. Therefore, numerically com-
puted effective media are orthorhombic for seismic reflection data.
The NMO ellipses for other crack densities �not shown� reinforce
this conclusion.

Let us note that orthotropic approximation �marked with � in
Figure 6� predicts the numerically com-
puted P-wave NMO ellipses quite well;
however, it somewhat overestimates the
shear-wave NMO velocities �Figures 6b
and 6c�. This bias can be tracked back to
the correspondingly higher vertical S-
wave velocity VS0 �Figure 3b�.

Perhaps a final judgment about the
proximity of theoretically predicted and
numerically computed effective media to
orthotropy can be made based on magni-
tudes of the relative �2 norms:

�e
orth =

��ce − ce
orth��

��ce��
� 100%,

�29�

where c = � �
i, j, k, l = 1

3
cijkl

2 �1/2 and tensors
ce

orth are obtained from ce by letting

ce,ijkl
orth

= �
0 when

�ij�kl + �ik� jl + �il�kj = 0

and

ce,ijkl otherwise

�i, j, k, l = 1, 2, 3� .
�

�30�

Figure 7 demonstrates that all relative
norms �e

orth are less than 1.4%. To under-
stand whether these deviations from
orthotropy are large enough from a seis-
mic perspective, one must remember that
errors in estimating in-situ stiffness com-
ponents, for instance, from multicompo-
nent, multiazimuth, walkaway vertical
seismic profiling �VSP� data are expected
to be in the range of 5%–10% for good-
quality measurements �e.g., Dewangan
and Grechka, 2003�. Therefore, the differ-
ences between ce and ce

orth shown in Fig-
ure 7 can be safely ignored, because they
are too small to be resolved from seismic
data.

To summarize our study of media with
multiple sets of vertical dry cracks, we
state that their effective anisotropy is ac-

Figure 3. Effective vertical velocities and anisotropic coefficients. Symbols that mark results
of various effective media theories are listed in Table 2.
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curately approximated by the elliptical
orthotropy. The physical reason for it is
the closeness of the fracture compliances
in the directions normal and tangential to
the crack faces. This closeness exhibits it-
self in the dominance of the second-rank
crack-density tensor � over the fourth-
rank tensor � �equation 1�. As a result,
deviations from orthotropy can hardly be
observed from seismics even when mul-
tiazimuth, multicomponent data are avail-
able. Similar computations performed for
another suite of models that contains four
rather than three sets of penny-shaped
fractures �not shown here� substantiate
our conclusion. We also extended this
work to more realistic noncircular and in-
tersecting cracks. Such complicated frac-
ture geometries do not invalidate the ef-
fective orthotropy and yield the devi-
ations �e

orth that have similar magnitudes
to those shown in Figure 7. We will report
details of our study in a sequel paper.

Water-filled fractures

Now we compare the effective media
theories with finite-element computations
for fractures filled with water. The results
for vertical velocities and anisotropic co-
efficients are displayed in Figures 8 and
9. Several observations are in order. First,
the magnitude of crack-induced anisot-
ropy is much smaller than that for dry
fractures �Figure 3�. Second, because of
the mild anisotropy discrepancies be-
tween different theories become less pro-
nounced. As a consequence, Hudson’s

Figure 4. Effective anisotropic coefficients ��1�, ��2�, and ��3� that express the deviations of
monoclinic media from orthotropy.

Figure 5. Effective anellipticity coefficients ��1�, ��2�, and ��3�. Methods used to obtain ��1,2,3�

are marked with symbols given in Table 2.

Figure 6. Exact NMO ellipses of �a� P-, �b� S1-, and �c� S2-waves
computed from ce

N �solid�. Symbols � denote the same exact NMO
ellipses but are obtained using approximations 15 and 16. All com-
putations are done for models that have the crack density e1

= 0.09. Numbers along vertical radii indicate NMO velocities �in
kilometers/second�; numbers around outer circles correspond to
azimuths �in degrees� from polarization direction of the vertically
propagating fast shear wave.

Figure 7. Relative deviations of the effective stiffness tensors from
orthotropy.
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predictions may be viewed as acceptable, although his first-order
results ��� are still among the worst �Figures 8a, 8d, 8e, 8g, and
8h�. Third, predictions of the linear slip theory ��� are not as good
as they were for dry fractures �compare Figures 3a and 8a, 3d and
8d, 3e and 8e, 3g and 8g, and 3h and 8h�. We believe this is be-
cause the excess fracture compliances were obtained by Schoen-
berg and Douma �1988� by inverting Hudson’s �1980, 1981� first-
order results for the stiffnesses. Finally, it appears that theory of

Kachanov ��� fits finite-element computations ��� slightly better
than do the other theories. This, however, is not important because
errors encountered by all the theories are small by seismic stan-
dards.

Elliptical anisotropy?

While in general we do not expect anisotropy to be elliptical for
wet cracks, it is still instructive to check the closeness of numeri-
cally generated effective media to elliptically anisotropic ones.

Figure 10 displays the theoretical anellip-
ticity coefficients along with their values
resulting from our finite-element compu-
tations. On the one hand, the absolute
maximum of �� �1�� = 0.033 �Figure 10a�
is rather small to be called sizeable for
seismics; on the other, it is greater than
that observed for dry fractures �Figure 5�.
Therefore, we suggest that anellipticity of
effective anisotropy might be used to dis-
criminate fluid infill of fractures; how-
ever, it is not particularly sensitive to its
type.

Orthotropy

Although elliptical anisotropy holds
only approximately for water-filled frac-
tures, the symmetry of effective media is
close to orthorhombic. This statement is
supported by the small values of �-coeffi-
cients �Figure 9� and by comparing the
azimuths of semiaxes of pure-mode
NMO ellipses from a horizontal reflector
�Figure 11� with the polarization direc-
tions of vertically propagating shear
waves �0� and 90��. The maximum azi-
muthal misalignment between the ellipse
orientations and the shear-wave polariza-
tion directions of 12� observed for the
S1-wave in Figure 11b is similar to that
we had for dry cracks �9� for S2-wave in
Figure 6c�. Comparison of Figures 11b
and 11c with Figures 6b and 6c reveals
that the accuracy of approximations 15
and 16 degrades when gas filling the frac-
tures is replaced with water. This happens
because the approximation ignores a por-
tion of the relatively strong contribution
of the fourth-rank tensor �� to the effec-
tive stiffnesses and the influence of di-
verse aspect ratios.

Figure 12 gives an answer to the ques-
tion of closeness of numerically com-
puted effective stiffness tensors to orthot-
ropy. The absolute maximum of their
deviations ��� is just 0.3%. Clearly, the
orthotropy of effective media is well jus-
tified. It is caused, however, by a rela-

Figure 8. Same as Figure 3 but for water-filled cracks.
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tively weak crack-induced anisotropy whose deviations from the
isotropic background are small.

FRACTURE CHARACTERIZATION

Comparison of various effective media theories with finite-
element modeling done in the previous section led us to an impor-
tant conclusion: Rocks containing multiple fracture sets are almost
orthotropic. Moreover, we noticed that, for dry cracks, effective
orthotropy has a greatly simplified type. Instead of nine indepen-
dent parameters, it is fully characterized by only four: Lamé con-

stants �b and �b of the isotropic background and two principal
crack densities ẽ1 and ẽ2. �This means, in particular, that the effec-
tive shear stiffnesses ce,44, ce,55, and ce,66 are not independent; they
can be expressed in terms of the other effective stiffness coeffi-
cients.� We also speculated that the average fluid factor 
 might be
used to indicate the presence of fluids, thus bringing the total num-
ber of governing parameters to five. Since our fracture sets are ver-
tical, one of the symmetry planes of effective orthorhombic media
is always horizontal. Azimuths of the two vertical planes are given
by the eigenvectors of tensor �; they coincide with polarization

directions of two vertically propagating
split shear waves.

Here we use the numerically computed
effective stiffness tensors ce

N to generate
seismic signatures. This is done under
conventional assumption that seismic
wavelengths are much greater than the
fracture sizes and, therefore, the static ef-
fective media theories are applicable. We
would like to estimate the parameter vec-
tor

M = ��b,�b, ẽ1, ẽ2,
� �31�

from seismic data. While a variety of
seismic signatures can be used for such
an inversion, here we choose those that
are measurable from reflection data and
therefore make it possible to map the
fracture attributes 31 remotely. Thus, our
data vector is

D = � VS1

VP0
,

VS2

VP0
, WQ� ,

�Q = P,S1,S2� , �32�

where WQ are the NMO ellipses of P-,
S1-, and S2-waves recorded from a hori-
zontal reflector; VS1 and VS2 are the verti-
cal velocities of fast and slow shear
waves; and the ratios VS1/VP0 and VS2/VP0

are obtained from the ratios of the corre-
sponding zero-offset times after estab-
lishing the P- and shear-wave event corre-
spondence.

We calculate the data vector D�ce
N� ex-

actly and then use approximations 15 and
16 to compute D�M� for a trial vector M
�equation 31�. The unknown components

of M are found by minimizing the nonlinear objective function

F = min
�M�

��D�ce
N� − D�M��� . �33�

Figures 13–15 show the output of our inversion for all numerically
computed ce

N. We discuss these results next.
Figure 13 displays the inverted background constants �b and �b

��� and compares them with the corresponding model values

Figure 9. Same as Figure 4 but for water-filled cracks.

Figure 10. Effective anellipticity coefficients ��1�, ��2�, and ��3� for water-filled fractures.

Figure 11. Same as Figure 6 but for wet fractures: �a� P-, �b� S1-,
and �c� S2-waves.
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�solid lines�. The coefficient �b is estimated more accurately than
�b. Perhaps this is because two shear waves �fast and slow� and
only one P-wave are used in the inversion, so the shear modulus
gets constrained more tightly. We also observe that �b is estimated
better when cracks are dry �Figure 13a� then when they are filled
with water �Figure 13b�. This has to do with a higher accuracy of
approximations 15 and 16 for the former.

Estimates of the average fluid factor 
 are presented in Figure
14. While scatter of the inverted 
 values ��� is noticeable, the
message communicated by Figure 14 is certainly optimistic. In-
deed, the cloud of estimated 
 in Figure 14a is well separated from
that in Figures 14b. Thus, Figure 14 demonstrates that seismic sig-
natures 32 are capable of distinguishing the type of fluid infill.

Finally, Figure 15 compares theoretical and inverted values of
the principal crack densities ẽ1 and ẽ2. The main conclusion that
follows from Figure 15a is clear: The pure-mode NMO ellipses
and ratios of the vertical velocities of P- and shear waves allow us
to recognize the presence of more than one dry fracture set. As ex-
pected, the accuracy of inverted crack densities in Figure 15a is
good. Some of their bias toward smaller ẽ1 and ẽ2 values is because

of finite crack aspect ratios, which are ignored by the applied ap-
proximations 15 and 16.

The bias of estimates ẽ1 and ẽ2 grows when fractures are filled
with water �Figure 15b� because of the inherent ambiguity of the
inversion. As we mentioned earlier, proper fracture characteriza-
tion would require obtaining the aspect ratios of each individual
crack — something that cannot be done in a unique fashion. We at-
tempt to overcome this nonuniqueness by relying on equations 15
and 16, which can be viewed as a dry-crack approximation of
stiffer liquid-filled fractures. However, the contribution of fractures
to effective properties is dominated by the cracks with larger aspect
ratios that constitute only a portion of the crack population. This
obviously results in smaller crack densities that fit the effective
stiffnesses �Figure 15b�.

Figure 12. Relative deviations of effective stiffness tensors from
orthotropy �equations 29 and 30� for fractures filled with water.

Figure 13. Background Lamé constants �b and �b for �a� dry and
�b� water-filled cracks. Solid lines indicate the exact values of �b

and �b �Table 1�, � indicates the inverted ones.

Figure 14. Fluid factors 
 for �a� dry and �b� water-filled cracks.
Solid lines and � indicate the model and inverted values of 
, re-
spectively.

Figure 15. Principal crack densities ẽ1 and ẽ2 for �a� dry and �b�
water-filled cracks. Symbols � and � indicate the inverted and
theoretical values of ẽk, respectively. The latter are computed as
nonzero eigenvalues of tensor � �equation 2�.
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DISCUSSION

Different effective-media theories for fractured solids proposed
both in geophysics and solid mechanics predict significantly differ-
ent overall elastic properties. We feel that about the only way to
judge their quality is to check their results against independent nu-
meric simulations of cracked media. Following this philosophy, we
consistently compared theories of Hudson, Schoenberg, and
Kachanov with finite-element computations for models containing
several sets of vertical, nonintersecting fractures. To facilitate com-
parison of numeric and theoretical results, we deliberately chose
cracks that had shapes of circular, thin, oblate ellipsoids. Our main
finding was that predictions of both the first- and second-order
Hudson’s theories are, on average, less accurate than those of
Schoenberg and Kachanov. Having established that, we gave our
preference to Kachanov’s theory because it yielded especially
simple description of effective media. It explicitly indicated that
effective anisotropy was almost orthorhombic �orthotropic� for all
examined models.

An additional and perhaps more important reason for selecting
Kachanov’s theory for fracture characterization was that it allowed
us to identify the proper governing parameters of effective media.
As follows from this theory, the number of those parameters is only
four for dry cracks. Two of them are the elastic constants of the iso-
tropic host rock. The influence of fractures is captured by the two
remaining parameters — the principal components of the crack-
density tensor. They reflect, in an integral way, all information
about crack orientations and density relevant for low-frequency
seismic waves. Importantly, the aspect ratios do not matter for dry
fractures as long as the former remain small �below about 0.10–
0.15�. For fluid-filled cracks, the aspect ratios are important; the
overall elastic properties depend on the fracture infill via a dimen-
sionless parameter that incorporates both aspect ratios and fluid
compressibility. It should be added to the list of governing param-
eters.

CONCLUSIONS

To summarize, we have shown that regardless of the number of
fracture sets embedded in otherwise isotropic host rock as well as
their orientations and types of fluid infill, the symmetry of effective
media is approximately orthorhombic. This approximation is ex-
pected to be satisfactory for seismic needs because the deviations
from orthotropy are smaller than uncertainties �typically exceeding
0.05� in the interval Thomsen-type anisotropic coefficients esti-
mated from seismic data. As predicted by the noninteraction ap-
proximation, the effective orthotropy induced by dry vertical frac-
tures is governed by four quantities even when interaction in the
stress fields of adjacent cracks is strong. These four quantities are
two Lamé constants of the isotropic background and two principal
crack densities. If the influence of fluids is described by a single
additional quantity, the average fluid factor, the details of micro-
structure cannot be inferred from effective elastic parameters but
the type of fluid infill can. Finally, nonlinear inversion of the P- and
S-wave NMO ellipses for fracture parameters demonstrates that
characterization of multiple sets of vertical dry fractures is feasible
and unique. Such an inversion requires acquiring 3D, multiazi-
muth, multicomponent seismic data.

ACKNOWLEDGMENTS

The authors thank Shell International E & P, Inc. for permission
to publish this paper. We also appreciate useful suggestions made
by GEOPHYSICS associate editor Martin Landrø, Colin Sayers, and
two anonymous reviewers.

APPENDIX A

ELASTIC STABILITY CONDITIONS AND THE
FIRST-ORDER HUDSON’S THEORY

In this appendix, we show how easily predictions of the first-
order Hudson’s theory �Hudson, 1980; 1981; Peacock and Hudson,
1990� can go wrong and yield a negative-effect stiffness for media
containing dry cracks. For simplicity, we limit our discussion here
to a single set of vertical, penny-shaped fractures.

We choose coordinate axis x1 to be normal to the fracture faces,
n = �1,0,0�, and examine the quantity

ce,11 = cb,11 + c11
� , �A-1�

where cb,11 = �b + 2�b and c11
� is given by the element �1,1� of ma-

trix 25 and by the second equation 19 with K = 0 because the frac-
tures are dry. Taking these equations into account, we rewrite equa-
tion A-1 as

ce,11 = ��b + 2�b��1 −
4e1

3g�1 − g�� . �A-2�

The second term in the brackets of equation A-2 exactly coincides
with the third equation 21 of Hudson �1981� or with equations 20a
and 24b of Liu et al. �2000�.

Next, we find such a crack density e1 that yields

ce,11 � 0. �A-3�

Combining equation A-2 with inequality A-3 and noting that �b

+ 2�b � 0 and g = VS,b
2 /VP,b

2 � 3/4, we obtain

e1 �
3

4
g�1 − g� . �A-4�

Thus, for a velocity ratio VS,b/VP,b = 0.3 typically observed in sedi-
mentary rocks �e.g., Grechka et al., 2002; Grechka and Dewangan,
2003�, the first-order Hudson’s theory yields negative ce,11 when
the density of dry fractures exceeds e1 � 0.06.
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