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[1] The superplume hypothesis, particularly for one in the mid-Cretaceous, has stimulated
the search for evidence for or against such an event and the associated superswell. An
approach based on normal mode relaxation theory makes it possible to simulate the
surface deformation caused by the rising plume using a spherical, self-gravitating and
stratified viscoelastic Earth model. The results for the superswell are consistent with those
of previous analyses using convection and experimental modeling. The self-consistent
coupling of elastic and viscous properties based on Maxwell rheology reveals that
elasticity plays an important role contributing up to 30% to surface swelling when the
plume head crosses the upper mantle. We show that the deformation at great distances
from the superswell is relatively small, of the order of meters at most, and opposite in sign
with respect to the large uplift over the plume, of the order of kilometers. The global
subsidence over a wide region of the planet surrounding the superswell counteracts its
effects on sea level changes and triggers a ‘‘eustatic’’ signal of a few meters at most, a
negligible magnitude with respect to 250 m characteristic for the mid-Cretaceous.
Previous arguments against the mid-Cretaceous superplume hypothesis, which assume
that the large amount of water displaced by the superswell causes a ‘‘eustatic’’ sea level
rise of about 200 m thus competing with the displacement due to oceanic crust production,
are no longer tenable since such estimates did not account for the global behavior of
the planet under internal loads.
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1. Introduction

[2] There is no unanimous definition of plume, the term
being used to indicate both buoyant rising material origi-
nating from the thermal boundary layer between the upper
and lower mantle and extended regions of the lower mantle
underlying surface superswells that are visible in seismic
tomography. These latter regions are often referred to as
‘‘mega-’’ or ‘‘super-plumes,’’ and, although the terms can
also indicate the ancient large plumes which originated from
the boundary layer between the core and the lower mantle,
superplumes have been put forward since the 1990s to
explain large igneous provinces (LIPs) [Larson, 1991a,
1991b]. While the plume hypothesis is not universally
accepted, it is hoped that refinements in seismic tomography
capabilities will make it possible to arrive at an evidence for
the existence of plumes [Montelli et al., 2004]. Morgan
[1971, 1972] suggests that plumes originate from the core-
mantle interface and are due to local heating and rising of
the buoyant material. Yet, since the 1990s other mechanisms
have been proposed to explain the origin of the plumes
[Griffiths and Campbell, 1990; Dobrestov et al., 2003], and

many superplume (and plume) features have been inferred
from numerical fluid-dynamic models within Boussinesq
approximation schemes [Van Keken, 1997; Marquart et al.,
2000] and laboratory experiments [Griffiths and Campbell,
1990]. Some of these features, i.e., shape, dimensions,
excess temperature and the velocity of the rising material
are the input data for our superplume simulation. These
numerical and analogical models are generally flat, not
spherical, Earth models. Furthermore, within the same
scheme, they also estimated the lithospheric swell caused
by the plume.
[3] The dynamic topography in this class of mantle fluid-

dynamic models are usually worked out from an a posteriori
evaluation of the normal stress at the surface of the fluid.
However, the study of surface deformation induced by
internal density anomalies can be performed via a totally
different approach with respect to the classical fluid dynamic
model noted above. This approach is based on Maxwell
viscoelastic normal mode theory, i.e., a spectral method
whereby the fields are expanded in spherical harmonics
[Peltier, 1974; Sabadini et al., 1982], and is particularly
appropriate to investigate the effects of different wavelength
components of surface deformation induced by any kind of
source, thus also by internal density anomalies as done in the
present study. Furthermore, the use of viscoelastic Maxwell
Earth allows to decouple the pure elastic and the viscous
contributions, thus allowing an important physical insight
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into the intimate dual nature, elastic and viscous, of our
planet, for mantle density anomaly even on convection
timescales.
[4] Use of viscoelastic Maxwell rheology is not a novelty

in modeling the effects of mantle density anomalies. Ricard
and Sabadini [1990] already pointed out the effects of
Maxwell rheology on the buildup of geoid anomalies
induced by redistribution of mass within the Earth in
comparison with purely viscous models [Richards and
Hager, 1984]. Viscoelastic Maxwell rheology has been used
afterward for the interpretation of a variety of geophysical
or geological observables, such as the displacement of the
axis of rotation on timescales of hundred million years
driven by subduction or upwelling plumes, as in work by
Spada et al. [1992a] and Greff-Lefftz [2004], and eustatic
sea level fluctuations induced by polar wander, as in work
by Sabadini et al. [1990].
[5] LIPs are among the most important phenomena attrib-

uted to plumes, especially those from the mid-Cretaceous, a
period characterized by some of the most anomalous events
from a geological viewpoint. Increases in sea level of the
order of 250 m with respect to the present-day level are
certainly among the most sensational events to have occurred
in that geologic era. The plumes hypothesized for LIP
formation have been characterized well enough to serve as
the basis of the present study via normal mode viscoelastic
theory. We thus use plume terminology to indicate the
superplumes rising from the deep part of the mantle, i.e.,
the core-mantle boundary (CMB).
[6] The hypothesis of the mid-Cretaceous superplume has

been proposed by Larson [1991a, 1991b], and beyond the
arguments in its favor, there have been criticisms such as
those by Hardebeck and Anderson [1996]. Their argument
is that the large oceanic crust production proposed by
Larson [1991a, 1991b] together with the superswell caused
by the superplume should have produced a eustatic sea level
rise of about 470 m, the superswell contributing 220 m,
which is inconsistent with the observed value of about 250 m.
Thus, together with Earth’s surface displacement caused by
plumes, we want to evaluate also the global quantity called
‘‘eustatic sea level’’ (or eustasy) byHardebeck and Anderson
[1996]. On the basis of a simple reasoning, based on mass
conservation principle, we can anticipate that the superswell
caused by the superplume, cannot produce the large global
sea level rise proposed by Hardebeck and Anderson [1996].
In fact, their estimate of global sea level rise accounts only for
the volume forming the superswell itself, but that volume is
made by material displaced from somewhere else in the
Earth, necessarily producing a subsidence which compen-
sates for the global sea level rise of the swell alone. An
interesting question is thus where is that subsidence located
and how large is it, focusing in particular on the influence of
elastic lithospheric thickness and of dry land distribution over
global sea level changes.

2. Earth Model

[7] The choice of Earth model is directly dependent on
the kind of phenomena under study and on its mathematical
tools and facilities. Since one of the final targets of the
present analysis is the evaluation of sea level changes
induced by mantle plumes, the spherical, self-gravitating,

radially stratified viscoelastic Earth model, which is based
on the linear Maxwell rheology and expanded in spherical
harmonics, is the natural choice, thanks to the characteristics
of these functions. The latter in fact self-consistently takes
into account the effects of the elastic and viscous properties
of the Earth for any kind of source on any of the three fields,
namely vertical, horizontal displacements and gravity, in the
near and in the far field, which in our analysis means at the
antipodes with respect to the swell. These properties are
fundamental for the evaluation of global quantities such as
global sea level changes. Furthermore, the mathematical
tools of normal mode expansion enable physical insight into
the studied phenomena in terms of wavelengths, allowing to
discriminate among the various spatial scales affecting the
geophysical process under study.

2.1. Normal Mode Theory for Internal
Density Anomalies

[8] The effects of mantle plumes are modeled by means
of normal mode relaxation theory for an incompressible,
stratified Earth. The explicit expression of the singular part
of the Green function for spheroidal, incompressible defor-
mation and gravitational perturbation, entering the funda-
mental matrix, necessary for modeling a multilayered Earth,
has first been given by Sabadini et al. [1982], while the
explicit expression for the inverse of the fundamental
matrix, necessary for propagating the viscoelastic solution
from the CMB to the Earth’s surface, has first been given by
Spada et al. [1990, 1992b]. Mathematical details for
retrieving the fundamental matrix for stratified, viscoelastic
Earth’smodels are given by Sabadini andVermeersen [2004].
[9] Given the normal mode approach, the momentum and

the Poisson equations for a Maxwell viscoelastic solid are
expanded in spherical harmonics after the methodology of
Phinney and Burridge [1973]. The Correspondence Princi-
ple is then applied to retrieve the viscoelastic solution in
time domain. Similarly to the viscoelastic models used in
the literature to model the effects of internal mass anomalies
on geophysical observables [Ricard and Sabadini, 1990;
Spada et al., 1992a; Greff-Lefftz, 2004], our Earth model
consists of four layers where the density and rigidity are
specialized for an incompressible material (infinite bulk
modulus) and volume averaged from PREM [Dziewonski
and Anderson, 1981].
[10] Two lithospheric models are considered, with a 121-

and 32.2-km elastic lithosphere, obtained by letting the
viscosity n ! 1 in the layer overlying an upper and a
lower mantle, where the upper and lower mantle viscosities
are fixed at 3.3 � 1020 and 1022 Pa s, respectively, and the
core, as shown in Table 1. The 121-km lithospheric thick-
ness is thus appropriate for modeling an average continental
lithosphere as inferred by Yuen et al. [1983] from TPW and
Length Of Day (LOD) variations on the basis of a four-layer
viscoelastic model (as considered here). The 32.2-km lith-
ospheric thickness, instead, is suitable for oceanic litho-
sphere, according to observations of flexure of oceanic
lithosphere [Watts, 1978]. The lower mantle is thus 30 times
more viscous than the upper mantle, in agreement not only
with global geodynamic data, as in work by Mitrovica and
Forte [2004] but also with Post-Glacial Rebound analyses,
as in work by James and Ivins [1997] and Tosi et al. [2005].
In particular, we have used the same viscosity values as in

B04404 BARLETTA AND SABADINI: SUPERPLUME EFFECTS VIA RELAXATION THEORY

2 of 23

B04404



Table 7 of Tosi et al. [2005], retrieved from inversion of
mantle viscosities on the basis of Maxwell viscoelastic
mantle rheology and long-wavelength, time varying gravity
variations. Although identical to the four-layer viscoelastic
models used in a series of previous studies in terms of
parameter values, ours is based on exact integer algebra, as
discussed in detail afterward, so as to secure the highest
accuracy in the evaluation of Green functions.
[11] PREM volume average densities overestimate the

density jump at 670 km depth at the upper-lower mantle
interface, mainly affecting the slow M1 mode, whose
relaxation time is portrayed, for example, in Figure 2 of
Spada et al. [1992b], a mode characterizing chemical
interfaces, and not included in the modeling of phase-
change interfaces [Ricard and Sabadini, 1990]. Sabadini
et al. [1990] have shown, on the other hand, that for a
viscously stratified mantle as considered here in agreement
with Mitrovica and Forte [2004], James and Ivins [1997]
and Tosi et al. [2005], the buoyant effect, and thus the
strength, of the M1 mode are offset by the viscosity
hardening of the lower mantle, which makes chemical and
phase-change interfaces to behave similarly and essentially
to make our overestimation of the density jump at the upper-
lower mantle interface ineffective.
[12] Both chemical and phase-change interfaces here are

considered at the upper-lower mantle boundary at 670 km
depth. Chemical boundary includes the M1 mode excited by
the density discontinuity at 670 km, while in the phase-
change interface this mode is not included: the M1 mode
inhibits displacement of the 670 km interface and thus
mimics the behavior of a chemical boundary where no
material crosses, while deleting the M1 mode simulates a
phase-change boundary, where material does cross the
boundary. Including or deleting the M1 mode is the usual
way of simulating chemical and phase-change interfaces in
viscoelastic normal mode theory, when the realistic kinetics
of the 670 km interface cannot be fully exploited [Ricard
and Sabadini, 1990; Sabadini et al., 2002].
[13] Our analytical treatment requires a laterally homo-

geneous Earth model and thus the spheroidal solution,
which is the only one to be dealt with for internal loading,
does not contain any longitudinal component. The radial
and tangential displacement components and the perturba-
tion of the gravitational potential are then expanded in
Legendre polynomials P‘(cos q) rather than in spherical
harmonics. The radial and tangential displacement compo-
nents u and v and the perturbation in the gravitational
potential f1, as functions of the scalars U‘, V‘ and f1,‘,
which depend on the harmonic degree ‘ and on the radial

distance rs of the source from the center of the Earth, are
thus given as a function of the Love numbers h‘, l‘ and k‘,

U‘

V‘

f1;‘

2
4

3
5 ¼

f2;‘

g

h‘
l‘

k‘ g

2
4

3
5; ð1Þ

where g is the gravity acceleration evaluated on the surface
of the Earth.
[14] The harmonic coefficients of the perturbing potential

f2 are

f2;‘ rsð Þ ¼ a g

MT

rs

a

� �‘
; ð2Þ

and if the perturbed potential f‘ denotes the total potential
f1 + f2, by introducing the generalized Love numbers
defined as follows, we have

U‘ rsð Þ
V‘ rsð Þ
f‘ rsð Þ

2
4

3
5 ¼ a

MT

h‘ rsð Þ
l‘ rsð Þ
k‘ rsð Þg

2
4

3
5; ð3Þ

where h‘(rs), l‘(rs) and k‘(rs) are now defined according to
the previous three equations, and MT and a are the mass and
the radius of the Earth, respectively. We should remind
that the quantities U‘, V‘ and f‘ are defined for a unitary
mass, i.e., the point-like source.
[15] Application of the residue theorem to evaluate the

inverse Laplace transform from the s-domain to the time
domain results into the solution for the fields U‘, V‘ and f‘
at the surface of the Earth. The Love number pertaining to
the radial displacement becomes

h‘ rs; tð Þ ¼ h‘ e rsð Þd tð Þ þ
XM
j¼1

h‘ j rsð Þ esjt; ð4Þ

where sj are the inverse relaxation times and rs is the radial
distance of the source.

2.2. Rising Density Anomaly

[16] A column of density anomaly, as sketched in
Figure 1, grows in time according to the law of motion
rs(t), with rs denoting the depth of the density anomaly as a
function of time, from the core-mantle interface R0 to the
lithosphere-mantle interface R1. This column is built up by
thin contributions of thickness drs(t) which, once excited,
remain constant in time, as described by the Heaviside
function, and are excited one after the other according to
the law of motion rs(t). The convolution in time of the
Green function (equation (4)) with the Heaviside function
gives the following harmonic coefficients for a point-like
density anomaly,

h‘ rs tð Þ ¼ he rs tð Þð Þ �
X
j

hj rs tð Þð Þ
sj

1� esj t�tð Þ
� � !

H t � tð Þ:

ð5Þ

[17] The harmonic coefficients for the vertical displace-
ment for a rising column in dimensionless form is then

Table 1. Rheological Structure

Layer r, km r, kg/m3 m, Pa n, Pa

Lithosphere Thickness 121 km
1 6371 3234.0 5.99 � 1010 1.0 � 1050

2 6250 3631.0 8.60 � 1010 3.3 � 1020

3 5701 4878.0 2.17 � 1011 1.0 � 1022

4 3480 10,932. 0.00 0.0

Lithosphere Thickness 32.2 km
1 6371.0 2713.50 4.16072 � 1010 1.0 � 1050

2 6338.8 3601.03 8.60938 � 1010 3.3 � 1020

3 5701.0 4890.64 2.20957 � 1011 1.0 � 1022

4 3480.0 10,932. 0.00 0.0
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obtained by integrating over rs(t) between an initial and a
final time ti and tf so that rs(ti) = R0 and rs(tf) = R1. If the
dependence on t is all in rs(t), for example, in the first
addendum in equation (5), it is convenient to integrate over
r between R0 and R1, otherwise it is easier to explicit the
dependence on t and integrate over t, so we obtain

h‘½ 
 tð Þ ¼
Z R1

R0

he r½ 
 þ
X
j

hj r½ 

sj

 !
H rs tð Þ � rð Þdr

þ
Z tf

ti

X
j

hj rs tð Þ½ 

sj

esj t�tð ÞH t � tð Þ _rs tð Þdt; ð6Þ

where the dot denotes the time derivative and the two
contributions, from the fluid or steady state limit and from
the transient part containing the decaying exponentials, have
been separated and in the second integral the time
dependence is left explicit. If the first integral in
equation (6) is indicated by [h‘]

F(t) and the second integral
by [h‘]

T(t), the function for the rising anomaly can be
shortly written as

h‘½ 
 tð Þ ¼ h‘½ 
F tð Þ þ h‘½ 
T tð Þ: ð7Þ

[18] Notice that, analyzing the first integral in equation (6),
the amplitude of the fluid part [h‘]

F(t) is unaffected by the law
of motion rs(t) or by the velocity law _rs(t). In fact, by defining
p @ rs(t), the integral function [h‘]

F(t) can be written as a
parametric function as follows:

h‘½ 
F tð Þ ¼ p ¼ rs tð Þ
h‘½ 
F pð Þ

�
;

where [h‘]
F(p) is a function of the position p, and the

function rs(t) controls only the dilatation of the function on
the t axis.
[19] On the contrary, the amplitude of the transient part

[h‘]
T(t) depends on _rs(t) which is a velocity (constant or

variable), considered positive. Replacing the function _rs(t)
by its maximum vmax, it is easy to see that the new function
[h‘]

T(t) is always greater than the previous one, and this
makes the maximum of the transient term roughly linearly
dependent on the maximum of the rising velocity. Further-
more, when the maximum velocity vmax of the rising
anomaly is below 10–15 cm/yr, it is possible to demon-
strate, from the mathematical standpoint and from the
findings in Figure 5 in section 4.3, as discussed below, that
under the considered conditions the transient term [h‘]

T(t) is
negligible with respect to the fluid one [h‘]

F(t).

[20] Thus it is possible to simplify the problem by
neglecting the transient part, and so the dependence on
velocity _rs(t). These results are used in the following section
to simplify the plume model.

3. Plume Model

[21] The well-known idea of a plume with mushroom-
shaped head and conduit has been inspired by experiments,
such as the injection of low viscosity fluid at the base of a
viscous fluid [Griffiths and Campbell, 1990; Kumagai,
2002], even though it is possible to reproduce the head
and conduit by numerical simulations [Van Keken, 1997].
Another kind of experiment is based on the localized fusion
of crystalized bodies [Kirdyashkin et al., 1987]. In these
experiments the head and the conduit are not observed.
These characteristics are thus sufficiently relevant to
discriminate among the various plume shapes and hypoth-
eses and may be helpful for the interpretation of seismic
tomography images; the missing head and conduit in the
mantle regions where the plumes have been hypothesized,
could be ascribed to insufficient resolution of seismic
tomography.
[22] The driving force of hot rising plumes is thermal

buoyancy but phase changes modify the material of the
mantle, thereby affecting buoyancy. Marquart et al. [2000]
focus on the temperature and dimension that must charac-
terize the plume so that it can cross the thermal interface,
concluding that the radius has to be larger than about 100 km
and the temperature contrasts have to be larger than 400�C;
the highest rising velocity is about 14 cm/yr, being reduced
to 3 cm/yr at the interface. Richards et al. [1989] suggested
that most LIPs are due to rapid melting of the plume head,
and Coffin and Eldholm [1993] estimated the mantle vol-
ume necessary to generate many of them. For instance, for
the Ontong Java Plateau, the plume radius has been esti-
mated as between 350–600 km.
[23] While White and McKenzie [1989] suggested for

large thermal anomalies underneath the lithosphere plume
radii of the order of 2000 km, the head of the anomaly
should be considered as squeezing and widening with
respect to the effective spherical radius of about 300 km.
Griffiths and Campbell [1990] also suggested large plumes,
studying the transport properties within the plumes in
laboratory experiments and concluding that the plume’s
head should have a radius of the order of 500 km
when it hits the upper mantle; the transport properties, on
the other hand, critically depend on how the plume is
formed, i.e., whether it originates at the thermal interface
or it has been created by injection of matter [Van Keken,
1997]. Numerical experiments using 2-D cylinders for
plumes from the thermal interface show that the effective
radius should be of the order of 120–170 km for Rayleigh
numbers of the order of 4.4 � 107 –5 � 106 [Van
Keken, 1997]. The dimensions of laboratory and numeri-
cally generated plumes thus depend on the conditions of the
mantle layers, although it is generally agreed that LIPs are
generated by large plumes with effective radii larger than
200 km.
[24] As anticipated, another important parameter is the

excess temperature, which Schilling [1991] estimated from
petrology and geochemistry to be of the order of 250�C.

Figure 1. Sketch of three stages of the rising column at
velocity v, leaving the CMB, denoted by R0, at ti, and
reaching the bottom of the lithosphere denoted by R1 at tf.
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While Hawaii numerical models indicate an excess temper-
ature of 280�C [Watson and McKenzie, 1991], dynamic
models of the plume-lithosphere interaction show that
plume head excess temperature would be 350�C [Farnetani
and Richards, 1994].
[25] For surface uplift, Farnetani and Richards [1994]

evaluated the vertical displacement (of the surface) over the
plume, as modeled by a sphere characterized by an initial
radius of 400 km and an excess temperature of 350�C, and
they came up with a vertical displacement range of 2–4 km.
Griffiths and Campbell [1991], working on larger plumes,
obtained a smaller swell of about 600 m.
[26] Other studies have focused on the bulge induced on

the lithosphere by more general internal mass heterogene-
ities, rather than plumes, such as the large topography
excess over Africa [Gurnis et al., 2000; Lithgow-Bertelloni
and Silver, 1998]. From lower mantle density contrasts
inferred from seismic tomography, Gurnis et al. [2000]
estimate the surface uplift to be of the order of 1 km, on
the basis of the rate of uplift. Furthermore, Forte and
Woodward [1997], from the global viscous flow driven by
the seismically inferred mantle density anomalies, estimated
a dynamic topography of 2 km at most, at long wavelengths
from harmonic degree ‘ = 1 to ‘ = 8.
[27] Given the absence of a clear definition of plume and

of its variety of shape and dimension, it seems plausible to
build as simple a plume model as possible, for example a
sphere to simulate the head and an underlying column to
simulate the conduit. This approach has been taken in
several fluid dynamic and true polar wander simulations
[Gurnis et al., 2000; Greff-Lefftz, 2004]. Yet since our main
goal is to evaluate the global effects induced by plumes,
rather than the detail of the surface deformation patterns,
modeling the plume head by means of a cylinder has been
preferred to the sphere because it is simpler from the
mathematical point of view. Furthermore, in order to com-
pare the results with other simulations in the literature, the
volume of the cylinder is taken as that of the equivalent
sphere, so that the radius of the cylinder is identical to the
sphere’s and its height is four thirds of the radius’. We
employ three shapes in our final analysis: a cylinder for the
plume head, a column for the conduit and the combination
of the two.
[28] The thermal expansion coefficient varies between

a = 2.5 � 10�5 and a = 3 � 10�5 K�1. As noted above,
the excess temperature DT of the plume ranges between
250 a 350�C. If r0 denotes the background density, the
density contrast is given by

Dr ¼ �r0 aDT : ð8Þ

[29] The density contrast is chosen by fixing aDT = 10�2,
which corresponds to a 330–400�C temperature range and
to a thermal expansion coefficient varying as previously
specified. The density contrast agrees, for example, with
that inferred from seismic tomography, varying between �1
and +1% with respect to the background density [Gurnis et
al., 2000].
[30] A plume which leaves the core-mantle interface and

reaches the base of the lithosphere, crosses the two different
densities of the lower and upper mantle. The mass of the

anomaly is assumed to remain constant when passing
through the lower-upper mantle interface, implying that

r2A2dr ¼ r3A3dr; ð9Þ

i.e., in the lower mantle (layer 3 with density r3) an
infinitesimal portion of the column (or cylinder) of area A3

and thickness dr conserves its mass when it enters the upper
mantle (layer 2 with density r2).
[31] The results of the present analysis will be compared

to those of Farnetani and Richards [1994], who employed a
sphere with an initial radius of 400 km. This means that in
our simulation the cylinder has a radius of 460 km while it
is crossing the uppermost layer, with height of h = 613 km.
A column with 300 km radius will also be treated, together
with a cylinder having a 300 km radius overlying a conduit
with a 100 km radius, the ratio thus being one third.
[32] The plume in our analysis will cross the upper-lower

mantle interface, which is modeled by means of both a
chemical and phase-change boundaries: chemical interface
does not allow the mantle material to cross the boundary,
while the phase-change does. The superplume acts on the
timescale of tens of millions of year and, being such a slow
process, it is reasonable to consider the phase-change
interface for the superplume simulation; both interfaces
are considered first, focusing on phase-change upper-lower
mantle interface in the final simulations.
[33] The plume’s rising velocity is treated as a kinematic

condition and, although it is not constant when, for exam-
ple, the anomaly is crossing the upper-lower mantle inter-
face at 670 km depth, as shown by Marquart et al. [2000],
we assume it as constant on the basis of the considerations
above. In fact, we have shown in the previous section that
the rising velocity controls only the duration of the process,
namely the dilatation of the t axes.

4. Evaluation of the Green Functions for
Internal Loads

[34] In order to retrieve an analytical expression of the
harmonic coefficients as a function of source depth, a
symbolic manipulator is used to make the analytical eval-
uation of the integrals in equation (6) easier. Furthermore, in
order to avoid any problem due to numerical instability
caused by stiffness of the fundamental matrix for stratified,
viscoelastic, incompressible Earth, first defined by Sabadini
et al. [1982], all the calculations are based on exact integer
numbers so as to secure the highest accuracy until the very
end of the calculations, when they are approximated to real
numbers or when the roots and residues are evaluated.
Stiffness is due the regular and singular parts of the
fundamental matrix, necessary for evaluating the viscoelas-
tic solution, behaving as (r/a)‘ and (r/a)�‘ for ‘!1, where
a is the Earth’s radius and ‘ is the harmonic degree. Since
the radii r where interfaces are located are smaller than the
Earth’s radius, (r/a)‘ ! 0 and (r/a)�‘ !1 in the evaluation
of the viscoelastic solution, we have to cope with differ-
ences between extremely small and extremely large numb-
ers. Details on the behavior of the fundamental matrix and
on the technique to avoid such numerical difficulties are
discussed by Riva and Vermeersen [2002]. Although the
technique proposed by Riva and Vermeersen [2002] has not
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been applied in our analysis, our final results are not
affected by inaccuracies, thanks to the use of integer
algebra.
[35] Matrix propagation from CMB up to Earth’s surface

and evaluation of secular determinant for evaluation of
inverse relaxation times are carried on by means of sym-
bolic calculus. Green function are then obtained as explicit
functions of depth source rs, thus allowing to derive
analytical expressions for the integral functions given by
equations (12) and (13) in the following. Plume upwelling is
in this way modeled by means of continuous, not step-like,
functions in time.

4.1. Fluid Limit for Internal Loads

[36] It is necessary to estimate the number of spherical
harmonics that must be summed up for convergence of the
solution. In principle, any geophysical process requires that
a characteristic harmonic degree ‘ is reached in the expan-
sion so as to ensure that the solution is accurate enough. For
example, use of normal mode theory to evaluate the co-
seismic displacement for shallow earthquakes requires
summation over 40,000 spherical harmonics, while for
post-seismic deformation from the same source summation
over 3000 harmonics is appropriate [Dalla Via et al., 2005].
Reconstruction of the geophysical observable associated
with post-glacial rebound, and thus redistribution of surface
loads, requires summation over about 150 spherical har-
monics [Mitrovica and Peltier, 1989]. This usually depends
on the dimensions of the source load, but we show that this
also depends on the trend of the harmonic coefficients of the
Green functions with the harmonic degree. In order to
estimate the truncation level, and thus the highest spherical
harmonic degree for the present problem associated with
internal loads, the fluid limit for t = 1, given by the
following expression:

hf ¼ he rsð Þ �
X
j

hj rsð Þ
sj

ð10Þ

is considered, which includes the elastic and viscous
contribution hE, hV, according to

hE rsð Þ ¼ he rsð Þ and hV rsð Þ ¼
X
j

hj rsð Þ
sj

: ð11Þ

We note that elasticity, through hE, enters the fluid (or
steady state) limit of the Green functions, simply reflecting
the intimate nature of the mechanical behavior of the entire
Earth, including mantle and lithosphere, which behaves
simultaneously as an elastic and viscous material, as
appropriately modeled by viscoelasticity.
[37] For surface loads, Le Meur and Hindmarsh [2000]

analyzed the Gibbs phenomenon and the methodology to be
applied to overcome its effects due to truncation of the
series. Following their procedure, we evaluate the spherical
harmonic coefficients of the surface vertical displacement in
dimensionless form up to the harmonic degree ‘ = 100, as a
function of the load depth within the mantle, the lithosphere
and at the Earth’s surface. Both cases of phase-change and
chemical interfaces between the upper and lower mantle,
which affect solely the viscous response, are taken into
account.

[38] As anticipated by Farrel [1972], Le Meur and
Hindmarsh [2000] show that the major problem with the
truncation is the elastic contribution. In fact, for surface
loads it tends asymptotically, for increasing ‘, to a nonvan-
ishing negative value (their Figure 3), while the viscous
contribution for chemical interface tends to zero (their
Figure 2).
[39] Figure 2 shows the elastic contribution of the

fluid limit as a function of the harmonic degree ‘, for
embedded loads with depth ranging from the Earth’s sur-
face, corresponding to the 6371 S case, light gray, to the
core-lower mantle boundary, 3480 CMB case, black dots.
Both elastic (light gray dotted curve in Figure 2) and
viscous contributions for surface loads evaluated within
our scheme for a chemical interface agree with the findings
of Le Meur and Hindmarsh [2000] (their Figures 2 and 3),
which confirms the validity of the methodology used in the
present study.
[40] This means that for a surface load the truncation

problem is driven by the harmonic coefficient of the load,
i.e., the smaller is the load and the higher is the truncation
degree. For the internal load, instead, we show that the
truncation problem is driven only by the intimate behavior
of the Earth, i.e., the harmonic coefficient of the Green
functions and in particular of its elastic contribution.
[41] In fact, increasing the depth of the source makes the

elastic contribution tend to zero with increasing ‘, as Figure 2
shows. For loads embedded at the upper-lower mantle
interface (5701 UM-LM case) the elastic contribution after
‘ = 60 is almost negligible, and at the CMB it vanishes for
very low degrees, namely after ‘ = 10. Although it is not
shown here, we obtain also that the viscous contribution
tends to zero for increasing ‘ not only for surface loads
but also for deep ones, and much faster than the elastic
contribution.
[42] The behavior of both the viscous and the elastic

contribution means that increasing the depth of the source

Figure 2. Elastic component hE as function of the
harmonic degree ‘, evaluated for a unitary load embedded
at the Earth surface S at 6371 km, at the lithosphere–upper
mantle interface L-UM at 6250 km, at 6030 km, at the
upper-lower mantle interface UM-LM at 5701 km, and at
the CMB at 3480 km.
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makes the portion of the Earth overlying the source acting
as a low-pass filter, with the details of the load being
increasingly filtered out with depth. The same behavior
can easily be seen in the fluid limit hf in Figure 3, which
provides a global view of the dependence of the fluid limit
hf as a function of the radial distance of the density anomaly
rs, vertical axis, and harmonic degree ‘, horizontal axis; the
left panel stands for a chemical interface and the right one
for a phase-change interface. The darker the gray, the
negatively larger is the amplitude of hf, as shown by the
dark spots between the surface and depths of about 400 km,
or radial distance of 6000 km, and harmonic degrees
varying between ‘ = 10 and ‘ = 60, indicating that the
effects on the vertical displacement is the largest for density
anomalies embedded in the upper mantle, for both chemical
and phase-change interfaces. This means that even at
shallow source depths, the portion of the Earth overlying
the source acts as a low-pass filter and contributions for ‘
higher than 60 are negligible. For a chemical interface, we
note the change in sign of the fluid limit hf in the lower
mantle, due to the buoyant chemical boundary which, being
harder to displace than a phase-change interface, decouples
the mantle, with sources located in the upper and lower
mantle affecting in a different fashion the displacement at
the Earth’s surface.

4.2. Integral Functions

[43] The dimensionless function [h‘](p), with p @ p(t)
denoting the top of the columns, contains the fluid and the
transient parts, indicated by [h‘]

F and [h‘]
T, respectively.

The fluid part contains the elastic and viscous contributions,
indicated by [h‘]

E and [h‘]
V, respectively. For p varying

between the CMB and the lithosphere-upper mantle inter-
face, the elastic and viscous parts are

h‘½ 
E pð Þ ¼
Z p

R0

he rs½ 
drs ð12Þ

h‘½ 
V pð Þ ¼
Z p

R0

X
j

hj rs½ 

sj

drs: ð13Þ

As functions of the depth of the top of the column p,
Figure 4 shows the integral functions [h‘]

V and [h‘]
E.

[44] With respect to h‘
E and h‘

V portrayed in Figures 2
and 3, the decay for increasing harmonic degree ‘ is even
more pronounced for these integral functions, thus justi-
fying the truncation at ‘ = 100 in the spherical harmonic
expansion. The values of these integral functions are
generally lower than the Love numbers of Figure 3 since
they are integrated over the normalized r variable, which is
always smaller than unity. Figures 2–4 clearly show the
low-pass filter properties of the portion of the Earth
overlying the source, which justifies the choice of simple
plume shapes in our simulations and the attention drawn
on other important plume properties, such as mass and
dimension.

4.3. Deleting the Transient Contribution

[45] The radial displacement U(t, r, q) for a rising column
is given by the convolution of the Green functions, the
generalized Love numbers as defined in equation (3), with
the load function. This convolution has been described in
the previous section 2.2 and, with Dr of the plume as given
in equation (8), by summing over ‘, U(t, r, q) can be
expressed by

U t; r; qð Þ ¼ a

MT

DrAc

X
‘

P‘ cos qð Þ h‘½ 
F t; rð Þ þ h‘½ 
T t; rð Þ
� �

;

ð14Þ

where Ac is the area of the cross section as a function of
the base radius and where the expression for the radially
rising column, equation (7) is modified so as to account

Figure 3. Fluid limit h‘ as a function of the harmonic degree ‘, horizontal scale, and load position rs in
kilometers, from the CMB at 3480 km to the Earth surface at 6371 km, for (left) chemical and (right)
phase-change interface. The radius of the lithosphere–upper mantle and upper-lower mantle interfaces, at
6250 and 5701 km, are also provided. Values are based on the vertical gray scale on the right.
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for the disk coefficients (for unit mass) [Farrel, 1972]
arranged in the following form

L‘ rs; rð Þ ¼ 2

‘ ‘þ 1ð Þ 1� r2

4r2s

� 
P0
‘ xð Þ with x ¼ 1� r2

2r2s
; ð15Þ

where P0
‘(x) is the derivative with respect to x of the

Legendre Polynomial, r is the base radius of the column
and rs is the radial distance of the top of the column; it is
quite evident that if r ! 0 then L‘ ! 1 holds. U(t, r, q)
can be written in compact form, as the sum of the fluid
and transient part,

U t; r; qð Þ ¼ Ac U
F
t; r; qð Þ þ U

T
t; r; qð Þ

� �
; ð16Þ

where the term Ac @ Ac(r) is a function of the base radius,
but it is useful to set it to a constant unitary area Ac =
p102 km2, as will be made clear afterward.
[46] In order to compare the fluid and transient contribu-

tions to the vertical displacement U(t, r, q), Figure 5
portrays the complete solution obtained by summing the
harmonic terms from ‘ = 2 to ‘ = 100 for a column made of
point-like sources (r = 0 or L‘ = 1), from t = 0 to t = 60 Myr,
and Ac set to the unitary area. We choose the column made

of point-like sources (r = 0 or L‘ = 1), since this case is the
most favorable one for the transient part, the latter being in
all the other cases with r > 0 or kL‘k < 1 always smaller
than the r = 0 case, as it can be easily obtained from the
above equation (15).
[47] The top row refers to the fluid contribution and the

bottom one to the transient contribution; two upwelling veloc-
ities v1 and v2 are considered of 0.1 m/yr and 0.05 m/yr, solid
and dashed lines respectively. The value of the displacement
is evaluated at the Earth’s surface and on the top of the
upwelling density anomaly at q = 0 with respect to the source,
where the deformation is the largest. The left column stands
for a chemical boundary at the upper-lower mantle interface
and the right for a phase-change interface.
[48] Figure 5 shows that the slowest velocity is respon-

sible for the delayed vertical displacement of the surface, as
expected, without changes in the amplitude. The maximum
displacement of the transient part is about directly propor-
tional to the upwelling velocity, as anticipated in previous
section.
[49] Another important aspect of Figure 5 is the different

behavior of the chemical and phase-change interfaces, the
former being responsible for a vertical displacement that, in
the final stage, is about 30 percent lower than the one
corresponding to the phase-change interface. For a time

Figure 4. (top) The [h‘]
V as a function of the harmonic degree ‘, when the top of the dimensionless

column is located at different radial distances, i.e., from the CMB, at 3480 km (red), the upper-lower
mantle interface UM-LM (green), and up to lithosphere-upper mantle interface L-M at 6250 km (violet).
(left) A chemical interface. (right) A phase-change interface. (bottom) From the lithosphere to the CMB,
showing the elastic term [h‘]

E. Radius is given in kilometers. Lithospheric thickness is fixed at 121 km.

B04404 BARLETTA AND SABADINI: SUPERPLUME EFFECTS VIA RELAXATION THEORY

8 of 23

B04404



span of about two thirds of the entire time evolution, a
lowering rather than uplift of the crust is predicted by
chemical interface. This behavior of the chemical boundary
is clearly due to its ability to damp the flow in the mantle
and to decouple the circulation in the upper and lower
mantle, from which even a change of sign in the surface
displacement can be produced.
[50] From the bottom rows, referring to the purely tran-

sient part, we note that the latter is negligible with respect to
the fluid part when the anomaly crosses the upper mantle,
right of vertical gray lines. In the lower mantle, this
conclusion always holds for phase-change interface, while
for the chemical case, the transient part is of the order of
10–20% of the fluid part. Bearing in mind that this
percentage is drastically reduced for realistic plume radii
and that most of the lithospheric swelling builds up when
the anomaly crosses the upper mantle, we neglect in the
following the transient part of the solution. Velocity of the
rising material clearly does not affects the amplitude of
the surface deformation, but determines the time duration of
plume upwelling, from the CMB to the bottom of the
lithosphere.

5. Time Evolution of the Radial Displacement

[51] For two lithospheric thicknesses of 121 and 32.2 km,
this section is devoted to the analysis of the radial, or
vertical, displacement induced at the Earth’s surface by a
column and by a cylinder that rise at the same constant
velocity v = 10 cm/yr, from the CMB up to the lithosphere-
upper mantle interface. This vertical displacement is a

dynamic topography of the Earth surface supported by the
mantle viscoelastic flow driven by the density anomaly.
[52] The column stops rising when its top hits the

lithosphere-upper mantle interface, after which the density
anomaly remains constant. Unlike the column, the cylinder
grows at the CMB until it reaches a specified thickness,
after which it detaches from the CMB and moves upward
until it hits the lithosphere-upper mantle interface, and, for
the sake of simplicity, disappearing thereafter although in
more realistic simulations the plume head would spread
beneath the lithosphere. The density contrast Dr is fixed at
the same value for both the column and the cylinder; the
cylinder is appropriate for analyzing the effects of the plume
head and the column those of the plume conduit.
[53] In Figure 6, left column stands for chemical inter-

face, right one for phase-change interface; lithospheric
thickness is fixed at 121 km for the first and second row
and at 32.2 km for the third and fourth rows. First and third
rows correspond to columns while second and fourth rows
to cylinders.

5.1. Influence of the Shape of the Load on the
Earth Surface Response

[54] In order to estimate the impact of the shape of the
density anomaly on the radial displacement, it is useful to
evaluate the U (t, r, q) surface displacement caused by the
column in terms of the unitary cross-sectional area of p
100 km2, as anticipated in the previous section. This means
that while the area Ac is a factor which pertains to the
dimensions, the U (t, r, q) dependence on the shape is
contained, inside the integral [h‘]

F(t, r), within the load

Figure 5. Time evolution of the radial displacement at q = 0, in terms of (top row) the fluid
part UF (t, 0, 0), and (bottom row) transient part UT (t, 0, 0), for unitary area (m/(p 100 km2)), for
an infinitely thin column. Time t = 0 corresponds to the beginning of the process. Solid curves stand
for a rising velocity v = 0.1 m/yr and dashed ones for v = 0.05 m/yr.
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coefficients L‘(rs, r) (equation (15)). As anticipated, the height
of the cylinders used for the bottom panels is four thirds of the
base radius. The solution U(t, r, q) for the cylinder can be
obtained by the composition of two columns as

U t; r; qð Þ ¼ U t; r; qð ÞH tð Þ � U t � Dt; r; qð ÞH t � Dtð Þ; ð17Þ

with Dt = (4/3) r/v and H(t) being the Heaviside function.

[55] Thus Figure 6 shows the radial displacement at the
Earth surface on the top of the anomaly (q = 0), for columns
and cylinders of varying cross-sectional radius r: for the
column, the case of an infinitely small radius is also
considered (solid line), which is the same as in Figure 5.
The radius of the anomalies varies from 100 to 600 km, as
given in the insets, so that the results must be multiplied by
the factor r2/102.

Figure 6. Time evolution of the radial displacement U (t, 0, 0) at q = 0 for unitary area (m/(p 100 km2)),
for columns, first and third rows, and cylinders, second and fourth rows, characterized by base radii from
100 to 600 km, as specified in the insets. Thick solid line stands for an infinitely thin column. The first
and second rows correspond to a lithospheric thickness of 121 km, while the third and fourth rows
correspond to a lithospheric thickness of 32.2 km. The vertical line between 20 and 25 Myr indicates the
crossing of the upper-lower mantle interface. The plume head hits the bottom of the lithosphere at 28 Myr,
as shown by the second vertical line on the right.
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[56] For a lithospheric thickness of 121 km, first and
second rows, the vertical displacement of the Earth’s surface
varies from hundred meters (for example, cylinder and
chemical or phase-change interface, solid curve: 1.3
(1002/102) � 130 m) to kilometers (e.g., column and
phase-change interface, dashed curve: 1.5 (6002/102) �
5400 m). The trend of the functions for the chemical and
phase-change interfaces portrays a similar pattern, except
for the first 25 Myr of lower mantle crossing and for the first
part of upper mantle crossing, during which rather than the
monotonically rising displacement, as in the case of phase-
change interface, the chemical one is responsible for a small
negative displacement or subsidence of the Earth’s crust.
This behavior is responsible for the generally lower values
of the maximum displacements reached by chemical inter-
faces in comparison to phase-change ones.
[57] The trend of the curves for the cylinders, second row,

after the top of the density anomaly hits the bottom of the
lithosphere (thin vertical line) is different from the case of
the column since the height of the cylinder is reduced until the
bottom of the cylinder reaches the lithosphere-upper mantle
interface at 36 Myr. When the bottom of the cylinder also
reaches the bottom of the lithosphere, the anomaly totally
disappears, leading to the vanishing ofU (t, r, q) after 35Myr.
[58] Maximum displacements are generally lower for

cylinders with respect to columns, especially for small radii.
For example, for 100-km, thin solid curves, the displace-
ment of 300 m for the column and phase-change interface,
obtained from3.0 (1002/102)� 300 m, is reduced to 130 m
for the cylinder.
[59] Thinning of the elastic outer layer to 32.2 km, third

and fourth rows, has the effect of increasing the maximum
displacements, as visible from the almost factor 3 increase of
the vertical scale in meters. A close inspection shows, on the
other hand, that this increase of the displacements occurs,
after crossing the 121 km depth, only for the smallest radii of
the anomalies, columns or cylinders, which are, as expected,
the most sensitive to the thickness of the elastic layer. If we
compare in fact the largest radii of 600 km for the two
lithospheric thicknesses, we note that displacements remains
unchanged to 1 and 1.5 m for the unitary cross section, for
both chemical and phase-change interfaces. This finding is
also visible in the larger spreading between the solid and
dashed curves for the 32.2-km-thick lithosphere once com-
pared with the 121-km case. Decreasing the thickness of the
elastic outermost layer has in fact the effect of reducing
the ability of the latter to act as a low-pass filter, thus favoring
the smallest loads which are the richest in high harmonic
content.
[60] We could have considered plumes larger than 600 km

in radius, but for the sake of clearness in Figure 6, we choose
the most significant dimension (around 460 km) for compar-
ison with the superplume of Farnetani and Richards [1994].
Furthermore, as we can notice in Figure 6, the trend of the
function U (t, r, q) for larger r can be easily extrapolated.
[61] From Figure 6, it is also possible to extrapolate the

behavior of the Earth’s surface for a plume starting from the
upper-lower mantle interface. By fixing a new t = 0 in
correspondence with the first gray line on the left, we have
simply to shift the curves for the various radii in such a way
that the new displacements are set to zero in correspondence
to the new t = 0, thus deleting the contribution arising from

the lower mantle, as easily obtainable from previous math-
ematical developments.
[62] Details of the plume are described by high degree

components of the harmonic expansion and, as already
shown, the portion of the Earth overlying the source acts as
low-pass filter, meaning that the high harmonic degrees are
severely cut, so that details in the structure of the source are
not expected to be visible in the Earth’s surface behavior. The
effects of the filtering can be indirectly seen also in Figure 6,
when the load is still in the mantle. In fact, Figure 6 shows the
surface response due to sources of comparable masses, but of
very different harmonic coefficients L‘(rs, r): in particular
sources with large r have mainly low degree harmonic
components, while those of small r have both low and high
degree harmonic components. When the load is still deep in
the mantle, from the curves of Figure 6, it is clear that for a
wide range of r variation the curves are clustered: large
variations in r correspond to a small variation in the function
U (t, r, q), which depends on r only through the harmonic
coefficient L‘(rs, r) of the load.
[63] This means that filtering has severely reduced

the difference between the various sources, by cutting the
highest harmonic components. In particular, the deeper the
source, the more effective the filtering of high frequencies,
namely the reduction of the differences for varying r. In
other words, for a good qualitative analysis, the anomaly
dimensions and its mass are the most effective factors to
determine the Earth’s surface behavior, while small-scale
details, for example, the deviation from sfericity of the
plume, are negligible, as long as the mass equivalence
among the various sources is respected.

5.2. Earth’s Elasticity

[64] In the previous section we have dealt with the effects
of lithospheric thickness variations. Here we quantify the
effects of elasticity of the entire Earth on surface swelling,
in particular that of the mantle.
[65] We start by reminding that in general the radial

displacement U(t, r) can always be written as a sum of
two separate contributions, an elastic and a viscous one,

U t; rð Þ ¼ UE t; rð Þ þ UV t; rð Þ; ð18Þ

where r is the radius of the load. To clarify this statement,
consider the expression of radial displacement U(t, r, q) in
equation (14) for a rising column, rearranged as follows:

U t; r; qð Þ ¼ a

MT

DrAc

X
‘

P‘ cos qð Þ h‘½ 
E t; rð Þ þ h‘½ 
V t; rð Þ
� �

;

ð19Þ

where the transient part [h‘]
T has been neglected and the

fluid part [h‘]
F, entering equation (14), has been explicitly

expressed in terms of the elastic and viscous contributions
given in equations (12) and (13), modified to account for the
disk coefficients L‘(r) (equation (15)).
[66] We estimate the weight of the elastic term UE(t, r)

with respect to the whole displacement U(t, r). Instead of
the ratio UE/U, we define the estimator

REV tð Þ ¼ k UE tð Þ k
k UE tð Þ k þ k UV tð Þ k : ð20Þ
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[67] This definition avoids the singularity that would
occur when U becomes zero. This would occur for UE =
�UV, i.e., when both terms weight 50%: in this case
REV = 1/2, thanks to the modulus functions at denomi-
nator. The definition of REV has the drawback of introducing
spurious cusp structures due to the nondifferentiability of the
modulus function.
[68] Following the same arrangement of Figure 6, namely a

lithosphere of 121 km, two upper rows, and 32.2 km, two
bottom rows, and first and third rows corresponding to
columns and second and fourth ones to cylinders, Figure 7

shows the evolution in time of the ratio REV(t, r), from t = 0,
when the anomaly leaves the CMB, to 33 Myr, for different
radii of the load; the two vertical grey lines indicate the time
of the crossing of the upper-lower mantle boundary, left line,
and the time of the arrival at the base of the lithosphere, right
line. A model with a viscoelastic lithosphere of 32.2 km is
presented in the same way in Figure 8. The cusp appearing in
the whole set of panels, denoting an almost 100% elastic
contribution, does not have a particularly important physical
significance, simply indicating that the viscous contribution
is almost zero, where the function REV is not differentiable.

Figure 7. Using the same convention as Figure 6, REV plotted as a function of time from t = 0 Myr,
when the density anomaly leaves the CMB, to t = 32–37 Myr.
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[69] Small viscous contributions generally occur when
the density anomaly is close to a chemical boundary, so that
the buoyant chemical interface dampens the viscous flow
and the cusp is close to the upper-lower mantle interface.
For phase-change interface, this occurs when the anomaly is
close to the CMB, the only chemical boundary for this
model.
[70] For phase-change interface, cusps are thus largely

shifted to the left with respect to those for chemical
interface. This is the main difference in the REV(t) trend
between the chemical and phase-change interface cases.
Keeping in mind that the elastic contribution UE(t) is always
positive, Figure 6 helps to understand this difference
between chemical and phase-change interfaces in terms of
the change in sign of the displacement U(t), being negative
for chemical interface in the lower mantle and part of the
upper mantle as the leading viscous contribution. As the
viscous term changes sign for chemical interface, approx-
imatively at 25 Myr, the elastic contribution reaches its
maximum. Change of sign of the U(t) is barely visible for
phase-change interface, 4 times smaller than 5 Myr.
[71] A noticeable feature of Figure 7 is that when the

anomaly is located in the lower mantle the ratio REV is, for all
cases, always above the 20% for phase-change interface and
always above the 30% for chemical interface. Moreover,
while the anomaly is rising through the upper mantle, REV(t)
decreases smoothly for the phase-change interface and more
steeply for chemical cases after the cusp, until the anomaly
reaches the lithosphere. After the head of the plume hits the
bottom of the lithosphere, the total displacementU(t) reaches
its maximum (Figure 6), and the viscous contribution dom-
inates over the elastic one; that is, the portion of the Earth
overlying the source is too thin and its ability to dampen the
viscous contribution is no more effective.
[72] The major role of elasticity when the anomaly is

rising through the lower mantle is a consequence of the

stiffness of the highly viscous 1022 Pa s lower mantle, while
its role diminishes in the upper mantle which, being 30 times
less viscous than the lower mantle, behaves like a fluid
body. We can also notice that in general the trend of REV(t)
is qualitatively very similar in the two lithospheric models,
comparing interfaces of identical nature.
[73] Variations in the r radius of the load, i.e., the

dimensions of the load, have, in general, minor effects on
REV(t), without affecting the overall pattern of the curves. In
fact, for rising columns through the lower mantle, the curves
REV(t, r) overlap, i.e., the ratio REV is essentially insensitive
to the radius of the anomaly, for the considered range of
radii.
[74] In general as already analyzed in previous sections,

the dimension of the load becomes slightly more important
while crossing the upper mantle. In a more detailed analysis,
we can see that the effects of the reduction in the thickness of
the elastic outer layer of the Earth from an average continen-
tal one (two first rows) to an average oceanic lithosphere (two
bottom rows), is appreciable only at the end of the process,
when the displacementU(t) reaches its maximum, andmostly
for the smallest anomalies. In fact, for larger anomalies (at
least 460 km radius) the curves REV(t, r) tend to remain at the
same percentage, comparing the panels in the first and third
rows. In general, for fixed load shape, columns or cylinders,
the largest loads are thus the most effective in triggering the
elastic behavior of the Earth.
[75] When the elastic lithosphere is replaced by an

outermost viscoelastic layer, as the inner ones, the ratio
REV(t, r) behaves as shown in Figure 8. Although the
viscous contribution is increased in the final stage when
the head of the plume has reached the bottom of the
lithosphere, an important elastic contribution still remains
even for smallest loads, solid curves.
[76] The most noticeable difference with respect to

Figure 7 is the disappearance of the cusps for the phase-

Figure 8. As for the two bottom rows of Figure 7, but for a viscous lithosphere of 32.2 km.
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change interface cases, caused by the viscous contribution
UV increasing enough to keep REV always below 30%. For
chemical interface cases, the cusp is shifted to the left; that
is, in the upper mantle the increase of the viscous contri-
bution UV is enough to keep REV always below 70%.
[77] Figure 8 shows that even without the presence of a

purely elastic lithosphere, the elastic contribution varies in
the range of 10–30% of the total during the dynamic phase
of the process when the anomaly crosses the upper mantle
and persists at the bottom of the lithosphere for loads with
moderate and large size radii of 460–600 km. The elastic
contribution is reduced below 10% only for small size
loads, of the order of 100 km.
[78] Elasticity enters to play a role in modeling rising

plumes in a direct fashion through the thickness of the
elastic outermost lithosphere but it enters also through the
global elastic properties of the mantle, only slightly depend-
ing on the thickness of the lithosphere or on the shape or
dimension of the load. Moreover it is clear that, from all
cases of Figure 7 and 8, the correct description of rising
masses through the mantle needs the elastic contribution.
Also, even when the head hits the outermost layer, the
surface displacement U(t) is at its maximum and the ratio
REV diminishes, the elastic contribution for medium and
large size plumes is within 5 and 10%.
[79] The rheological nature and thickness of the outer-

most layer plays a crucial role in determining the percentage
contribution of elasticity only in the very final stage when
the surface swelling has reached its almost final height,
while the global elastic properties of the planet plays a role,
quantified by the percentages above, during the whole time
evolution of the process. This result should not be surpris-
ing, since even in this typical mantle convection problem,
thermal anomalies induce density anomalies as given by
equation (8), which in turn trigger, independently from their
amplitude, sizable elastic response as well as a viscous one,
as expressed by equations (18) or (19).
[80] A step ahead in the physical understanding can be

gained by coming back to Figure 4. Bearing in mind that we
are dealing with Green functions evaluated at the surface of
the Earth and that the elastic contribution is always lower
than the viscous one, by comparing the first and the second
rows of Figure 4, we note that the viscous component [h‘]

V

is more severely dampened with depth with respect to the
elastic component [h‘]

E, which explains the general increase
with depth in the mantle of REV.

6. Angular Dependence of the Radial
Displacement

[81] Although the differences in the uplift behavior
between models with chemical and phase-change interfaces,
in view of the physical considerations presented in previous
sections, only the model with phase-change interface will be
considered from now on. Without claiming to simulate a
real plume, the following three models are considered: (1) a
column 300 km in radius, (2) a 300-km cylinder with an
underling conduit 100 km in radius, and (3) a 460-km
cylinder, in agreement with the general characteristics
described in section 3.
[82] Figure 9 shows the radial displacement in kilometers

as function of the distance, in kilometers, obtained from

q � a, where a is the radius of the Earth and q denotes the
angular distance from the anomaly, for a portion extending
from �p/10 to p/10 with respect to the source. Under each
surface displacement panel, a cartoon portrays the shape and
position of the density anomaly, from the Earth’s surface to
the CMB. As indicated by the cartoons, the first row
corresponds to 22.2 Myr, when the head of the anomaly hits
the upper-lowermantle interface, the second one to 27.7Myr,
when the head hits the bottom of the 121 km lithosphere and
the third one to 28.6Myr, when the head hits the bottom of the
32.2 km lithosphere. Solid and dashed curves correspond to
lithospheric thickness of 121 and 32.2 km.
[83] Independently from the shape of the anomaly, the

plume crossing the whole lower mantle produces a swelling
of the order of hundred meters: the swelling of kilometers,
as shown in the second and third row, is built mainly during
the ascent of the plume head in the upper mantle. The
second and third rows show that in the time interval of
0.9 Myr, during which the plume head crosses the portion
of the upper mantle from the depth of 121 km to the bottom
of the thin lithosphere, the swelling for the thick lithosphere
case, solid line, stops growing, since the head already
reached the bottom of the elastic layer, while the one for
the thin lithosphere continues to grow, from the 2–3 km of
the second row to about 4 km of the third row, shedding
light on the importance of the crossing of the uppermost
upper mantle for the thin lithosphere case.
[84] From top to bottom, the swelling for the thin litho-

sphere of 32.2 km becomes progressively larger with
respect to the 121 km case, as the plume head gets closer
to the Earth’s surface. Thinning of the lithosphere has thus a
major effect on the amplitude of the swelling in the final
stage, the thin with respect to the thick lithosphere doubling
the height of the ‘‘bell’’ curve, as shown in the third row.
From the lower to the upper mantle, the lateral extension of
the ‘‘bell’’ curves is subject to reduction.
[85] Although the shape and height of the ‘‘bell’’ curves

are quite similar to those of Farnetani and Richards [1994]
(their Figure 8, the fourth graph), when the 460-km plume
and the lithosphere of 32.2 km are considered, their curve
seems to reach negative value around 600 km while ours
becomes negative only after 2000 km (Figure 10): This
difference can be explained by the flexural properties of
the elastic lithosphere in the present normal mode model-
ing. In this perspective, it is remarkable that, from 22.2 to
27.7 or 28.6 Myr, the uplift grows in the central part of the
bell, while its flanks remain unaffected during the time
interval from 21 to 28 Myr, as shown by the stability of
the radial displacement at 1000 km from the center. The
details of the deformation in the periphery with respect to
the central, notably uplifting region will be considered in
Figure 10.
[86] By comparing the various plume models, we note the

reduction in the amplitude of the displacement, from the
first to the second columns, due to the reduction of
the plume head in spite of the presence of the thin conduit.
The flexural response of the lithosphere to the rising
cylinder is thus qualitatively different from the cases char-
acterized by a persistent density anomaly beneath the plume
head.
[87] Figure 10 deals with the small amplitude displace-

ments of the order of tens of meters in the periphery with
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respect to the large upwarping of the crust over the rising
density anomaly, with the horizontal axis reaching the
distance of about 20,000 km at 180� from the anomaly.
Solid and dashed curves stand for the 121- and 32.2-km-

thick lithosphere, while the gray curve portrays the purely
elastic contribution, for the 32.2-km lithosphere. From the
top to the bottom panels, the three cases of Figure 9 are
considered, the first and second columns corresponding to

Figure 9. Surface deformation U(t, r, q) for (left) a rising column, (middle) a plume plus conduit, and
(right) plume head, as a function of q, in terms of q � a where a denotes the Earth radius and q is in
radians. The interval ranges from 0 to p/10. First, second, and third rows correspond to 22.2, 27.7, and
28.6 Myr. Cartoons portray the corresponding plume configuration.
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22.2 and 28.6 Myr, as for the first and third row of Figure 9,
when the plume head hits the upper-lower mantle interface
and the bottom of the 32.2-km-thick lithosphere. The major
feature of this figure is the broad region of negative
displacement, or subsidence, of the Earth’s entire litho-
sphere. This subsidence, while reaching a minimum varying
between about �10 to �30 m, is distributed from about
3000 to 13,000 km from the crust’s maximum upwarping. A
smaller amplitude upwarping of the lithosphere that is due
to the flexural reaction to such global subsidence appears
from a distance of about 13,000 km to the antipodes with
respect to the rising plume.

[88] Deviations between thick and thin elastic litho-
spheres are minor in the far field. It is noteworthy that
elastic contribution is important in the far field in terms of
relative amplitude with respect to the total displacement and
that it is smoother than the total displacement, as expected,
since elasticity prevents too large a bending of the plates.
These global features, as will be shown afterward, impact
sea level changes induced by plumes. This finding, related
to the global response of the lithosphere to rising plumes, is
qualitatively different from that obtained by Farnetani and
Richards [1994] and Griffiths and Campbell [1991], where
the limited lateral extension of the boxes where the numer-

Figure 10. Surface deformation U(t, r, q) as a function of the distance in kilometers from the center
of the swelling, where the distance is given by terms of q � a, where a denotes the Earth radius and
q is in radians, from 0 to p. The vertical scale is chosen in such a way to enlighten the far field displacements
of at most tens of meters. The central swell is out of scale. Displacements are evaluated for (left) 22.2 Myr
and (right) 28.6 Myr. First, second, and third rows stand for a 300-km rising column, a 300-km plume head
plus conduit, and a 460-km plume head. Solid, dashed, and gray curves stand for a 121-km-thick elastic
lithosphere, a 32.2-km-thick elastic one, and for the purely elastic contribution, for the 32.2-km lithosphere.
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ical and analogical experiments are carried out impedes
simulation of the sphere’s global response.

7. Sea Level Changes Induced by Plumes

[89] The sea level SL(t, q, j) is defined by Mitrovica and
Milne [2003] as the difference between the equipotential
surface represented by the geoid G(t, q, j) and the solid
surface of the Earth R(t, q, j). It is defined over the whole
surface of the Earth, including the dry lands, although sea
level can be projected and appropriately defined over the
oceans by means of the ocean function C(t, q, j), defined as
to take the unitary value over the oceans and zero over the
lands [Munk and MacDonald, 1960].
[90] Changes in DSL(t, q, j) are governed by several

factors like surface deformation due to the main driver, as
with internal loads considered here, and the associated
redistribution of the ocean water and can be described in
terms of the formalism introduced by Farrel and Clark
[1976] and reworked by Mitrovica and Milne [2003]; for
surface load such as ice loading, Mitrovica and Milne
[2003], in their equation (I1) provide the following expres-
sion for the changes DSL(t, q, j):

DSL t; q;jð Þ ¼ rI
g
FI * I þ rW

g
FO * DSLþ CSL tð Þ; ð21Þ

where rI and rW denote the densities of the ice and water, g
the gravity at the surface, q and j are the latitude and the
longitude and t is time. I describes the evolution in time and
space of the ice load. The function F is defined as

F ¼ f0 � Ug; ð22Þ

where f0 and U denote the Green functions whose harmonic
coefficients are defined in equation (3). The asterisk *
denotes convolution in space and time, while the subscripts
I e O indicate that convolution is limited to the geometries
of the ice load and oceans, respectively. The term CSL(t)
entering equation (I1) of Mitrovica and Milne [2003] is
given by

CSL tð Þ ¼ � MI tð Þ
AO rW

� 1

AO

rI
g
FI * I þ rW

g
F*ODSL

� �
O

; ð23Þ

where the brackets hiO indicate integration over the surface
of the oceans. The first term on the right of equation (23) is
named eustatic sea level change by Mitrovica and Milne
[2003], while the second term can be defined as a spatially
uniform shift in the sea-surface necessary to conserve mass
of the oceans when taking into account all gravity and
crustal variations (J. X. Mitrovica, personal communication,
2005). It should be borne in mind that this definition of
eustasy does not include changes in the volume of ocean
basins, as done by Hardebeck and Anderson [1996], where
in their Figure 1 they include swells, plateaus and ridges as
sources of eustatic sea level changes. In order to avoid
confusion in the various definitions of eustatic sea level
changes, and to compare our results with sea level changes
due to tectonics, we will consider the integral over the
oceans entering equation (23) as comparable with changes
due to tectonic processes, as done by Hardebeck and

Anderson [1996], widening the significance of eustasy
limited to water exchange between ice masses and oceans,
as done in post-glacial rebound studies.
[91] Equation (21) for sea level changes is an integral

equation since the unknown DSL(t, q, j) appears both in
the right and left members of the equation, for whose solution
Mitrovica and Peltier [1991] first implemented a new spec-
tral formalism. Once equations (21) and (23) are properly
modified, they can be used to evaluate sea level changes due
to internal loads, which induce only surface deformation
without adding or extracting water from the oceans. The
function I and the density rI in equations (21) and (23) is thus
changed into the appropriate loading function L for internal
loads and CSL(t) is defined without the term containing the
melting ice. The sea level equation can be simplified, though
remaining a useful tool to estimate both local sea level
changes, via DSL(t, q, j) and global variations, via CSL(t),
by neglecting the indirect effects of water redistribution over
the oceans, which is appropriate if the dominant mechanism
driving these changes is the direct effect of the internal load.
Thus sea level equation (21) becomes

DSL t; q;jð Þ ¼ 1

g
F * Lþ CSL tð Þ; ð24Þ

where

CSL tð Þ ¼ � 1

AO

h1
g
F * LiO; ð25Þ

which is actually a global sea level change.
[92] Notice that equation (24) is no longer an integral

equation. If we consider the relative sea level changes

RSL ¼ f0=g � U ð26Þ

defined as by Piromallo et al. [1997], then, by using the
definition of F (equation (22)), CSL(t) is given by the
spatial integral over the ocean of the function RSL(t, q, j)
(i.e., the convolution of RSL with the load function L)
divided by the ocean area. Unlike DSL, RSL does not
contain the term CSL(t).

8. Global Sea Level Changes Induced by the
Mid-Cretaceous Superplume

[93] Global sea level changes, as shown in the previous
section, depends on the distribution of the oceans or, equiv-
alently, of dry lands. For plumes, the most interesting case to
study is surely the superplume event purported to have
occurred during the mid-Cretaceous [Larson, 1991a], when
land and ocean distribution was different from present day’s.
[94] Before facing the evaluation of the global sea level

changes modeled on the mid-Cretaceous superplume, let us
consider the relative sea level changes RSL, defined as in
equation (26), owing to the three plume models of previous
sections. In Figure 11, for each plume model, the top,
middle and bottom rows show the radial displacement of
the Earth’s surface U(t), the geoid displacement f0(t)/g and
RSL as evaluated over the upwelling density anomaly so as
to capture the maximum signal as a function of time; solid
curves correspond to the 121-km-thick lithosphere and the

B04404 BARLETTA AND SABADINI: SUPERPLUME EFFECTS VIA RELAXATION THEORY

17 of 23

B04404



dashed ones to the 32.2-km-thick one. The radial displace-
ment is about 2 orders of magnitude larger than the geoid
shift, implying, from the definition of RSL, that changes in
relative sea level are mainly controlled by the displacement of
the sea-bottom. The values ofU, f0/g and RSLwhen the head
plume hits the bottom of the lithosphere aremainly controlled
by the thickness of the elastic outer layer, reaching their
maximum for the thin lithospheric model, dashed curves
versus solid ones. Thinning of the lithosphere has, in fact, the
effect of doubling U and RSL at least for the rising column
and plume head plus conduit, first two columns. Over the
anomaly, relative sea level fall is of the order of kilometers.
[95] It was on the basis of the volume of the large

upwarping or superswell of the Earth’s crust, resulting from
the plume head, obtained by other kinds of plume modeling
which provided similar results to those in Figure 9 in terms
of swelling, that Hardebeck and Anderson [1996] suggested
that the mid-Cretaceous superplume event should have
produced a sea level rise, that they propose to be added to
the list of sea level changes responsible for eustasy, ranging
between 100 and 220 m, as shown in their Figure 1, thus
conflicting with sea level rise due to oceanic crust produc-
tion. It is generally accepted that in the time interval
between 125–120 and 90 Myr before the present, the

superplume related to the Ontong Java Plateau rose up to
the bottom of the lithosphere, with dry lands considerably
drifting apart in that time interval.
[96] A rough estimate can be given on the basis of few

considerations. First, the land masses at the beginning of
the mid-Cretaceous were still patched together within the
Gondwana supercontinent. As a first approximation, it is
possible to model the Gondwana supercontinent by means of
a spherical cap covering one fourth of the Earth’s surface
located at the antipodes of the superswell. The second
approximation is to assume that during the whole time
evolution of the process from the beginning of the plume
formation at the CMB until it reaches the lithosphere, land
distribution remains unchanged. The global sea level change
CSL(t), for the cap-shaped continent, namely the integral of
RSL over the oceans, in terms of harmonic coefficients
becomes

CSL½ 
‘ tð Þ ¼ 2pa2

AOc

Z 2
3
p

0

P‘ cos qð Þ sin q dq
 !

f0
‘ tð Þ
g

� U‘ tð Þ
� 

;

ð27Þ

where AOc =
3
4
ASphere or AOc = 3pa2.

Figure 11. (top) Radial displacement U(t), (middle) geopotential f0(t)/g, and (bottom) relative sea level
RSL. From the left to the right column, the three plume models are considered, as indicated by the
headings. Time is in Myr from the initiation of the process, when the density anomaly leaves the CMB.
The fields are evaluated at the Earth surface on the top of the anomaly. Solid and dashed curves stand for
a lithosphere of 121 and 32.2 km of thickness, respectively.
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[97] If O‘ =

Z 2
3
p

0

P‘(cos q)sin q dq denotes the ocean

function coefficients for this simple cap-shaped land distri-
bution, the global sea level change becomes

CSL tð Þ ¼ � 2

3

X
‘

O‘
f0
‘ tð Þ
g

� U‘ tð Þ
� 

: ð28Þ

A more realistic dry land-distribution, which yet remains
unchanged during the plume rise, can be considered. Thus,
instead of the O‘ coefficients, those for a more realistic
distribution can be employed via integration, such as that
corresponding to 90 Myr ago when the plume head hits the
lithosphere and the latter’s response is the largest in terms of
RSL and thus in terms of CSL.
[98] Figure 12 shows the results for CSL(t) for both cap-

shaped supercontinent, left column, and for realistic land

distribution, right column. First, second and third rows stand
for the three plume models, as noted on the top of each row.
Blue curves, solid and dashed, stand for the lithospheric
thickness of 121 and 32.2 km, and the green curve corre-
sponds to the viscoelastic lithosphere of 32.2 km. The red and
orange curves correspond to cases where only the elastic part
is considered, with solid (red) and dashed (orange) ones
standing for lithospheric thickness of 121 and 32.2 km; notice
that the orange curves is the elastic contribution also for the
model with viscoelastic lithosphere.
[99] Independently from varying thickness and rheology of

the lithosphere, or even limiting the contribution to CSL(t) to
the elastic one, the pattern of CSL(t) remains substantially
stable, both in shape and amplitude, except for the knees for
plume heads, due to subtraction of a column to simulate
cylinders, as shown in equation (17). The amplitude of CSL(t)
is at most of a fewmeters, the largest value of about 3m for the

Figure 12. CSL(t) for (left) the simplified cap-shaped Gondwana supercontinent and (right) realistic dry
land distribution, as a function of time. First, second, and third rows stand for a 300-km rising column, a
300-km plume head plus conduit, and a 460-km plume head. Meaning of the curves is given in the insets.
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cap-shaped supercontinent while of few tens of centimeters
for realistic land distribution. It is reasonable to assume that
the most realistic case stands between the two end-member
simulations. Note that global sea level sign is opposite for the
two land distributions, the cap shaped producing a global sea
level fall and the more realistic one a small global sea level
rise, and that these results do not depend on the plume model,
except for the fact thatCSL(t) amplitude is subject to reduction
after the plume head hits the bottom of the lithosphere since
the density anomaly slowly disappears afterward.
[100] Comparison between blue and orange dashed

curves, and close resemblance of the green curve for the
viscoelastic outer layer with orange ones, shows that global
contribution to global sea level changes due to CSL(t) are
mainly elastically supported, elasticity never contributing
less than 30% to the highest signal, in complete agreement
with findings of Figures 7 and 8. Besides the fact that the
global quantity such as the ‘‘eustatic’’ sea level is mainly
elastically supported, two important conclusions can thus be
drawn from these results: CSL(t) is not of the order of 10

2 m
as suggested by Hardebeck and Anderson [1996] and the
amplitude, as well as the sign of global sea level changes,
are very sensitive to land distribution.
[101] Findings on relative sea level RSL changes can be

better exploited in Figure 13 over the entire Earth, with the
superplume placed in the Pacific and land distribution is
from paleomaps of 90 Myr ago, in agreement with the
paleoreconstruction given by Coffin et al. [1998], for the
three plume models. Since the scale is of the order of tens of
meters, the large relative sea level RSL falls over the plume
are out of scale. Independently from the plume model,
column, cylinder-plus-conduit and cylinder, top to bottom,
these figures show a wide region of relative sea level rise,
corresponding to the global subsidence surrounding the
swelling enlightened in Figure 10, extending outward from
the concentrated superswell in the Pacific for thousands of
kilometers. The amplitude of relative sea level rise is
smaller in amplitude than the relative sea level fall over
the superswell but extends over a large area in comparison
to the concentrated swell over the upwelling plume. Owing
to the plume, the Earth becomes elongated along an axis
passing through the density anomaly and is thus squeezed
along a circular belt perpendicular to this axis.
[102] Concentrated relative sea level fall and diffused

relative sea level rise offset each other, in agreement with
mass-conservation principle, thus causing changes in CSL(t)
obtained from the integration over the oceans of RSL
portrayed in Figure 13 of at most a few meters, as shown
in Figure 12, much smaller than the mid-Cretaceous eustatic
change of the order of 102 m. The global subsidence stores
the water displaced by the superswell, thus counteracting
the effects of the plume on global ‘‘eustatic’’ sea level rise.

9. Conclusions

[103] The upwelling of a plume has been modeled by
means of normal mode theory in viscoelasticity. The pres-

ence of the elastic lithosphere accounts for the planet’s
flexural response to the plume, even at considerable dis-
tances from the upwelling.
[104] Convective models can efficiently simulate the

plume and its kinematics, but the global deformation
induced by upwelling can be better dealt with by the normal
mode approach in viscoelasticity, which makes the two
schemes complementary. The consistency of the topography
over the upwelling material with that obtained within the
framework of totally different models, based on mantle
convection driven by temperature and density contrasts,
proves the robustness of our approach, once plume kine-
matics is based on the results of convective models.
[105] Furthermore, this consistency is another demonstra-

tion of the marginal role played by details of the shape of
the plume. This justifies the use of cylinders rather than
spheres, even if the latter are of common use in these kind
of simulations. Moreover, besides the absence of a consol-
idated plume model and in view of the highly debated shape
and other features of the plume in terms of both modeling
and seismic imaging, the present study with the use of a
cylinder considered as an elementary mass anomaly, pro-
vides a powerful instrument for future studies on more
realistic mantle structures.
[106] For internal loads, the normal mode solution

requires summation only up to harmonic degree ‘ = 100,
mainly because the outermost portion of the planet acts as a
low-pass filter. Furthermore, the very long times of upwell-
ing and the large plume dimensions make it possible to
neglect the transient part of the solution and to treat solely
the steady state part (fluid limit); for point-like sources, on
the contrary, the transient part is important, as Ricard and
Sabadini [1990] have shown.
[107] Although the most prominent feature of the swell or

superswell, i.e., its amplitude, agrees with convective mod-
els, normal mode modeling differs from convective ones in
terms of such global features as the wide depression
surrounding the swell for thousands of kilometers, thereby
playing a crucial role in the interpretation of the global
effects of the swell, such as global sea level changes. Once
the planet’s global flexural properties are taken into account,
as in the present analysis, the global subsidence around the
swell counteracts the sea level rise caused by the swelling of
the lithosphere, leading to a CSL that is accumulated over the
whole time history of the plume and ranging from a few
centimeters to at most a few meters, with the sign dependent
on real continent distribution. Given these findings,
‘‘eustatic’’ sea level rise of about 100–220 m as proposed
by Hardebeck and Anderson [1996], as being due to the
swell of the lithosphere over the impinging plume, has to be
revised, since their estimate is based solely on the volume of
the swell emplaced on the top of the oceanic crust and does
not account for the global subsidence surrounding the swell
itself. The eustatic sea level data for the mid-Cretaceous can
thus not be used to reject the hypothesis of the simultaneous
occurrence of large oceanic crust production and of a
superplume [Larson, 1991a, 1991b].

Figure 13. Relative sea level RSL as a function of q e j over the globe, for the three plume models, as indicated on the top
of each panel, evaluated at the time in which the head of the anomaly hits the bottom of the lithosphere. The dry land
distribution corresponds to 90 Myr ago, and the plume is positioned in the Pacific Ocean beneath the Ontong Java Plateau,
in agreement with the paleoreconstruction given by Coffin et al. [1998].
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Figure 13
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[108] By going further with respect to the analysis by
Ricard and Sabadini [1990] where attention was drawn on
transient effects of viscoelastic coupling for mantle density
anomalies, we show that elasticity plays a non negligible
role in typical mantle convection problems such as mantle
plumes. Our findings provide indications that it is highly
meaningful to make efforts toward a self-consistent
approach for viscoelastic convection, as presented by
Muhlhaus and Regenauer-Lieb [2005]. The Earth is
simultaneously elastic and viscous, where viscous proper-
ties impact short-timescale processes of the order of 103

years as in Post-Glacial Rebound and, at the same time,
elasticity impacts long-timescale processes, such as TPW,
of 108 years, or, as considered here, plume upwelling of
107 years.
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