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[1] High-frequency seismograms mainly consist of incoherently scattered waves.
Although their phases are more or less random, their envelopes show smooth and
stable variations depending on frequency and distance. Envelope modeling can thus be
used to infer stochastic parameters of the heterogeneous Earth medium. Radiative transfer
theory (RTT) describes energy transport through a random heterogeneous medium
neglecting phase information and has been frequently used to simulate observed mean
square (MS) envelopes of high-frequency waves. The radiative transfer equations can be
numerically solved by Monte Carlo simulations. So far, mostly isotropic scattering and
acoustic approximations have been used. Here we present an extension of the Monte Carlo
method to the full elastic case including P, S, and conversion scattering where the
single scattering events are described by angular-dependent scattering coefficients in
random media which follow from the Born approximation. In order to validate the
method, the simulated envelopes are compared to average envelopes obtained by full
waveform modeling with a finite difference method in two-dimensional random media
with Gaussian and exponential correlation functions. Envelope shapes agree remarkably
well for both short and long lapse times and for a broad range of scattering parameters.
We conclude that the use of Born scattering coefficients in RTT does not pose severe
limits on its validity range. Even in the strong forward scattering regime, envelope
broadening and peak amplitude delays can be successfully modeled if one includes the
wandering effect as obtained from the parabolic wave equation and Markov
approximation into RTT.
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1. Introduction

[2] High-frequency wave propagation through the inho-
mogeneous Earth medium is an extremely complex process.
The wavefield emitted from a source is strongly deformed
by the scattering process at small-scale random heteroge-
neous structure. Seismograms at distant receivers exhibit
long-lasting and highly variable wave trains usually called
coda waves [Aki, 1969; Aki and Chouet, 1975]. The phase
of coda waves is more or less random, but their envelopes
show a much simpler behavior with smooth variations
depending on distance and frequency. Therefore it has
become common practice to use envelopes instead of
complete waveforms to gain an understanding of the het-
erogeneous structure and the statistical characteristics of the
propagation medium. Amplitude attenuation, peak delay,
envelope broadening, and coda decay rate are some of the

parameters that can be deduced from observed envelope
shapes [e.g., Scherbaum and Sato, 1991; Gusev and
Abubakirov, 1999]. There have been a number of
approaches to model envelope shapes in media with random
fluctuations of the elastic parameters. Among them are
single-scattering Born theory [Sato, 1977], mean wave
theory [Müller and Shapiro, 2001], energy flux model
[Frankel and Wennerberg, 1987; Korn, 1993], and diffusion
theory [Dainty and Toksöz, 1977; Margerin et al., 1998;
Trègourés and van Tiggelen, 2002; Wegler, 2004]. More
recently, the Markov approximation has become popular
[Williamson, 1972; Sato and Fehler, 1998; Saito et al.,
2002; Korn and Sato, 2005]. It is based on the acoustic
parabolic wave equation and is useful to model envelope
broadening and peak delay in the time window near the
direct wave onset in the case of strong forward scattering,
but neglects large angle and conversion scattering. Its
accuracy has been proved by comparison with finite differ-
ence methods [Saito et al., 2003; Korn and Sato, 2005].
Radiative transfer theory (RTT) on the other hand [Wu,
1985; Gusev and Abubakirov, 1987; Hoshiba, 1991; Zeng
et al., 1991; Apresyan and Kravtsov, 1996] describes energy
transport through a scattering medium neglecting phase
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information. It can be strictly derived from the elastic wave
equation [Rytov et al., 1987; Weaver, 1990; Ryzhik et al.,
1996] and is, in principle, capable of modeling both short
and long lapse time coda. Thus it is more general than
Markov theory which is only valid for short lapse times and
diffusion theory which is valid for long lapse times and/or
strong scattering. RTT works well if typical scale length of
the heterogeneities and wavelength are of comparable size,
and if medium fluctuations are moderate. Analytical solutions
to the radiative transfer equation exist for the case of isotropic
scattering in acoustic [Zeng et al., 1991; Paasschens, 1997]
and elastic media [Zeng, 1993]. For more complex cases
numerical solutions employing Monte Carlo (MC) methods
have been employed.
[3] In seismology MC was first proposed by Gusev and

Abubakirov [1987]. Yoshimoto [2000] developed a MC
scheme for scattering of acoustic waves in randomly fluc-
tuating media superimposed on a depth-dependent back-
ground velocity. Later Margerin et al. [2000] solved the
RTT equation for elastic waves including conversion scat-
tering and anisotropic scattering at isolated identical scat-
terers. Shearer and Earle [2004] presented numerical
examples for short-period wave scattering in the mantle.
Here we formulate MC solutions to the elastic wave RTT
equation in two dimensions and compare them to average
mean square (MS) envelopes obtained from finite difference
simulations of complete wavefields in single realizations of
random media with Gaussian and exponential autocorrela-
tion functions. In the acoustic case a comparison between
FD and RTT simulations was done by Wegler et al. [2006].
Restriction to two dimensions is due to the fact that large-
scale three-dimensional (3-D) finite difference computations
are still cumbersome even on today’s computers. Our MC
approach is based on the well-known Born single-scattering
coefficients and includes conversion scattering and angular-
dependent scattering. It is generally expected that Born
approximation breaks down in the regime of strong forward
scattering. Therefore Sato et al. [2004] had proposed a
hybrid method for envelope synthesis combining RTT for
large angle scattering and Markov approximation for for-
ward scattering. Our comparisons show, however, that the
validity range of RTT using Born scattering coefficients
extends much further into the forward scattering regime
than expected, and that the breakdown of RTT occurs in a
predictable manner. Therefore our version of RTT will be
capable of accurately synthesizing complete envelopes from
the first P arrival until the late coda for most practical
applications.

2. Elastic Radiative Transfer Equation

[4] The radiative transfer equation was introduced phe-
nomenologically in astrophysics to describe energy trans-
port of light through the atmosphere [Chandrasekhar,
1960]. Only later, a strict derivation from the wave equation
was achieved [Rytov et al., 1987; Ryzhik et al., 1996;
Weaver, 1990]. Wu [1985] and Hoshiba [1991] introduced
the RTT into seismology to explain the generation of the
seismic coda by seismic wave scattering at the heteroge-
neous structure of the Earth. Usually isotropic scattering of
acoustic waves is simulated. The vector nature of elastic
waves and the conversions between P and S waves are

neglected. Here we use the elastic RTT in 2-D which can be
written as

1
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see Ryzhik et al. [1996] for the 3-D reference. Here I p = I p(t,
x, k̂) and I s = I s(t, x, k̂) are the specific intensities of P and
S waves, respectively. Unit wave numbers k̂0 and k̂ denote
incidence and scattered wave directions. Mean velocities are
a0 and b0 for P and S waves. (The r is an abbreviation for
two-dimensional gradient operator (@/@x, @/@y)). The left-
hand sides of the coupled equations describe the intensity
transport of P and S modes and represent the total time
derivative of intensities. The right-hand sides describe the
influence of scattering through the angular-dependent
scattering coefficients gij(k̂, k̂0) and the total scattering
coefficients gij

0. This is a sum of loss and gain terms, loss
outward from the direction of propagation and gain from all
directions into the direction of propagation. Coupling
between both equations is given by conversion scattering
coefficients gps and gsp. The RTT equation can be derived
from the Bethe-Salpeter equation using the so called ladder
approximation with the validity range (kae)2 	 1 [Rytov et
al., 1987, p.151]. For a complete derivation of RTT from
the wave equation we refer to Ryzhik et al. [1996].
[5] The basic assumptions for the validity of RTT can be

expressed as follows: (1) scattering is weak, (2) wavelength
and scale length of the heterogeneities are of comparable size,
and (3) phases of waves from different scatterers are inde-
pendent of each other, i.e., the energy of scattered wave
packets can be stacked. Numerical solutions can be obtained
by Monte Carlo methods. In the acoustic case this was done,
e.g., by Gusev and Abubakirov [1987], Hoshiba [1991],
Hoshiba [1995], and Yoshimoto [2000]. For vector RTT
equations, see Bal and Moscoso [2000] and Margerin et al.
[2000].

2.1. Random Medium

[6] A random medium can be described by velocity and
density fluctuations around a background mean value. We
write the velocity as

V xð Þ ¼ V0 þ dV xð Þ ¼ V0 1þ x xð Þð Þ; ð2Þ

where x(x) is the fluctuation of wave velocity and

V0 ¼ hV xð Þi hx xð Þi ¼ 0: ð3Þ

The autocorrelation function (ACF) is defined as ensemble
mean value

R yð Þ ¼ hx xð Þx xþ yð Þi; ð4Þ

B04305 PRZYBILLA ET AL.: ELASTIC RADIATIVE TRANSFER

2 of 13

B04305



with variance

e2 ¼ R 0ð Þ ¼ hx xð Þ2i: ð5Þ

In this paper we use the 2-D Gaussian and exponential ACF
Gaussian

RG xð Þ ¼ RG rð Þ ¼ e2 exp �r2=a2
� �

ð6Þ

Exponential

RE xð Þ ¼ RE rð Þ ¼ e2 exp �r=að Þ; ð7Þ

with r = jxj and correlation distance a. The power spectra of
the random media are

PG mð Þ ¼ pa2e2 exp �a2m2=4
� �

ð8Þ

PE mð Þ ¼ 4pe2a2

1þ a2m2ð Þ3=2
: ð9Þ

To reduce the number of independent medium parameters,
we chose correlated velocity and density fluctuations from
Birch’s law [Birch, 1961]:

da
a0

¼ db
b0

¼ n
dr
r0

; ð10Þ

where a0, b0 are P and S wave mean velocities, r is density
and n = 0.8 [Sato and Fehler, 1998].

2.2. Elastic Born Scattering Coefficients

[7] For the scattering coefficients in equation (1), we use
the single scattering coefficients obtained from Born ap-

proximation [Wu and Aki, 1985; Sato and Fehler, 1998]. In
two dimensions they read

gpp qð Þ ¼ g0k
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gss qð Þ ¼ k3s
8p

P 2ks sin q=2ð Þð ÞjX ss
q j2: ð14Þ

Here the argument of the power spectrum P is the absolute

value of exchange wave number j k!
scatt

p;s � k
!inc

p;s j between
scattered and incident wave and q is the scattering angle. We
use kp = ks/g0 with g0 = a0/b0. Quantities

X pp
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g20
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� ��
�2þ 4
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ð15Þ
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Figure 1. Total scattering coefficients for Gaussian (gray lines) and exponential (dashed black lines)
ACF. Conversion scattering coefficients gps

0 and gsp
0 vanish for large values of a ks for Gaussian ACF but

are constant for exponential ACF; ks is S wave number.
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are the scattering patterns, which only depend on scattering
angle. The total scattering coefficients are obtained as mean
values of all scattering directions by integrating the
scattering coefficients over q:

g0kj ¼
1

2p

I
gkjdq: ð19Þ

Indices k and j are p and s, respectively. Figure 1 shows the
dependence of the total scattering coefficients on parameters
e2/a and dimensionless wave number aks. The coefficients
scale linearly with e2/a. Coefficients gpp

0 und gss
0 behave

similar for all values of aks, but conversion scattering
coefficients gps

0 und gsp
0 differ between exponential and

Gaussian ACF. In the Gaussian case, gps
0 and gsp

0 vanish for
large values of aks, but for exponential ACF they are constant.
This means that for large values of aks, no conversion
betweenP and Swaves takes place in the Born approximation
for Gaussian ACF. We return to this point later.

3. Elastic MC Simulations

[8] It is common practice to solve the RTT equation by a
Monte Carlo method. Energy transport is described by wave
packets or particles emitted from the source into arbitrary

directions q and moving with constant velocity until they
experience a scattering event. The distance s between two
scattering events is given by the exponential distribution
For P waves

sp ¼ �lp ln g ð20Þ

For S waves

ss ¼ �ls ln g; ð21Þ

with a uniformly distributed random number g � (0, 1). Here
indices p and s indicate P or S waves, lp and ls are the
scattering mean free path lengths. They are related to the
total scattering coefficients by

lp ¼ g0pp þ g0ps

� ��1

ls ¼ g0ss þ g0sp

� ��1

; ð22Þ

[9] We obtain the scattering mean free times tp* for P
waves and ts* for S waves from the mean free path lengths
by division through the velocities

tp* ¼ lp=vp ts* ¼ ls=vs: ð23Þ

Figure 2. Model representation for (top) Gaussian and
(bottom) exponential random medium. The receivers are
placed long circles at 50, 100, and 150 km distance.

Table 1. Simulation Parameters, Scattering Mean Free Paths, and

Scattering Mean Free Timesa

a, km e, % lp, km tp*, s ls, km ts*, s (ksae)
2

Gaussian Medium
1 2 304 51 168 16 5.3 � 10�3

3.1 5 18 3 6 0.6 0.3
7.5 2 43 7 14 1 0.3

Exponential Medium
1 2 265 44 118 11 5.3 � 10�3

3.1 5 15 2.5 5 0.5 0.3
16 5 3 0.5 1 0.1 8.4
aParameters a and e used for the numerical simulations, the scattering

mean free paths lp and ls (equation (22)) and scattering mean free times ts*
and tp* (equation (23)); the validity condition from the ladder approximation
(kae)2 	 1.

Figure 3. Ensemble averaged FD envelope for an
exponential medium (a = 3.1 km, e = 5%) (black line).
The gray shaded area indicates the fluctuations of the MS
envelopes for different realizations of the random medium.
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For a P wave, the probability � for P-to-P and P-to-S
scattering is given by

� P to Pð Þ ¼
g0pp

g0pp þ g0ps
; � P to Sð Þ ¼ 1�� P to Pð Þ: ð24Þ

For a S wave the probabilities are

� S to Sð Þ ¼ g0ss
g0ss þ g0sp

; � S to Pð Þ ¼ 1�� S to Sð Þ: ð25Þ

After selecting the scattering mode we select the new
propagation direction from the angular-dependent scattering
coefficients through

1� g ¼
Zq

0

gjk q0ð Þ
g0jk

dq0 ð26ÞFigure 4. FD wavelet (solid line) and squared wavelet
(dashed line) without and with an additional Gaussian band-
pass filter (1.6 to 2.4 Hz).

Figure 5. Comparison of MS envelopes for FD (solid gray) and MC (dashed black) simulations in an
exponential medium for 3 combinations of correlation distance a and RMS fluctuations e. The scattering
mean free times are (left) tp* = 44.2 s, ts* = 11.4 s, (middle) tp* = 2.5 s, ts* = 0.5 s, and (right) tp* = 0.5 s, ts* =
0.1 s.
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with an uniformly distributed random variable g � (0, 1).
Because there is usually no analytical solution to the
integrals in equation (26), we perform a numerical
integration and store it into tables. To obtain the MS
envelope at receiver distance r, we count all particles that
pass through a spherical shell of radius r and some thickness
Dr in a small time step Dt as N(r, t). The energy density
which is proportional to MS envelope is then given by

E r; tð Þ ¼ N r; tð Þ
N0V rð Þ ; ð27Þ

whereN0 is the total number of particles andV(r) is the receiver
volume of the spherical shell. For more details of particle
transport, seeLux andKoblinger [1991], and for a probabilistic
theory of transport processes, see Bal et al. [2000].

4. Finite Difference Simulations in 2-D Elastic
Media

[10] For the computation of theoretical waveforms of
vector waves in various realizations of 2-D random media

a standard finite difference technique in space-time domain
is employed. We use a scheme where the equations for
particle velocities and stresses in an isotropic inhomoge-
neous elastic medium are solved on a staggered grid
[Levander, 1988]. The accuracy is second order in time
and fourth order in space. The size of the model is 450 by
450 km (see Figure 2). Mean P and S velocities are a0 = 6
km/s, and b0 = 3.46 km/s. A random fractional velocity
fluctuation x(x) with Gaussian or exponential ACF is
imposed on P and S velocities. Parameter are RMS frac-
tional fluctuation e and correlation distance a. A point
source is located at the center of the grid. It radiates pure
P waves by applying radial stresses to the grid points
surrounding the source. The time derivative of the source
stress is given by

uin ¼ sin
pnt
T

� n

nþ 2

� �
sin

p nþ 2ð Þt
T

0 � t � T ; ð28Þ

where T is the duration of the wavelet and n is a parameter
indicating the number of maxima and minima. Here, we

Figure 6. Same as Figure 5 for Gaussian ACF but with some of parameters a and e different. The
scattering mean free times are (left) tp* = 50.7 s, ts* = 16.2 s, (middle) tp* = 3 s, ts* = 0.6 s, and (right) tp* = 7.2 s,
ts* = 1.4 s.
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choose n = 2 and T = 0.5 s to obtain a wavelet with
dominant frequency of about 2 Hz and spectral half width
between 0.8 and 4.1 Hz. Around the source a homogeneous
region of 1 km width was introduced to ensure pure
isotropic P wave radiation. The wavefield is recorded on
circles at distances of 50, 100, and 150 km from the source.
On each circle, 72 receivers are placed at azimuth
increments of 5 degrees (see Figure 2). The spatial
discretization in the FD scheme is 0.1 km, and the temporal
discretization is 6 ms. This choice ensures that the
numerical errors remain small. In a homogeneous medium
with the mean velocities the phase velocity error introduced
by grid dispersion would be 0.02% at the dominant
frequency. At the boundaries of the computational grid
absorbing boundary conditions are implemented. They are
based on the paraxial approximation of the wave equation
representing only the outgoing part of the wavefield. Here

we use the boundary conditions suggested by Reynolds
[1978] that are easy to implement into the staggered grid
scheme. The presence of artificial boundaries introduce
errors by generating weak spurious reflections and suppres-
sing backward scattering from the area outside the grid. The
grid size is chosen such that within the simulated time
window only the receivers at 150 km are affected at times
greater than 50 s. Numerical simulations have been
performed for two values of RMS velocity fluctuation e =
2% and e = 5%, and for correlation distances ranging from 1
to 16 km. Thus the whole regime from weak forward
scattering to strong forward scattering, has been covered
(see Table 1). For each set of random parameters
simulations for five different realization of the medium
have been performed to obtain a sufficient ensemble
averaging of the random wavefield. In Figure 3 the average
MS envelope of all realizations for one set of parameters e

Figure 7. Same as Figure 6 with an additional band-pass filter applied to the FD traces. The increase of
energy with time after the S onset at r = 50 km (middle) is an effect of strong forward scattering. Large
angle scattering is small near the source for short times. The sag in the envelopes is only observable for
small source receiver distances in a random medium which is poor on small-scale heterogeneities. The
same effect is visible in the acoustic case [Wegler et al., 2006]. We cannot see this effect on the right side
for a = 7.5 km and e = 0.02, because the level of coda energy is less.
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and a is shown together with the maximum and minimum
envelopes obtained from single realizations of the random
medium. We only observe small amplitude fluctuations and
conclude that our procedure provides a stable measure of
the ensemble averaged MS envelopes.
[11] For the comparison with theoretical MS envelopes

from the Monte Carlo simulation the following data pro-
cessing was done: rotation of original components into
radial and transverse components; stacking of the squared
single-component traces of all receivers at fixed common
distance and for all realizations; summing of radial and
transverse squared components to obtain total MS enve-
lopes. For some comparisons with the Monte Carlo enve-
lopes an additional Gaussian bandpass filter was applied as
the first processing step. There is one difference between the
envelope shapes of the Monte Carlo and the FD simula-
tions: In FD the outgoing wavelet has a pulse shape of finite
length, whereas in the Monte Carlo method the particles are
associated with a spike-like time function. In order to
quantitatively compare both envelopes we convolved the
Monte Carlo envelope with the squared FD wavelet. This
wavelet is given as the convolution of the source time
function (equation (4)) with an approximation to the 2-D
far-field Greens function g(t) = 1/

ffiffi
t

p
and may be addition-

ally bandpass filtered as above (Figure 4). Finally, FD and
MC envelopes have been normalized by the time integral of
the total envelope obtained at 50 km distance from the
source in a homogeneous medium without scattering.

5. Comparison of Monte Carlo and FD Envelopes

5.1. Long Lapse Times

[12] Figure 5 shows the MS envelopes up to 60 s lapse
time in logarithmic scale for exponential correlation func-
tion and correlation lengths between 1 and 16 km. Dimen-
sionless wave number aks range from 2.1 to 33.5 for P
waves. We find good agreement in the general coda level
and decay rate for all cases, irrespective of the size of aks.
We note that there is always a small peak in the coda at S
wave arrival time, although no S waves are generated by the
source. This peak obviously is caused by P-to-S conversions
close to the source. Figure 6 shows the same for Gaussian
correlation functions and correlation length a from 1 to
7.5 km. For larger parameter a the coda level is negligibly
small. Coda level and decay rate do not agree between FD
and MC except for the first arrival. Discrepancy becomes
larger with increasing correlation distance. An explanation
for this fact is that the total scattering coefficients gps

0 and gsp
0

Figure 8. Comparison of radial and transversal components of energy density for exponential medium
with a = 3.1 km, e = 0.05.
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(see Figure 1) show a strong dependence on the parameter
aks in the range considered here. This means that in
Gaussian media a small change in frequency will greatly
affect the conversion scattering. This effect is not present in
exponential media. FD envelopes contain a range of fre-
quencies according to the bandwidth of the source signal,
whereas MC envelopes are strictly for one frequency only.
We have applied an additional Gaussian bandpass filter to
the FD traces which decreases the half width of the wavelet
to 1.6–2.4 Hz. The effect of the filter on the shape of the
effective source wavelet is shown in Figure 4. The MS
envelopes of the filtered traces are shown in Figure 7. For
a = 1 km and 3.1 km the FD and MC envelopes now
agree with each other, except that the small peak at S wave
arrival time is not present in the MC envelopes. For the
large correlation distances, however, no agreement is
found after the first arrival. The FD coda level is below
the displayed range, but a peak at S wave arrival time is
still clearly visible, whereas in MC a simple coda decay is

found without any indication of forward scattered S waves.
At r = 150 km the FD envelopes show some energy arriving
after 50 s which is the reflection from the grid boundaries.
Similar reflected energy is present in all simulations, but is at
least one order of magnitude smaller than the coda energy
in the exponential media. A possible explanation is that in
Gaussian media the Born single scattering approximation in
MC breaks down for large ak. The total Born scattering
coefficients for conversion scattering gps

0 and gsp
0 are effec-

tively zero in this case, i.e., no conversion scattering can take
place in MC. FD on the other hand has negligible coda
amplitudes but still shows some S wave energy from
conversion scattering near the source. This may be a conse-
quence of near field scattering of the cylindrical wavefront,
whereas in the Born approximation scattering of plane
wavefronts is assumed. Figure 8 shows a comparison be-
tween FD and MC for radial and transverse component MS
envelopes separately. The energy separation in components
also agrees very well between both methods. It is clearly

Figure 9. Close-up of MS envelope traces (FD and MC) for exponential medium around direct P arrival
time, in linear scaling and different values of a and e. Each tick mark on the x axis is 1 s in time. With
increasing a the influence of traveltime fluctuations becomes more pronounced.
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seen that at long lapse times both components carry about
the same amount of energy. As can be expected the energy
peak around S wave arrival time is only due to the transverse
component, so that it can be interpreted as caused by forward
scattered S waves generated by conversion scattering close
to the source.

5.2. Short Lapse Times

[13] The pulse shape around the arrival time of the direct
P wave is shown in detail in Figures 9 and 10 in linear
scaling. The effective pulse shape is generated by small
angle forward scattering. In the framework of Born approx-
imation, strong forward scattering exists in the limit of large
ak, and the effective pulse shape is given by the interference
of multiply forward scattered waves. This makes the Monte
Carlo solution rather cumbersome numerically because of
short mean free path lengths. On the other hand, the
question arises if radiative energy transfer neglecting phase
differences between forward scattered particles remains
valid at all. Figure 9 shows time windows around the arrival

time of the P wave for different exponential media. For
small correlation distance forward scattering is weak and the
pulse shape essentially reproduces the squared wavelet (see
Figure 4). At larger correlation distances small angle for-
ward scattering becomes stronger and traveltime fluctua-
tions become larger leading to broadening and collapsing of
the FD pulse shapes. The MC envelopes also show some
amount of broadening due to the delay of wave packets by
small angle scattering, but they do not include the effect of
statistical averaging of wave theoretical phase fluctuations
along different paths through the random medium. This
additional effect may be taken into account by considering
the wandering effect [Lee and Jokipii, 1975; Sato and
Fehler, 1998]. The wandering effect is derived from the
parabolic wave equation within the Markov approximation.
It is given by Sato and Fehler [1998] as

w r; tð Þ ¼ v0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pA 0ð Þr

p exp � v20r
2

2A 0ð Þr

� �
; ð29Þ

Figure 10. Same as Figure 9 but for a Gaussian medium with partly different values of a and e. Band-
pass-filtered traces have been used.
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where r is the propagation distance, v0 is the mean velocity
and A is the longitudinal integral of the ACF [Sato and
Fehler, 1998]:

A x ¼ 0; zð Þ �
Z1

0

P x ¼ 0; zð Þdz ¼

ffiffiffi
p

p
e2a Gaussian;

2e2a Exponential;

8<
:

ð30Þ

where z is the direction of propagation. In Figures 11 and 12,
w(r, t) is used as an additional convolution operator for the
MC envelopes. Shape and amplitude of the envelope around
the first arrival now agree very well between MC and FD
even for large ak. This result is remarkable, as the MC
solution using the angle-dependent single scattering coeffi-
cients provides a tool to simulate envelopes of whole wave
trains in randomly fluctuating media from the first P arrival
until the late coda, if the wandering effect is taken into

account additionally. The wandering effect is not part of RTT
and is applied here to P wave energy only, but could be
extended to arbitrary particle paths by counting P and S path
lengths separately and applying the appropriate convolution
to the time function of each particle separately.

6. Discussion and Conclusion

[14] We developed a Monte Carlo scheme for the simu-
lation of MS vector wave envelopes in 2-D random elastic
media. It is based on the radiative transfer theory, where the
individual scattering processes are described by angular-
dependent Born scattering coefficients. The simulated enve-
lopes have been compared to average envelopes derived
from full wavefield simulations with a finite difference
method for a broad range of correlation lengths and for
Gaussian and exponential ACFs. Our general result is that the
Monte Carlo solution yields surprisingly accurate envelope

Figure 11. Direct energy pulses for an exponential medium convolved with the wandering effect
from (equation (29)). The agreement of directly pulses between FD and MC gets better compared with
Figure 9.
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shapes not only for the late coda, but also for the time range of
the initial P and S wave arrival, i.e., forward or small angle
scattering, in the strong forward scattering regime ak � 1.
This is surprising, as it is predicted from theoretical consid-
erations that radiative transfer breaks down in these cases.
For the acoustic case, Wegler et al. [2006] found similar
results by comparing RTT with Markov approximation and
FD simulations.
[15] RTT cannot explain the pulse broadening occurring

for ak � 1 caused by traveltime fluctuations of individual
ray paths through the random medium which is present in
the FD stacks. However, this broadening is well described
by the wandering effect which is given analytically, and can
be easily included by convolving the MC envelopes with
the appropriate filter function. Moreover, this effect only
appears in data, if an envelope stack is done without first
correcting for traveltime fluctuations of the individual
traces. If the traces are aligned to the first onset before
stacking, the wandering effect will disappear. Only for
Gaussian ACF, weak perturbation and strong forward scat-

tering a discrepancy occurs between RTT and FD. We
speculate that this could be caused by near field terms
which are neglected in the Born approximation, but are
responsible for conversion scattering observed in the FD
simulations. We also find that in this case the coda level
may be very sensitive to small changes in frequency.
[16] Because of the expected breakdown of Born approx-

imation for ak � 1, Sato et al. [2004] proposed a hybrid
method for acoustic waves, where the Born scattering
coefficients are replaced by so-called momentum transfer
scattering coefficients which exclude the near forward
direction and replace the large angle part by some effective
isotropic scattering coefficient. Forward scattered waves are
then modeled by a Markov propagator. Our results show
that it does not seem to be necessary to model early and late
coda parts with different analytical or numerical approaches,
but that the use of angular-dependent Born coefficients in
RTT offers a unified approach. However, a disadvantage of
our version of RTT in the strong forward scattering regime
is that the mean free path length becomes very small.

Figure 12. Same as Figure 11 for a Gaussian medium convolved with the wandering effect
(equation (29)).
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Therefore many scattering interactions have to be computed,
but each time the particle is scattered close to the forward
direction and therefore effectively follows an almost straight
ray path. This multiple scattering increases computing time
substantially. One may think of clever algorithms that replace
a whole sequence of forward scattering events with an
increase of mean free path length.
[17] Here, we restricted ourselves to the 2-D case, because

our aim was to validate the envelope simulation method
against full solutions of the elastic equations. FDmethods for
three dimensions are available, but are still very cumbersome
to use on most computers. We do not expect, however, that
going to three dimensions will change our results signifi-
cantly. One of the advantages of the MC method is that
it is flexible. It is straightforward to implement variable
background velocities, anisotropic source radiation patterns
and reflection/transmission at discontinuities. We therefore
conclude that the method has the potential of modeling
envelopes in arbitrarily complex elastic media.

[18] Acknowledgments. This work was supported by Deutsche
Forschungsgemeinschaft, under contract KO1068/5. We thank Haruo Sato
for many stimulating discussions.
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