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S U M M A R Y
We have derived a model of the near-Earth magnetic field (up to spherical harmonic degree
n = 50 for the static field, and up to n = 18 for the first time derivative) using more than
6.5 yr of high-precision geomagnetic measurements from the three satellites Ørsted, CHAMP
and SAC-C taken between 1999 March and 2005 December.

Our modelling approach goes in several aspects beyond that used for recent models: (i) we
use different data selection criteria and allow for higher geomagnetic activity (index Kp ≤ 2o),
thus we include more data than previous models; (ii) we describe the temporal variation of the
core field by splines (for n ≤ 14); (iii) we take magnetometer vector data in the instrument
frame and co-estimate the Euler angles that describe the transformation from the magnetometer
frame to the star imager frame, avoiding the inconsistency of using vector data that have been
aligned using a different (pre-existing) field model; (iv) we account for the bending of the
CHAMP optical bench connecting magnetometer and star imager by estimating Euler angles
in 10 day segments and (v) we co-estimate degree-1 external fields separately for every 12 hr
interval.

The model provides a reliable representation of the static (core and crustal) field up to
spherical harmonic degree n = 40, and of the first time derivative up to n = 15.

Key words: Earth’s magnetic field, geomagnetic secular variation, geomagnetism, litho-
sphere, satellite, spherical harmonics.

1 I N T RO D U C T I O N

The beginning of the International Decade of Geopotential Re-
search that has been declared by the International Union of Geo-
physics and Geodesy was marked by the launch of the Ørsted satellite

in 1999 February. Ørsted was followed by the CHAMP satellite and

the SAC-C satellite with the Ørsted-2 experiment, launched in 2000

July and November, respectively. All three missions carry essen-

tially the same instrumentation and provide magnetic field observa-

tions from space with unprecedented accuracy. Due to the somewhat

different altitudes (Ørsted: 630–860 km, CHAMP: 350–450 km;

SAC-C: 700 km) and drift rates through local time, the spacecrafts

sense the various internal and external field contributions differently.

During the first years of the Decade, various geomagnetic field

models of increasing complexity and accuracy have been derived.

One of the first models, the Ørsted Initial Field Model (Olsen et al.
2000), represents a snapshot of the magnetic field at epoch 2000.0

up to spherical harmonic degree n = 19 and was estimated from a

few weeks of Ørsted data around 2000 January 1. Using 14 months

of Ørsted data and applying classical selection criteria based on lo-

cal time and geomagnetic activity, Langlais et al. (2003) computed a

29-degree internal field model and a 13-degree model of linear sec-

ular variation for the period 1999–2000.

A model based on more than 2 yr (1999 March to 2001 Septem-

ber) of Ørsted data was derived by Olsen (2002). This model is a

spherical harmonic expansion of the static field (n ≤ 29) and of the

linear secular variation (n ≤ 13) for epoch 2000.0 based on Ørsted

data applying new modelling approaches for a correct statistical

treatment of data errors and for considering external field contri-

butions. Large-scale magnetospheric contributions were estimated

up to degree 2; the zonal coefficients of which vary with annual

and semi-annual periodicity, and degree-1 coefficients were modu-

lated with the strength of the magnetospheric ring-current as mea-

sured simultaneously by globally distributed geomagnetic observa-

tories. The same model parametrization was chosen for the CO2

model (Holme et al. 2003); however, CHAMP vector and scalar and

SAC-C scalar data had been used in addition to the Ørsted data.

More recently, a new model line (POMME: POtsdam Magnetic

Model of the Earth) was introduced (Maus et al. 2005), parametriz-

ing magnetospheric sources in their intrinsic coordinate systems

C© 2006 The Authors 67
Journal compilation C© 2006 RAS



68 N. Olsen et al.

(i.e. solar magnetospheric (SM) coordinates for describing near

magnetospheric currents like the ring-current, and geocentric solar

magnetospheric (GSM) for describing far magnetospheric current

systems like the tail currents (see Kivelson & Russell 1995 for a def-

inition of SM and GSM). This treatment and the co-estimation of a

time-varying correction of the D st-index that is used to parametrize

the ring-current (Lesur et al. 2005; Olsen et al. 2005), leads to a

more accurate determination especially of the secular variation.

In addition to these models describing core and low-degree litho-

spheric fields, specific models of the lithospheric field alone have

been derived mainly using CHAMP vector data, after removal of

external field contributions by along-track data filtering on an orbit-

by-orbit basis. The latest version of that model series, called MF4
(Maus et al. 2006), describes the lithospheric field up to degree n =
90; however, coefficients with n ≥ 60 are damped.

Ørsted (vector and scalar) and CHAMP (scalar) observations

have also been used, together with data from the POGO and

Magsat satellites and ground based observations, in the latest ver-

sion of the comprehensive model, CM4 (Sabaka et al. 2004). This

model attempts to describe the major quiet-time contributions to

the Earth’s magnetic field (core and crustal fields, fields due

to ionospheric and large-scale magnetospheric currents, and due

to secondary, Earth-induced, currents) by co-estimation of all these

sources.

The present paper describes a new model, one goal of which is to

describe the static (core and crustal) field (up to about degree n =
50). Special emphasis is, however, put on an accurate determination

of the temporal changes during the 6.5 yr interval. Recognizing the

unpredictability and chaotic nature of the Earth’s magnetic field, we

call our model CHAOS, the CHAMP, Ørsted and SAC-C model of

Earth’s magnetic field.

To obtain the described goals based on satellite data only, we

used an approach that goes in several aspects beyond that applied

to previous modelling efforts:

(i) Our data selection criteria differ from that used for previous

models: at non-polar latitudes we allow for higher geomagnetic ac-

tivity (up to Kp = 2o) than most recent models, thus we have include

more data. Polar latitude data are selected according to the strength

of the ‘merging electric field’ Em (Kan & Lee 1979) and illumination

conditions.

(ii) The availability of more than 6.5 yr of high-precision satellite

data provides a unique opportunity for studying the fine structure

of secular variation. However, secular variation can no longer be

regarded linear if a time span of several years is considered. The

inclusion of higher (quadratic, cubic, . . .) temporal terms may lead,

however, to unwanted behaviours near the edges of the time interval.

We, therefore, describe the time change of the low-degree (n ≤ 14)

coefficients by cubic B-splines, a technique that has not been done

previously for models that are based solely on satellite data.

(iii) Accurate orientation of the magnetic field vector measured

on a satellite is a demanding task. For the mediation of this problem

we co-estimate the Euler angles connecting the attitude determina-

tion system (star imager) with the vector magnetometer. Therefore,

we use the vector data in the instrument frame rather than data that

were aligned using a pre-existing field model.

(iv) This in-flight alignment of the vector data is particularly im-

portant for the CHAMP measurements due to thermomechanical

bending of the CHAMP optical bench that connects vector magne-

tometer and star imager. We account for this variation by estimating

time-dependent Euler angles. In addition, a flaw in the star-imager

onboard software has recently been detected. An algorithm correct-

ing the CHAMP attitude data for this effect has been applied. For

the present model we use these new attitude data.

(v) Finally, we co-estimated a residual n = 1 external field con-

tribution in dipole coordinates for each 12 hr interval. This describes

a large-scale external field that is not covered by the D st-index, and

may be interpreted as correcting any error of the D st baseline.

2 DATA S E L E C T I O N A N D

P R E - P RO C E S S I N G

We use Ørsted scalar and vector data between 1999 March and

2005 December, CHAMP scalar and vector data between 2000

August and 2005 December (vector data only after 2001 January),

and SAC-C scalar data between 2001 January and 2004 December.

All data are selected according to quiet geomagnetic conditions as

defined by the following criteria. First, at all latitudes we require

that the D st-index does not changed by more than 2 nT h−1. At non-

polar latitudes (equatorwards of 60◦ dipole latitude) Kp ≤ 2o has

to be fulfilled. (Kp ≤ 2o corresponds to a variation (peak-to-peak)

range of ≤ 7 nT, a value that is compatible with the model misfit,

cf. Table 1). For regions polewards of 60◦ we require that the merg-

ing electric field, Em, at the magnetopause (Kan & Lee 1979) is less

than 0.8 mV m −1. This threshold value was suggested by Ritter et al.
(2004) based on their analysis of quiet-time CHAMP polar passes.

For the years considered here (1999–2005), 43 per cent of the data

have Em < 0.8 mV m −1, 48 per cent have Kp ≤ 2o, 76 per cent

have dDst/dt < 2 nT h−1, and 38 per cent have both Kp ≤ 2o and

dDst/dt < 2 nT h−1 fulfilled. Only data from dark regions (sun 10◦

below horizon) were used, to reduce contributions from ionospheric

currents. Vector data have been taken for dipole latitudes equator-

wards of ±60◦, to avoid the disturbing effect of field-aligned cur-

rents, which only influence the vector components but not field in-

tensity. During the geomagnetic quiet periods considered here, these

currents do not occur at latitudes equatorwards of 60◦ (Feldstein &

Starkov 1970). Scalar data were used for regions polewards of ±60◦

or if attitude data were not available. Only non polar CHAMP data

after local midnight are used, to avoid the influence of the diamag-

netic effect of dense plasmas (Lühr et al. 2003). Due to their higher

altitudes, a corresponding rejection of pre-midnight data is not nec-

essary for Ørsted and SAC-C.

We also tried different values for the above described selection

criteria (for instance allowing for a larger value of dDst/dt). How-

ever, from the limited amount of experiments that we performed we

concluded that the above described data selection criteria lead to the

‘best’ field model, for example, concerning the noise level as seen in

Table 1. Number N of data points, mean, and rms misfit (in nT) of the

model.

component N mean rms

all F polar 155,717 −0.10 4.80

F nonpolar + BB 529,444 0.03 2.60

Ørsted F polar 64,396 0.53 4.35

F nonpolar + BB 259,290 0.29 2.47

B⊥ 146,556 0.06 7.74

B3 146,556 0.02 3.56

CHAMP F polar 55,574 −0.97 5.85

F nonpolar + BB 124,749 −0.33 2.79

B⊥ 115,129 0.00 3.55

B3 115,129 0.03 3.31

SAC-C F polar 35,745 −0.06 3.99

F nonpolar 145,405 −0.14 2.65
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the Mauersberger-Lowes power spectrum, or when comparing with

other models.

Data sampling interval is 60 s; weights proportional to sin θ

(where θ is geographic colatitude) are applied to simulate an equal-

area distribution. Ørsted vector data show anisotropic errors due to

attitude uncertainty when calculating the orientation from the single

star camera (Olsen et al. 2000); such an anisotropy is also present

in the CHAMP data from dawn–dusk orbits when one of the two

cameras is sun blinded. This behaviour is explicitly considered in

the inversion (Holme & Bloxham 1996; Holme 2000).

Traditionally, geomagnetic field modelling is done using vec-

tor data that are both calibrated and aligned. Data calibration, the

conversion of the raw vector magnetometer readings into scaled

magnetic field components (in units of nT) in the orthogonal co-

ordinate system of the sensor, is done by comparing the output of

the Vector Fluxgate Magnetometer (VFM) with the magnetic field

intensity measurements obtained simultaneously with an absolute

scalar Overhauser magnetometer. Thus the calibration is performed

for each satellite separately (cf. Olsen et al. 2003 for more informa-

tion on the calibration issue).

Merging these vector data with attitude data and transforming

them to (Br, B θ , Bφ) (i.e. the upward, northward and eastward com-

ponent) requires, however, one additional calibration step, called

data alignment, which is the precise determination of the transfer

angles (Euler angles) between the star imager and the vector mag-

netometer. This requires models of the star constellation, and of the

ambient magnetic field. The former model is known with high pre-

cision (e.g. Hipparcos catalogue, ESA, 1997). The limiting factor

for the alignment is the accuracy of the ambient magnetic field to
be known at the time and position of each data point. It is the pur-

pose of this exercise to obtain an improved magnetic field model. To

avoid the inconsistency of deriving a field model from vector data

that have been aligned using a different (pre-existing) magnetic field

model, we do the data alignment as part of the modelling effort.

3 M O D E L PA R A M E T R I Z AT I O N

The model consists of two parts: spherical harmonic expansion co-

efficients describing the magnetic field vector in the local north, east,

centre (NEC) coordinate system, and sets of Euler angles needed to

rotate the vector readings from the magnetometer frame to the star

imager frame (and finally, after merging with the attitude data, to

the NEC frame).

As mentioned before, we assume that the magnetic field in the

NEC system,

BNEC =

⎛⎜⎝ BNorth

BEast

BCenter

⎞⎟⎠ =

⎛⎜⎝ −Bθ

+Bφ

−Br

⎞⎟⎠ = −grad V, (1)

can be derived from a magnetic scalar potential V = V int + V ext con-

sisting of a part, V int, describing internal sources, and a part, V ext,

describing external sources (including their Earth-induced counter-

parts). Both are expanded in terms of spherical harmonics.

For the internal part this yields

V int = a
Nint∑
n=1

n∑
m=0

(
gm

n cos mφ + hm
n sin mφ

) (
a

r

)n+1

Pm
n (cos θ ) , (2)

where a = 6371.2 km is a reference radius, (r , θ , φ) are geographic

coordinates, Pm
n are the associated Schmidt semi-normalized Leg-

endre functions, {gm
n , hm

n } are the Gauss coefficients describing in-

ternal sources, and N int is the maximum degree and order of the

internal expansion, which is taken here to N int = 50.

The time dependence of the internal Gauss coefficients {gm
n (t),

hm
n (t)} is for n ≤ 14 described by cubic B-splines (Schumaker 1981;

De Boor 2001; Bloxham & Jackson 1992) with a 1-yr knot separa-

tion and four-fold knots at the endpoints, t = 1999.0 and t = 2006.0.

This yields six interior knots (at 2000.0, 2001.0, . . . , 2005.0) and

four exterior knots at each endpoint, 1999.0 and 2006.0, resulting in

10 basic B-spline functions, Ml(t), shown in Fig. 1. Although higher

degree terms are expected to have shorter timescales compared to

lower degrees, we do not use a spline representation for coefficients

above degree n = 14 since the present data probably do not allow

for resolving their short-period time variation. Coefficients with de-

gree n > 14 are, therefore, assumed to vary linearly in time for n =
15–18, and to be static for n = 19–50. Thus the temporal behaviour

of each Gauss coefficient is described by

gm
n (t) = ∑10

l=1 gm
n,l · Ml (t) for n = 1 − 14

= gm
n (t0) + (t − t0) · ġm

n (t0) for n = 15 − 18

= gm
n (t0) for n = 19 − 50

, (3)

and similar for hm
n . This gives in total 4752 internal Gauss coeffi-

cients.

The external potential, V ext, describes large-scale magnetospheric

sources and is expanded according to

V ext = a
2∑

n=1

n∑
m=0

(
qm

n cos mTd + sm
n sin mTd

)
Pm

n (cos θd )

+ a
1∑

m=0

(
q̂m

1 cos Td + ŝm
1 sin Td

)
·
{

Est(t)

(
r

a

)
+ Ist(t)

(
a

r

)2
}

Pm
1 (cos θd )

+ a
2∑

n=1

q0,GSM
n R0

n(r, θ, φ). (4)

The first three lines of this equation represent an expansion in the SM
coordinate system and describe mainly contributions from the near

magnetosphere (e.g. the magnetospheric ring current); the expan-

sion in GSM coordinates used in the last line of the equation aims

at describing contributions from far magnetospheric current sys-

tems (e.g. tail currents). θ d and Td are dipole colatitude and dipole

local time, respectively (which are identical to colatitude and lon-

gitude in the solar magnetic coordinates system), and E st, I st are

time series of the decomposition of the D st-index, D st(t) = E st(t) +
I st(t), into external and induced parts, respectively (Maus & Wei-

delt 2004; Olsen et al. 2005). The functions R0
n are modifications

of the Legendre functions to account explicitly for induced field

contributions due to the wobble of the GSM z-axis with respect to

the Earth’s rotation axis. For a non-conducting Earth these func-

tions would be R0
n = ( r

a )n P0
n (cos θGSM) where θ GSM is colatitude in

the GSM coordinate system; considering a plausible 1D model of

mantle conductivity leads to a representation of R0
n similar to the

expansion outlined in Maus & Lühr (2005).

In addition, large-scale magnetospheric fields that are not de-

scribed by the above expansion are considered by solving for time-

varying degree-1 coefficients q0
1, q1

1, s1
1. This is especially important

for the coefficient q0
1, which can be interpreted as a baseline uncer-

tainty in the D st-index. We, therefore, solve for q0
1 in bins of 12 hr

length, whereas the equatorial dipole coefficients q1
1, s1

1 are solved

for in bins of 5 day length. We only solve for coefficients if there are
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Figure 1. Schematic of the cubic B-spline basic functions, Ml(t), l = 1–10, used to represent the time change of each Gauss coefficient of degree n ≤ 14.

There are six interior knots and four exterior knots at each endpoint.

at least 50 data points in the corresponding bin; otherwise data of that

bin are discarded. This gives a total of 3754 external coefficients.

As mentioned before, we also solve, in addition to the spher-

ical harmonic coefficients of eqs (2)–(4), for the Euler angles of

the rotation between the coordinate systems of the vector fluxgate
magnetometer (VFM) and of the star imager (STR). Since a rotation

does not change the length of a vector, magnetic field intensity is not

affected by this rotation, which means that only vector data are sensi-

tive to the Euler angles. Let R
3

be the matrix which rotates the mag-

netic field BNEC from the NEC system to the magnetic field BICRF =
R

3
·BNEC in the International Celestial Reference Frame (ICRF); R

3
is derived from satellite position and time (Seeber 2004). Next, R

2
is a matrix which rotates the magnetic field BSTR = R

2
· BICRF from

the ICRF frame to the star imager STR frame and is constructed

from the attitude data measured by the star imager. Finally, R
1

is

the matrix which rotates from the STR coordinate system to the or-

thogonal magnetometer (VFM) coordinate system; this rotation is

described by the three Euler angles that we co-estimate.

Due to thermomechanical instabilities of the magnetometer/star-

imager system, the CHAMP Euler angles vary with time; we ac-

count for this variation by estimating separate sets of Euler angles

for each 10 day data segment. There is no indication for a mechan-

ical instability of the Ørsted magnetometer/star imager assembly

and, therefore, we assume that the Ørsted Euler angles are time in-

dependent. However, to account for a star-imager software update

on 2000 January 24, which resulted in a change of the optical axis

of the instrument, we estimate two sets of Ørsted Euler angles, one

for the time before and one for the time after 2000 January 24. This

yields 119 sets of Euler angles (2 for Ørsted, and 117 for CHAMP),

that is, 357 additional model parameters, resulting in 8863 model

parameters in total. Although the goal of our CHAOS model is a

precise description of the internal magnetic field, 46 per cent of the

model parameters (4111 of 8863 parameters) describe non-internal

(external field and payload system) parameters. The co-estimation

of these additional parameters is done entirely to secure an optimal

description of the internal field. As in the case of our data selection

criteria, we also tried various other parametrisations of the external

fields (for instance bin sizes of 24 and 48 hr for the magnetospheric

coefficient q0
1) but found that the chosen values resulted in the best

internal field model.

To summarize: the relationship between the magnetic vector in the

magnetometer coordinate system, BVFM, and the magnetic potential

V in the local NEC coordinate system is given by

BVFM = R
1
· R

2
· R

3
· BNEC = −R

1
· R

2
· R

3
· grad V . (5)

This equation connects the data (the magnetic field observations

BVFM in the magnetometer frame, collected in the data vector dobs)

with the model parameters (the spherical harmonic expansion coef-

ficients of the scalar potential V of eqs (2)–(4) and the sets of Euler

angles describing R
1
, collected together in the model vector m).

4 M O D E L E S T I M AT I O N

We minimize the sum of the squared differences between the ob-

served magnetic field in the instrument frame, Bobs
VFM, and the model

predictions of eq. (5). This means that we do the model estimation in

the magnetometer frame, contrary to previous models, which used

vector data in the NEC frame and thus minimize the squared differ-

ences between the observations, Bobs
NEC and the model predictions of

eq. (1).

Since we also use scalar data, and due to the co-estimation of the

alignment parameters (Euler angles), the estimation of the model

parameters is a non-linear problem and has to be solved iteratively.

We use an iteratively reweighted least-squares approach, minimiz-

ing the chi-squared misfit

χ 2 = eT C−1e + λmT �m, (6)

where m is the model vector and the residuals vector e =dobs −dmod

is the difference between observation dobs and model prediction

dmod. The data covariance matrix C contains the data errors mul-

tiplied by Huber weights (to account for the non-Gaussian distri-

bution of the data residuals); its non-diagonal elements accounts
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for the anisotropic errors due to attitude noise (see Olsen 2002 for

details). � is a block diagonal damping matrix, which constrains

the second and higher order time derivatives of the core field. Only

elements corresponding to the spline coefficients of the first line of

eq. (3) are non-zero; they are given by

(n + 1)

�t

∫ 2006

t=1999

d2 Ml (t)

dt2

d2 Mk(t)

dt2
dt, (7)

with �t = 2006 − 1999 = 7 yr, which minimizes the mean square

magnitude of the second time derivative of B, integrated over the

Earth’s surface and averaged over time:

〈
B̈2

〉 = 1

�t

∫ 2006

t=1999

∫ ∣∣∣∣∂2B

∂t2

∣∣∣∣2

d	 dt = mT �m. (8)

The parameter λ controls the strength of this damping; λ = 0 cor-

responds to an undamped model; the chosen value, λ = 1 · 104

(nT yr−2)−2, was found to be a good compromise between data

misfit and model smoothness, and results in a mean squared value

〈B̈2〉 = 19 (nT yr−2)2. Note that this damping neither directly affects

the static field nor the first time derivative, which are left undamped.

5 R E S U LT S A N D D I S C U S S I O N

Number of data points, residual means and root-mean-squared (rms)

values of the model are listed in Table 1. The mean values (data mi-

nus model) are close to zero and do not exceed 0.3 nT at non-polar

latitudes, confirming the validity of the magnetometer calibrations

of the three satellites. The biases at polar latitudes are larger and ex-

hibit even different signs for the three missions (Ørsted: +0.53 nT;

CHAMP: −0.97 nT; SAC-C: −0.06 nT). These values cannot be re-

garded as a measure of the data quality, but reflect only how well the

model fits the observations at latitudes where contributions from po-

lar ionospheric current systems are rather important. The scalar rms

misfit is between 2.47 nT (Ørsted), 2.65 nT (SAC-C) and 2.79 nT

(CHAMP) at non-polar latitudes, and between 4.0 nT and 5.85 nT

at polar latitudes. The higher values compared to non-polar lat-

itudes could indicate unmodelled contributions from polar iono-

spheric current systems; the higher value for CHAMP, compared to

Ørsted and SAC-C, is probably caused by the lower altitude, which

brings CHAMP closer to ionospheric sources. Statistics for the vec-
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Figure 2. Lowes-Mauersberger spectra of first and second time derivatives for various magnetic field models.

tor components are given in a coordinate system that is defined by

the bore-sight of the star imager and the ambient field direction (cf.
Olsen et al. (2000) for details). The two components B⊥ and B3

are both perpendicular to the main field. Attitude noise if only data

from one star imager head are available (which is always the case

for Ørsted, and happens when CHAMP is in a dawn–dusk orbit)

affects mostly B⊥. Consequently, the rms misfit of B⊥ is 7.74 nT

for Ørsted, but less than half that value for CHAMP (3.55 nT). The

rms misfit of the third vector component, B3, is similar for Ørsted

(3.56 nT) and CHAMP (3.31 nT). All these values indicate an ex-

cellent consistency of the data from the three different satellites, and

a remarkable agreement with the obtained magnetic field model.

Fig. 2 shows Mauersberger-Lowes spectra of the first and sec-

ond time derivatives of various models. Such a power spectrum

provides information about the accuracy of a given model as a func-

tion of spherical harmonic degree, for instance about its level of

noise. The spectrum of the first time derivative as obtained from

6 months of Magsat satellite data and from 91 observatories is shown

in black (Langel & Estes 1985). Only coefficients up to n = 6 are

above the noise level, indicated by the flat part of the spectrum at

about 70 (nT yr−1)2. Additional use of data from the DE-2 satellite

between 1981 September and 1983 January improves the secular

variation determination slightly and reduces the noise level to about

30 (nT yr−1)2 (magenta curve, Langel et al. (1988)). A major im-

provement was possible by an analysis of the first 2 yr of Ørsted

observations, which reduces the noise level to about 1 (nT yr−1)2

(blue curve, Olsen 2002); first time derivative coefficients up to n =
11 are resolved. Yet another order of magnitude in noise reduction

was obtained by Maus et al. (2005) in their combined analysis of

Ørsted and CHAMP data spanning more than 5 yr (green curve),

resulting in a determination of the first time derivative up to n =
13. (Note that coefficients of the first time derivative of all models

presented in this figure are undamped; however, those of the final

model (not shown here) of Maus et al. (2005) are damped for n >

13). Finally, the first time derivative of the model presented in this

paper has a noise level as low as 0.02 (nT yr−1)2, which allows its

determination up to n = 15 (the presented spectrum is calculated

from the spline representation for epoch t = 2002.5).

In addition to the first time derivative, Maus et al. (2005) also

estimated the second time derivative, the spectrum of which is also
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shown in the figure, together with that of our new model. Note that

this part of our model is damped.

Probably the most significant improvement of the presented

model compared to previous models is its ability to map small-

scale structure of the secular variation. The crustal field exceeds the

core field for spherical harmonic degrees above n = 13 and it is,

therefore, not possible to infer small-scale structures of the (static)

core field. However, since the lithospheric field is time independent

(at least on the timescales considered here), the time changes of the

core field are, in principle, observable at all spatial wavelengths.

As shown in Fig. 2, determination of time variation was previously

restricted to degrees n ≤ 13. Our new model resolves first time

derivative coefficients beyond n = 13, which means that it is for the

first time possible to infer the time change (secular variation) of the

core field down to smaller scales (1400 km length at the core-mantle

boundary) than the (static) core field itself.

Although a detailed interpretation of the core field part of our

model is beyond the scope of this paper, we want to point out some

implications that it may have on geodynamo modelling. It is gen-

erally accepted that the higher spherical harmonic degrees of the

secular variation are related to processes with shorter timescales.

Stacey (1992) defined a characteristic timescale

τ (n) =
√√√√∑

m

(
gm

n

)2 + (
hm

n

)2∑
m

(
ġm

n

)2 + (
ḣm

n

)2
, (9)

which he denoted as reorganization time since it is ‘related to the

electromagnetic relaxation times of current loops in the core that

would produce the different harmonic features of the field’. Hulot

& Le Mouël (1994) use the same definition but call τ the typical
correlation time, with τ (n) = 1/

√
R(n), where R(n) is the degree-

ratio of the power in the first time derivative to that of the static

field (Holme & Olsen 2006). The red circles of Fig. 3 present the

dependence of τ on spherical harmonic degree n (i.e. spatial length

scale) calculated from our model coefficients applied to eq. (9).

Holme & Olsen (2006) show that a power law model, R = AnB

(corresponding to τ = A−1/2n−B/2), gives a better representation

than an exponential fit R = AeBn. The black curve in the figure is
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10

1
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10
3
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τ 
[y

rs
]
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τ = 890 n  yrs
−

Figure 3. Dependence of core field reorganization time, τ , on spherical harmonic degree n. Values derived from the presented model are shown as circles; the

black line represents a power law fit.

the power law expression τ = 890 n−1.35 yr, obtained by fitting the

function to the observed values within the range n = 1 and n =
13. Due to the dominance of the crustal field at smaller scales, no

reliable coefficients for the core field are available for degrees n >

13, We can, however, extrapolate the power fit up to degree 16 (the

resolution of our secular variation). Here we obtain a re-organization

time, τ = 20 yr, which is close to the period where dissipation effects

start to be important for the geodynamo.

Also, the lithospheric part (n ≤ 40) of our new model is superior

to previous models. Indications for this are given in the Figs 4–6.

The left panel of Fig. 4 shows the static field spectrum of various

models, and the spectra of the differences between these models.

The integrated power (degrees n = 16–40) of our new model (black

curve) is 5 per cent below that of model CM4 of Sabaka et al.
(2004) (light green), but 25 per cent above that of model MF4 of

Maus et al. (2006) (magenta). The smallest difference is found be-

tween our model and CM4 of Sabaka et al. (2004) (blue curve) for

n < 40. The difference w.r.t. the MF4 model by Maus et al.
(2005) is larger, despite of the fact that our model and MF4 are

derived from rather similar data sets, compared to CM4 (which

is based on data before 2002, and does not include CHAMP

vector data). The discrepancy between our model and MF4 is,

therefore, possibly due to the different modelling approaches,

for instance the serial track-by-track estimation of residual exter-

nal fields used for MF4 versus the co-estimation approach used

here.

While a comparison of the power spectra of two models provides

information on the magnitude of the respective magnetic fields,

degree correlation, ρ n , (Langel & Hinze 1998, eq. 4.23) yields in-

formation on the phase difference (and hence is independent of the

power contained in a model). The right panel of Fig. 4 shows the

degree correlation between the three models (the curves represent

three-point moving averages). The degree correlation is near 0.95

between our model and CM4 up to n = 40. Despite of the fact that

similar data sets have been used for deriving MF4 and our new

model, the correlation with MF4 yields a lower ρ n in this degree

range. Beyond n = 40 the trend reverses and CHAOS compares

more favourably with MF4.
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Figure 4. Left: Power spectra of the static field and of the field differences for various models. Right: Degree correlation.

Figure 5. Sensitivity matrices (normalized coefficient differences in per cent) for various model pairs.

To further investigate the quality of the three models, sensi-

tivity matrices are presented in Fig. 5. To obtain this quantity

the difference between model coefficients is determined for all

coefficients and subsequently normalized by the mean amplitude

of the coefficients at degree n. In general, the figure confirms the

better agreement between the new model and CM4 (left panel) for

n ≤ 40, compared to MF4. There are, however, some discrepancies

between our model and CM4, especially of the near-zonal terms,

and of the near-sectorial terms for n > 30. However, the existence

of some peculiar vertical stripes in the left and middle panel could

indicate that coefficients of MF4 with a certain order m are biased,

for example, g12
n , n = 25–45, are significantly smaller than those of

CM4 and the new model, whereas g20
n , n = 25–45, are significantly

larger.

Maps of the radial magnetic field and field differences at

300 km altitude are shown in Fig. 6. They confirm the closer agree-

ment between our model and CM4, compared to MF4. Both differ-

ences CHAOS-MF4 (top right) and CM4-MF4 (bottom left) contain

north–south trending stripes and residuals of order of a few nT at

middle latitudes. It is believed that these are caused by the orbit-by-

orbit along-track filtering of the data used for MF4. Sabaka & Olsen

(2006) demonstrated, using synthetic data, that a serial (as track-

by-track) removal of large-scale magnetospheric fields (as done for

MF4) may lead to a biased estimation of the underlying field. An

unbiased estimate can be obtain by co-estimating these fields (the

approach used in this paper).

While the difference between CHAOS and MF4 is dominated by

north–south aligned features (as is the difference between CM4 and

MF4), the differences CM4-MF4 and CM4-CHAOS reveals a weak

(about 2 nT at 300 km altitude) signal of the Equatorial Electrojet

(EEJ ). This probably indicates a leakage of the day-side EEJ signal

into the CM4, which was derived using day- and night-side data.

In addition, the difference CM4-CHAOS contains high-latitude fea-

tures that are aligned with dipole latitudes and probably caused by

contamination of either CM4 or CHAOS by the polar electrojets.

6 C O N C L U S I O N S

The presented CHAOS model results from a new modelling ap-

proach and includes almost 7 yr of data from the three magnetic

missions currently in orbit, CHAMP, Ørsted and SAC-C. Our new

modelling approach—taking into account the magnetometer vec-

tor data in the instrument frame, co-estimating the Euler angles to

transform the magnetic data into the star imager frame, and
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Figure 6. a: Map of the radial magnetic field (in nT) at 300 km altitude, calculated from coefficients of degrees n = 16–40. b–d: radial field differences for

various model pairs.

considering the bending of the CHAMP optical bench—allows us

to obtain a reliable description of the static part of the geomagnetic

field up to at least degree n = 40, and of its first time derivative up

to n = 15.

This new model brings two important improvements in describ-

ing the internal magnetic sources. First, the secular variation is no

longer considered linear, as data covering more than 6.5 yr were

used. A description of non-linear time changes was done by means

of splines, to avoid unrealistic behaviours near the edges of the time

interval. The new robust secular variation model allows us to eval-

uate a characteristic timescale for the core re-organization, which

is of order 20 yr for structures with short wavelengths of about

1400 km at the core–mantle boundary. Secondly, the static field

model, argued to be robust up to n = 40, is unbiased by differ-

ent sources. Comparison with two other models (MF4 and CM4)

indicates that the CHAOS model is superior to previous model in

the limits of its robustness. The model coefficients are available

at www.spacecenter.dk/projects/oersted/models/ and at www.gfz-

potsdam.de/pb2/pb23/Models/. Since the model was derived using

observations taken between 1999 March and 2005 December, it is

not recommended to extrapolate the spline coefficients describing

the secular variation to time periods outside that interval.

The present study also demonstrates the possibilities of com-

bining data from different satellite platforms. The new approach

considered here is an important step in the preparation for the

magnetic data provided by ESA’s Swarm constellation mission (cf.
www.esa.int/esaLP/LPswarm.html), scheduled for launch in 2010.
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