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Abstract: The quantification of wildfire regimes, especially the relationship between the 
frequency with which events occur and their size, is of particular interest to both ecologists and 
wildfire managers. Recent studies in cellular automata (CA) and the fractal nature of the 
frequency-area relationship they produce has led some authors to ask whether the power-law 
frequency-area statistics seen in the CA might also be present in empirical wildfire data. Here, 
we outline the history of the debate regarding the statistical wildfire frequency-area models 
suggested by the CA and their confrontation with empirical data. In particular, the extent to 
which the utility of these approaches is dependent on being placed in the context of self-organized 
criticality (SOC) is examined. We also consider some of the other heavy-tailed statistical distri- 
butions used to describe these data. Taking a broadly ecological perspective we suggest that 
this debate needs to take more interest in the mechanisms underlying the observed power-law 
(or other) statistics. From this perspective, future studies utilizing the techniques associated 
with CA and statistical physics will be better able to contribute to the understanding of ecological 
processes and systems. 

In many regions of the world, wildfires are common 
and are considered an integral component of eco- 
system functioning. However, wildfires also pose 
a threat to humans, their activities and livelihoods, 
and repeated fires can negatively affect ecosystem 
functioning (Bond & van Wilgen 1996). Thus, 
understanding and managing the relationships 
between wildfires, ecological systems and human 
activity is important. The combination of the 
timing, frequency and magnitude of all disturbances 
occurring in a given region is known as the 'disturb- 
ance regime'. Recently, much research has con- 
sidered one particular aspect of the disturbance 
regime: the frequency-area distribution of wildfires 
in a given area. Here, we will focus on disturbance 
by wildfires. 

Examination of these statistics in the context of 
wildfire activity is not new (e.g. Minnich 1983; 
Baker 1989; Strauss et al. 1989, among many 
others), but recently there has been considerable 
debate regarding the 'heavy-tailed' (i.e. the tail 
decreases at a relatively slow rate) nature of these 
frequency-area distributions. One specific class of 
heavy-tailed distribution is a power-law (fractal) 
where the frequency-area distribution has no 
inherent scale (it is scale-invariant). The presence 
of such scaling relationships has been noted 
widely in many features of biological and ecologi- 
cal systems (e.g. Brown et al. 2002). In the wildfire 
literature, discussion has particularly addressed 

whether these heavy-tailed frequency-area distri- 
butions are power-law in nature, and what the 
implications of such a power-law distribution 
might be. 

Much of the present debate on the heavy-tailed 
nature of 'real' wildfire areas is the result of 
research in the early 1990s, where simple 'forest- 
fire' cellular-automata (CA) models were found to 
produce power-law size frequency distribution - a 
characteristic linked with self-organized criticality 
(SOC) (Bak et al. 1990; Drossel & Schwabl 1992; 
Cla re t  al. 1996). Malamud et al. (1998) then pro- 
duced the first detailed research showing that both 
the forest-fire CA model and 'real-world' wildfires 
exhibit robust power-law frequency-area distri- 
butions. Since then, other authors have presented 
data and analyses with the aim of variously confirm- 
ing or refuting the assertion that real-world wildfire 
frequency-area distributions follow a power-law dis- 
tribution (e.g. Ricotta et al. 1999, 2001; Cumming 
2001; Ward et al. 2001; Reed & McKelvey 
2002; Schoenberg et al. 2003). 

In this paper, we will examine the history and 
nature of this discussion, before suggesting what 
direction it might take, or be most useful to take 
in the future. We approach this topic from a 
broadly ecological perspective, emphasizing the 
need for consideration of the ecological (or other- 
wise) mechanisms driving observed wildfire 
f requency-area distributions. We will begin by 
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examining the most recent papers in this area, 
before establishing the state of current research in 
this area and suggesting what avenues of future 
research on this topic might prove fruitful. 

Ecological examination of wildfire 
frequency-area distributions 

Consideration of wildfire and other disturbance 
regimes (the spatio-temporal dynamics of recurrent 
disturbance events) has a long history in ecology. 
The dynamics of success ion-dis turbance in 
ecology is important when considering wildfires. 
Succession is the change in ecological community 
composition (in essence the relative abundance of 
the different species in the community) and function 
(the ways in which the abiotic and biotic com- 
ponents of the community are linked) through time. 

Disturbance is the disruption of an ecosystem, 
community, or species' populations by any rela- 
tively discrete event in space and time, with a resul- 
tant change in the physical environment (White & 
Pickett 1985). Until the 1950s and 1960s, ecolo- 
gists' views on succession-disturbance dynamics 
were dominated by the perspective of Frederick 
Clements (1916, 1928, 1936). Clements' conceptu- 
alization of the community emphasized equilibrium 
and stability, as encapsulated by the 'balance of 
nature paradigm'; in this view disturbance events 
were seen as unnatural, as they moved the system 
away from its 'natural' equilibria (the so-called 
'climax' condition). Ecosystem management con- 
ducted from this perspective, therefore, aimed to 
minimize disturbance events and their impacts, 
resulting in policies such as fire suppression. 

More recently, ecologists have accepted the fun- 
damental importance of apparently random events, 
such as disturbance, in structuring ecosystems, 
and have adopted a more scale-sensitive, disequili- 
brial view (Wu & Loucks 1995; Perry 2002). With 
this shift has come increasing interest in character- 
izing the three key dimensions of the disturbance 
regime: size, frequency, and intensity. Recently, 
there has been some attention focused on determin- 
ing whether large, infrequent disturbance have a 
qualitatively different effect than small, frequent 
ones (Romme et al. 1998; Turner et al. 1998). It 
is with this historical perspective in mind that we 
need to consider ecological approaches to quantify- 
ing wildfire regimes, in contrast to the model-based 
approaches we discuss later. 

The frequency of disturbance events is very 
important in terms of the evolution of the reproduc- 
tive strategies that different species adopt (e.g. the 
number and size of offspring produced, the energy 
invested per reproductive event, and so on); these 
reproductive strategies are sometimes also known 

as life history traits (Bond & Keeley 2005). For 
example, the optimal time after disturbance for a 
species to maximize seed storage (in either the 
crown or soil seedbank) will be influenced by the 
average time between wildfire events (Enright 
et al. 1998a, b). What constitutes a 'frequent' wild- 
fire will vary from ecosystem to ecosystem, depend- 
ing on factors such as rates of biomass production, 
the nature of other disturbance agents operating 
alongside fire (e.g. wind-throw) and regeneration 
rates. An intriguing body of ecological theory 
suggests, however, that intermediate disturbance 
frequencies will promote the highest levels of biodi- 
versity (the 'intermediate disturbance hypothesis', 
Connell 1978). Early quantitative studies of the 
wildfire regime, conducted in the 1950s and 
1960s, emphasized frequency - in essence an esti- 
mate of the probability distribution of survival or 
mortality from wildfire(s) (Johnson & Gutsell 
1994). Early efforts (e.g. Spurr 1954) were often 
somewhat ad hoc studies of wildfire occurrence, 
and are perhaps better seen as wildfire 'history' 
studies. However, Heinselman (1973), in a 
seminal study, mapped the time-since-wildfire- 
year, on the basis of stand ages, in the Boundary 
Waters Canoe Area in Minesotta (USA). On the 
basis of this map Heinselmann estimated survivor- 
ship from wildfires in the landscape. 

Since the late 1970s, a number of statistical 
methods and distributions that might be suitable 
for describing wildfire frequency have been devel- 
oped and applied, with much emphasis on the 
Weibull and negative exponential distributions 
(see Johnson & van Wagner 1985). These statistical 
models allow empirical assessment of relationships 
between spatio-temporal variation in wildfire fre- 
quency and other environmental factors (Johnson 
& Gutsell 1994). Considerable debate remains 
over the drivers of spatio-temporal variability in 
wildfire frequency (in particular the relative roles 
of weather v. fuels), and unravelling these patterns 
is a focus of current work (e.g. Bessie & Johnson 
1995). Although sophisticated statistical tools are 
available for modelling fire frequency (e.g. Presiler 
et al. 2004; Reed & Johnson 2004), the stumbling- 
block is often collecting adequate empirical data to 
represent the processes and designing adequate 
sampling strategies for this data collection 
(Johnson & Gutsell 1994). 

Although much research effort has focused on the 
frequency component of the wildfire regime, other 
ecologists have considered the size (i.e. burned 
area, often equated with severity) component of 
the wildfire regime. As different ecosystems 
respond differently to wildfires, what constitutes a 
severe event will also vary (Moritz 1997). The 
diverse effects of wildfire suppression efforts have 
received considerable attention in this context. 
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Minnich (1983) compared the frequency-area dis- 
tribution for regions in Southern California that 
had been subject to wildfire suppression, with that 
of regions in northern Baja California that had 
not. He found that in regions subject to suppression, 
large intense wildfires occurred (possibly larger 
than had occurred pre-suppression), and that total 
burned area was the same as in regions where wild- 
fires were unsuppressed. Although subsequently 
there has been much debate concerning the exist- 
ence and significance of this difference (e.g. 
Strauss et al. 1989; Chou et al. 1993; Keeley & 
Fotheringham 2001; Minnich 2001), this research 
stimulated interest and debate in the appropriate 
methods for characterizing and comparing empiri- 
cal wildfire frequency-area distributions (see also 
Miyanishi & Johnson 2001; Ward et al. 2001; 
Bridge et al. 2005, for discussion regarding 
Ontario). The consensus appears to be that the 
majority of empirically observed wildfire size dis- 
tributions are heavy-tailed (e.g. Malamud et al. 

1998, 2005). 

The forest-fire cellular automata model 

The forest-fire cellular automata model rose to pro- 
minence amidst the suite of models used by Per Bak 
and others to examine and propound the theory of 
self-organized criticality (SOC) in dynamical 
systems (Bak et al. 1987, 1988). Self-organized cri- 
ticality was first presented by Bak et al. (1987) as 
the concept that dynamical systems order them- 
selves naturally to a critical state regardless of 
initial conditions and independent of any exogenous 
driving force. Although the exact definition of SOC 
is often unclear, Turcotte (1999, p. 1380) suggests a 
working definition for SOC 'is that a system is in a 
state of self-organized criticality if a measure of the 
system fluctuates about a state of marginal stab- 
ility'. Bak (1996) suggested that, at the critical 
state, small inputs to a system can cause events of 
any magnitude in intermittent periods of activity 
and that prediction of the size of a specific future 
event is impossible. The frequency-area distri- 
bution of events in this type of system will exhibit 
power-law (i.e. critical) behaviour (Bak & Tang 
1989). 

Bak et al. (1987) first presented the concept of 
SOC using models of coupled-pendulums and, 
more famously, sandpiles (for further discussion 
on the sandpile model, see paper in this volume, 
Malamud & Turcotte 2006). Later, Bak et al. 
(1990) used a cellular automaton (CA) to model 
forest fires. Although there are many variations on 
this forest-fire model, details of the rules that 
define the mechanics of the simplest of these 
models can again be found in Malamud & Turcotte 

(2006); an example of the progression of this simple 
forest-fire model is given in Figure 1. Using the 
simplest version of the forest-fire CA model, Bak 
et al. (1990) and Drossel & Schwabl (1992), 
amongst others, found that uniformly injected 
energy ('trees') is dissipated ('burning trees') in a 
spatially self-similar (fractal) manner. The forest- 
fire CA model was shown to self-organize itself to 
a state where fire sizes (patches of contiguous 
cells that burn in a single burning 'event') exhibited 
power-law frequency- area statistics. 

Similar models had previously been considered 
in the context of percolation theory (Albinet et al. 
1986; Beer & Enting 1990, 1991). Site-percolation 
models are specified by a parameter, p, which 
defines the probability of a site in a lattice being 
occupied. At a critical point (Pc ~ 0.59275) clusters 
traversing the entire lattice (spanning clusters) form. 
Although these models are not self-organizing 
through time, they do show critical behaviour in 
the sense that the model shows quite different 
regimes of behaviour depending on the value of 
the tuning parameter. These percolation-based 
models have received less attention than the 
forest-fire CA model in the context of SOC, 
which rapidly attracted interest because of its appar- 
ent potential to contribute to the understanding of 
natural dynamical systems (they are, however, the 
basis of much research in statistical physics). Her- 
garten (2002) makes this same point with reference 
to a CA model, essentially the same as that used by 
Drossel & Schwabl (1992), proposed by Henley 
(1993). Turcotte (1999) provides a good compari- 
son of the CA forest-fire model and site-percolation 
models. 

A non-cumulative frequency-area distribution is 
considered power-law if 

f ( A )  ~ A -~  (1) 

where f ( A )  is the frequency density, that is, the 
number of wildfires with burned area A (properly 
normalized to 'unit' bins), and/3 is a constant. 

Plotting the frequency densities against area in 
log- log space produces a straight fine with slope 
-/3.  Power-law frequency-area behaviour has 
often been interpreted as a sign that a system is in 
an SOC state, as it suggests emergent global proper- 
ties that have risen from simple local interactions 
(Solow 2005). As a result, the presence of power- 
law frequency-area statistics in the forest-fire CA 
m o d e l  are suggestive of SOC behaviour, particu- 
larly because the properties are robust to the values 
of various forcing parameters and the values of 
the critical exponents of the model appear 'univer- 
sal' (i.e. the frequency-area power-law exponent 
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Fig. 1. Illustrative sequence of the forest-fire cellular automata (CA) model. This example illustrates ten time steps 
of a 10 x 10 model grid. Grid cells may be unoccupied (depicted by white) or occupied by trees (depicted by 
grey). Trees are randomly dropped on the grid at each time step, and if a cell is unoccupied, then a tree is 'planted', 
as in Step 1. If a cell is already occupied, then nothing happens when a tree is dropped on it (e.g. Step 2). At 
every l / f  time step a 'match' (depicted here by a hatched cell) is randomly dropped on the grid, wherefis the sparking 
frequency. In this example, l / f - -  5. If the match falls on an unoccupied grid cell, a wildfire is not ignited (e.g. 
Step 5) and the model moves to the next time step where tree drops are again attempted. However, if a match falls 
on an occupied site the tree burns and the model fire spreads to all neighbouring non-diagonal occupied sites 
(e.g. step 10, with a model fire size of AF ---- 3 cells)�9 

remains independent  of  any model  parameters; Clar 
et  al. 1994). 

Based on the dynamics of these simple models,  
proponents of  SOC suggested that it 'might  be the 

underlying concept for temporal  and spatial 
scaling' in dynamical  systems (Bak et  al. 1987, 
p. 384) and even that it might  define H o w  Na ture  

Works  (Bak 1996). With hindsight  these claims 
seem overstated, particularly considering the way 
in which this modell ing process proceeded. As 

Hergarten (2002) points out, model l ing in earth 
and environmental  sciences often starts by observ- 
ing a set of  phenomena  and then proceeds to 
attempt to represent these phenomena  as accurately 
as possible in a model l ing framework. However, 
these much more  abstract CA models  were devel- 
oped by statistical physicists with little regard to 
the actual processes they were representing, with 
the 'forest fire' label originally intended more as a 
metaphor  rather than a claim of  representation. As 

 at ECU Libraries on June 30, 2015http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


QUANTIFYING WILDFIRE REGIMES 159 

generalized models of abstract systems these exper- 
iments are interesting, but whether their behaviour 
is present in the real world has been questioned 
(e.g. Reed & McKelvey 2002). There are of 
course many questions that remain, but two of inter- 
est to earth scientists and, in particular, ecologists, 
include (1) whether the patterns and behaviours 
observed in the CA models are found in nature? 
and (2) whether 'real-world' forests and their 
disturbance regimes are/show SOC? 

Confronting models with data 

Observed  f r e q u e n c y - a r e a  dis tr ibut ions 

in nature 

Malamud et al. (1998) were the first to examine 
whether the power-law frequency-area distri- 
butions of model fires in the forest-fire CA model 
were also characteristic of 'real-world' wildfire 
regimes. Examining data sets from four study 
areas they found that wildfire frequency-area dis- 
tributions followed a power law (see Table 1). In 
these four regions, spread around the globe and 
with widely varying environmental conditions, 
frequency- area power-law behaviour was observed 
over up to six orders of magnitude, with the power- 
law exponent/3 = 1.3-1.5. Malamud et al. (1998) 
also attempt to interpret some of the parameters in 
the forest-fire CA model in the context of observed 
fire dynamics and regimes. The 'sparking fre- 
quency' parameter (the frequency with which 
model fires are given the potential to start by a 
match) was directly compared to management strat- 
egies practised in Yellowstone National Park, and 
the implications of changes in the parameter 
values discussed with reference to real-world 
events. Although the exponents in the frequency- 
area power-law relationship differ between the 
real world and model data (with the model data 
exhibiting consistently smaller/3 values), the sug- 
gestion by Malamud et al. (1998) was that wildfires 
could be quantified in nature by using the same 
frequency-area scaling relationship found in the 
forest-fire CA model (see also Turcotte 1999). 
The implication was that the ecological systems in 
which real wildfire regimes exist may potentially 
exhibit SOC behaviour in the same way as the CA 
models appear to. 

Malamud et al. (1998) were not the first to find 
power-law scaling in wildfire frequency-area stat- 
istics (e.g. Minnich 1983, as discussed above in 
the section on ecological studies). However, they 
were the first to compare wildfire regimes in 
nature and in the forest-fire CA model. Further- 
more, the prominent location of this publication, 
allied with enthusiasm in much of the scientific 

community at the time for SOC, meant that a 
flurry of similar studies making similar analyses 
of real wildfire regimes soon followed (see 
Table 1). The majority of these studies (including 
the one by Malamud et al. 1998) were hampered 
by low spatial and/or temporal resolution, with 
relatively few wildfire records. 

Recently, however, Malamud et al. (2005) have 
examined a much larger, high-resolution (spatial) 
data set detailing the burnt area, location and 
cause of ignition of 88,916 wildfires on United 
States Forest Service land across the conterminous 
USA for the period 1970-2000 (this is also dis- 
cussed in Malamud & Turcotte 2006, in this 
volume). The large amount of data allowed 
Malamud et al. to examine different subregions of 
the conterminous USA, and compare them with 
each other. For each of the 18 regions examined, 
excellent power-law relationships were found 
between the non-cumulative number of wildfires 
and burned area, with /3=  1.30-1.81. Two 
examples are given in Figure 2, showing the two 
extremes of values of 13 obtained by the authors. 
In Figure 2a are presented the frequency-area stat- 
istics for 16,423 wildfires in the Subtropical eco- 
region division (within the southeastern part of the 
USA) and in Figure 2b, 475 wildfires in the Medi- 
terranean ecoregion division (within California, 
USA). In both cases, excellent correlations are 
obtained with the power-law relationship (1), with 
/3=  1 .81_  0.07 (__+2 s.d.) for the Subtropical 
ecoregion and /3 = 1.30 _ 0.05 ( + 2  s.d.) for the 
Mediterranean ecoregion. 

The values of/3 for model fires in the forest-fire 
CA model are consistently lower than those of 
real-world wildfires. This indicates a reduced con- 
tribution to the wildfire regime of small wildfires, 
and a corresponding increased contribution of 
large wildfires, when comparing the real world 
with CA models (as observed by Malamud et al. 
1998). Why there is such a consistent disparity is 
a question that needs to be addressed if links 
between the forest-fire CA model and real wildfire 
regimes are to be made. 

H e a v y  tailed, but  wha t  f lavour?  

The large majority of studies have found heavy- 
tailed wildfire frequency-area distributions 
(Table 2), with the implication being that extreme 
events are perhaps not as extreme (or surprising) 
as they are often perceived to be (Katz et al. 
2005). There is, however, considerable debate as 
to what type of probability distribution best 
describes these data. Empirically driven studies 
have used a range of heavy-tailed distributions, 
including the Weibull and the generalized Pareto 
among others, whereas studies arising from 
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Fig. 2. Normalized frequency-area wildfire statistics for (a) Mediterranean and (b) Subtropical ecoregion divisions, 
for the period 1970-2000 (figure after Malamud et al. 2005). Shown (circles) are normalized frequency densitiesf(AF) 
(number of wildfires per 'unit bin' of 1 km 2, normalized by database length in years and USFS area within the 
ecoregion) plotted as a function of wildfire area AF. Also shown for both ecoregions is a solid line, the best least-squares 
fit to Eq. (1), with coefficient of determination r 2. Dashed lines represent lower/upper 95% confidence intervals, 
calculated from the standard error. Horizontal error bars are due to measurement and size binning of individual 
wildfires. Vertical error bars represent two standard deviations ( ___ 2 s.d.) of the normalized frequency densities j~(AF). 

exploration of the forest-fire CA model have 
emphasized power-law distributions (see Table 1). 
Some have queried whether 'true' power-laws 
would be expected in nature (e.g. Bolliger et al. 
2003), and others whether observed wildfire 
regimes do actually follow a power-law (e.g. Reed 
& McKelvey 2002). Malamud et al. (2005) 
acknowledged that there will always be upper and 
lower cutoffs in nature for any power-law behaviour 
and that a true mathematical power-law (fractal) 
would be impossible in nature (see also Brown 
et al. 2002). There will always be a lower limit to 
what can be described as a wildfire, and 

measurement accuracy of the smallest wildfires is 
problematic. At the upper bound both Reed & 
McKelvey (2002) and Malamud et al. (2005) cite 
topographic influences restricting wildfire spread 
and therefore putting a constraint on the largest 
possible wildfire. Such effects are analogous to 
the finite-grid size effect observed in the forest- 
fire CA model. Schenk et al. (2000) showed the 
finite-grid effect results in a collapse of the fie- 
quency-a rea  power-law scaling relationship when 
the correlation length (a measure of the radius of 
the largest tree cluster) becomes large relative to 
the size of the system (i.e. the size of the grid). 

Table 2. Examples o f  heavy-tailed wildfire frequency-area distributions suggested by recent studies* 

Nature of distribution Author Study area (time period) [no. of 
wildfires examined] 

Power law 
Negative exponential 
Weibull distribution 

Truncated power law 

See Table 1 
Baker (1989) 
Reed & McKelvey (2002) 

(a) Burroughs & Tebbens 
(2001) 

(b) Cumming (2001) 
(c) Schoenberg et al. (2003) 

Minnesota (1727-1868) [not stated] 
(a) Sierra Nevada, California (1908-1992) [2536] 
(b) Nez Perce NF, Idaho (1870-1994) [1795] 
(c) Clearwater NF, Idaho (1910-1999) [884] 
(d) Yosemite NP, California (1930-1999) [3190] 
(e) N.E. Alberta (1961-1998) [5478] 
(f) Northwest Territories (1992-1999) [2544] 
(a) Australian Capital Territory (1926-1991) [298] 

(b) N.E. Alberta (1980-1993) [2898] 
(c) LA County, California (1950-2000) [548] 

*These studies are based on empirically observed, rather than model-derived, data and analyses. Although a variety of different distri- 
butions are suggested, all are heavy-tailed in nature and many suggest power-law behaviour over a limited range of magnitudes. 
NF: National Forest; NP: National Park; LA: Los Angeles. 
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As noted above (section on ecological studies), 
studies in the 1970s to the 1990s examined wildfire 
frequency-area relationships and suggested that 
they follow distributions other than the power law 
(e.g. Baker 1989). More recent studies have also 
suggested that wildfire distributions are not truly 
power-law, in the sense that they are not power- 
law across all event magnitudes (see Table 2). For 
example, Burroughs and Tebbens (2001) examined 
the same Australian Capital Territory (ACT) data 
used by Malamud et al. (1998) in a cumulative plot 
and proposed that a truncated power law offered a 
better fit. This then, is one criticism of the contention 
that real-world wildfire regimes show similar beha- 
viour to those of the forest-fire model - the fact 
that real-world wildfires may not actually exhibit 
power-law (i.e. scale-invariant) behaviour in their 
frequency-area statistics. Reed & McKelvey 
(2002) specifically considered the question of 
whether power-law fire size distributions existed in 
real-world data as suggested by the presence of 
SOC behaviour. Examining six regions in North 
America (see Table 2), the authors suggested that 
the presence of power-law behaviour in wildfire 
size distributions was exaggerated, and that vari- 
ations on the Weibull distribution provided the best 
fit to data. Reed & McKelvey (2002) did concede 
that power-law behaviour was in evidence over a 
l imited range of wildfire sizes for some regions. 

The examples cited here (Table 2) consider dis- 
tributions other than the power law provided 
better fits to empirical data. However, for all the 
regions studied, these alternative distributions are 
'heavy-tailed', with many of them very closely 
related to the two-parameter power-law distri- 
bution, but with additional parameters. A number 
of these distributions still exhibit scale-invariance 
over some part of the range of wildfire sizes they 
examine. Discrepancies between these distributions 
are most prominent in the tails where infrequent, 
extreme events cause distortion. More generally, 
there are other distributions that may explain the 
power-law distributions observed; for example, 
the log-normal and exponential distributions look 
quite linear in log-log space, especially when the 
distribution extremes are 'veiled' (May 1975; 
Brown et al. 2002). The infrequent, but very large 
events, in the heavy tail of the wildfire size distri- 
butions are of most concern for fire and forestry 
managers, but it is also the area where the most 
uncertainty lies. Wildfire size distributions that 
inaccurately represent the upper tail are problematic 
for managers. However, it is often the case when 
dealing with probabilistic hazard forecasting that 
the uncertainty for the recurrence intervals for the 
largest events (e.g. earthquakes and floods) is very 
large, and managers 'make do' with what is avail- 
able. Thus, we believe it is important that any 

attempt to fit a specific heavy-tailed distribution to 
data is accompanied by error bars and a measure 
of the confidence of those fits (Fig. 2) so that the 
uncertainty by the hazard managers can be fairly 
addressed. In many studies error terms and measures 
of confidence are not provided. The debate regarding 
whether power-law frequency-area distributions 
and associated SOC-type behavionr, as found in 
the forest-fire CA model, are also found in nature 
remains open; in the next section, we discuss 
possible new directions for this effort. 

Whichever flavour, what does this all mean 
for future research? 

P e r s p e c t i v e s  o n  S O C  

The current state of research contests the presence of 
power-law behaviour in real wildfire regime fre- 
quency-area distributions as evidence of SOC-type 
mechanisms (Gisiger 2001; Frigg 2003; Solow 
2005). It should be remembered that the FFCA, and 
other models of its type, is a metaphor for SOC beha- 
viour rather an explicit representation of a specific 
system and its associated suite of processes. The 
spatially random recovery (re-growth) of trees is a 
weak assumption as seed dispersal processes will 
determine tree regeneration pattems (this type of 
recovery was simulated in a recent model of 
mussel-bed disturbance, Guichard et al. 2003). 

There are many other mechanisms by which 
power-law behaviour can be generated in nature - 
using the presence of power laws to determine 
whether a system is SOC suffers from the 
problem of under-determination (e.g. Oreskes 
et al. 1994; Frigg 2003). For example, another 
mechanism that has been proposed to explain the 
presence of power-law size-frequency distribution 
in many systems is Highly Optimized Tolerance 
(HOT; Carlson and Doyle 1999, 2002; Doyle and 
Carlson 2000). HOT takes a rather different view 
of complex systems than SOC, focusing on 
'designed' systems (whether engineered or subject 
to natural selection) that are optimized to be 
robust in the face of environmental uncertainty. In 
itself the simple presence of a power law is a very 
weak test of the presence of any specific generating 
mechanism, and the way investigation is currently 
being pursued does not improve on this. After all, 
how good does a power-law relationship have to 
be to show SOC behaviour? However, irrespective 
of the origins of power-law behaviour, and despite 
the criticisms levelled by some authors advocating 
altemative distributions with better fits to the data, 
the power law is currently the most parsimonious 
model available to describe wildfire frequency- 
area distributions. 
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The implication that SOC behaviour demands true 
power-law behaviour over all magnitudes of events 
is, of course, in reality impossible. Only in an infinite 
system is this possible, but the world is finite. There- 
fore, not only is it no surprise that we do not find 
'true' power-law behaviour in nature, but upper and 
lower cutoffs in any observed power-law behaviour 
are inevitable. However, possibly the biggest 
problem regarding the credibility of studies examin- 
ing wildfire (or other 'natural') distributions and 
finding, or advocating, power laws, is the feeling 
that the researcher is simply fitting a line through 
their data with little regard for what this means or 
how this new finding might be used. In terms of inter- 
preting observed distributions as the fingerprints of 
underlying process, differences between distributions 
(no matter how subtle) imply different generating 
mechanisms. As Brown et al. (2002, p. 622) 
comment 'In current applications of statistics to bio- 
logical or ecological data, there is often an unfortu- 
nate tendency to be satisfied with the "model" or 
equation that gives a good fit. It is important, 
however, to consider the implications of the particu- 
lar mathematical form of the equation'. Examining 
abstract systems (models) is a valid scientific 
pursuit in itself (as the forest-fire CA model, and so 
on, were initially used), but once we enter the 
realm of the actual, questions of 'Why?' and 'What 
use?' become of greater importance. Specifically, 
here we propose the questions 'Why is this system 
exhibiting power-law behaviour?' and 'To what use 
can this power-law nature be put?' should drive 
future research in this field. 

M e c h a n i s m s  and  causal  p roces se s  

Recently, some authors have begun to examine why 
power laws are observed in both models and nature. 
For example, Reed & Hughes (2002) suggest that if 
stochastic processes growing in an exponential 
manner are 'killed' at random (the burning of 
trees in the forest-fire CA model), the distribution 
of this killed state will follow a power law in one 
or both tails. Yang (2004) suggests power-law 
behaviour in SOC systems is the result of a 
balance between competitive trends. Specifically, 
power-law behaviour occurs when the probability 
of a site being in an 'active' state (rather than 'inac- 
tive') at the next time step is close to 0.5 (i.e. in the 
forest-fire CA model, the probability of being a tree 
versus being empty due to burning). Attempts to 
link the theory and pattems observed in SOC-type 
models to observed ecological patterns and pro- 
cesses are also on the horizon. Pascual & Guichard 
(2005) highlight the differences between three types 
of criticality ('classical', 'self-organized' and 
'robust') and their relevance to disturbance patterns 
observed in ecological systems. These authors 

suggest that systems with subtle variation in their 
relationships between disturbance and recovery 
show different types of critical behaviour. Greater 
consideration of the processes driving SOC-type, 
power-law behaviour is required and links to 
observed processes and pattem, such as that demon- 
strated by Pascual & Guichard (2005) should be 
welcomed. 

Despite the issues regarding wildfire frequency- 
area distributions, and the spatial restrictions on 
power-law behaviour, Malamud et al. (2005) 
emphasize the usefulness of power-law distri- 
butions for describing and studying the drivers of 
wildfire regimes at regional and continental 
scales. By spatially disaggregating data into 
Bailey's (1995) ecoregions (geographic areas of 
similar climate, vegetation and soil), and normaliz- 
ing frequency-area statistics by ecoregion area and 
number of years in each data set, differences 
between wildfire regimes could be compared and 
contrasted with reference to putative broad-scale 
environmental drivers. Results showed an apparent 
east-west gradient in the power-law exponent (/3 
values) across the conterminous USA, over 18 
different ecoregions, potentially due to forest frag- 
mentation and/or human population densities. 
Holmes et al. (2004) used a similar methodology 
to examine differences in Florida wildfire regimes 
according to vegetation type ('flatwoods' 
v. 'swamp'). Malamud et al. (2005) suggested that 
examining relationships between past and current 
climates could aid understanding as to how wildfire 
frequency-area scaling might change under future 
modified climate conditions. This type of approach 
is advocated by Brown et al. (2002), who believe 
that improved analysis of empirical patterns is 
required (in particular they advocate looking for 
systematic deviations from self-similarity). 

Forecas t ing  a n d  pred ic t ion  v. exp lanat ion  

Malamud et al. (2005) used their power-law 
frequency-area statistics to do probabilistic 
hazard analysis, where they calculated wildfire 
recurrence intervals - the average time between 
events of a given area or larger - for spatial 
'areas' of 1000 km z in each of the ecoregions. A 
map of expected recurrence intervals for wildfire 
areas of 10 k m  2 o r  greater was presented for the 
18 ecoregions of the conterminous USA (Fig. 3). 
Examples of recurrence intervals found included 
2 • 1 years ( •  2 s.d.) in the Mediterranean ecore- 
gion and 203 -t- 99 years (_+ 2 s.d.) in the Warm 
Continental ecoregion. In other words, for the 
Mediterranean ecoregion, in any 1000 k m  2 'area' 
in this ecoregion, the analyses of Malamud et al. 
(2005) would indicate on average one wildfire with 
burned area greater than 10 kill 2 every 1-3  years, 
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Fig. 3. Spatial mapping of wildfire recurrence intervals for the conterminous USA by ecoregion division (figure after 
Malamud et al. 2005). Based on a power-law frequency-area relationship from empirical data for the period 1970- 
2000 (see Fig. 2), recurrence intervals show how many years on average a wildfire of 10 km 2 or larger would be 
expected in spatial areas of 1000 km 2 within each ecoregion division. The legend colours go from black (small 
recurrence intervals) to white (large recurrence intervals), representing 'high' to 'low' hazard, with the legend scale in 
years increasing logarithmically. 

or 33-100% probability of occurring in any given 
year. This is compared to the W a r m  Con t inen ta l  

ecoregion, where there is a 0 .3-1.0% probability 
for the same size wildfire (10 km 2 or greater) occur- 
ring in any given year. 

Even with the large error bars, these results are 
useful for broad generalities of wildfire risk in the 
conterminous USA. The question is whether they 
are useful for accurate probabilistic hazard forecast- 
ing on a finer geographic scale compared with more 
complex models that might provide more accurate 
assessment of the assessment at the cost of 
needing greater parameterization (e.g. Presiler 
et  al. 2004). However, not all scientific models 
must be used for prediction, and Malamud et  al. 
(2005) argue that the two-parameter 'parsimonious' 
power-law model is a useful tool to learn about 
wildfire regimes at broad, regional scales as other 
authors have recently emphasized (Cleland et  al. 

2004; Schoennagel et  al. 2004). 
These studies do not lend themselves easily to 

applied wildfire management in terms of specific 
probabilistic hazard estimation or wildfire predic- 
tion (i.e. when and where a fire will occur) at 
specific points in the landscape. Rather these 
studies are useful to examine the behaviour of 

wildfire regimes at broader scales - for broader 
management issues over longer time-scales and 
larger spatial extents. However, the examination 
of the driving forces and most important processes 
between regions increases understanding of these 
systems and will become increasingly useful for 
management. Describing wildfire regimes through 
the simplified assumption of power-law behaviour 
will be one aspect of this examination of the 
driving forces behind wildfire regimes. 

Finally, there are possible links between other 
more complicated statistical tools and the simple 
power-law approach outlined here. Katz et al. 

(2005, p. 1133) comment that 'an apparently unap- 
preciated connection between the existence of 
power laws in ecology and statistical extreme 
event theory has been identified'. Although 
the usual application of statistics emphasizes the 
mean and variance as a probability distribution's 
parameters of interest, extreme event statistics 
(and extreme value theory) focus on a variable's 
extremal values (Gaines & Denny 1993; Katz 
et  al. 2005). Moritz (1997) compares the 'extremal 
fire regime' (i.e. the distribution of the largest wild- 
fires in each year) in two regions of the Los Padres 
National Forest (California, USA) in relation to 
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wildfire suppression and climatic forcing events. 
Although seemingly comparatively infrequently 
used in fire regime studies, the work of Moritz 
(1997) suggests that the approach has potential 
utility for comparison of wildfire regimes over 
broad space-time scales, and also for exploring 
the relative importance of different forcing mechan- 
isms (by including other environmental factors as 
covariates in models of the extremal wildfire 
regime). A similar approach has been taken by 
Alvarado et al. (1998). Gaines & Denny (1993) 
also comment on the observed spatial consistency 
of parameter estimates of extreme value distri- 
bution, and go so far as to consider that this may 
be indicative of the 'existence of underlying prin- 
ciples governing these phenomena' (p. 1677). The 
question of what drives and/or constrains spatio- 
temporal variability in model coefficients and 
observed probability distributions remains to be 
adequately addressed. 

Conclusion 

Quantitative description of disturbance regimes is 
of considerable interest to ecologists and others, 
from both theoretical and applied standpoints. 
Wildfire frequency-area distributions have 
received ongoing attention. On the one hand ecolo- 
gists are interested in unravelling the importance of 
'extreme' events for ecosystem composition and 
function, on the other there has been considerable 
interest in the idea that power-law frequency-area 
wildfire distributions indicate the presence of 
'self-organized criticality'. From an applied per- 
spective there is an obvious interest in being able 
to predict the likelihood of extreme events for 
hazard management and mitigation. Although 
heavy-tailed distributions typify observed wildfire 
frequency-area distributions, there is considerable 
debate over the exact nature of the probability dis- 
tribution(s) that best describe these data; some 
authors have strongly advocated power laws as 
best descriptors while others have not. 

This debate has been muddied by interpretations 
of systems being self-organized critical depending 
on what type of distribution is observed. Although 
power laws provide a simple and parsimonious 
description of many observed frequency-area dis- 
tributions, more caution needs to be taken in ascrib- 
ing the presence of power laws to a system being in 
the self-organized critical state than has often been 
the case. Studies examining the 'Why?' and 'What 
use?' of power laws in nature should be extended in 
the future. Irrespective of theoretical debates 
regarding the complexity theory underlying wildfire 
distributions, or regarding the distributions them- 
selves, future studies should utilize techniques 
associated with self-organized criticality, cellular 

automata modelling and statistical physics to build 
bridges toward the ecological community. In turn, 
this will allow them to become of greater value as 
tools for examining ecological processes and 
systems, while attempting to improve understand- 
ing of fundamental underlying natural laws. 

The contributions of author B.D.M. were partially sup- 
ported by the UK NERC/EPSRC Grant NER/T/S/ 
2003/00128. 
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