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Abstract

In this thesis, concepts from inverse scattering and modem statistics are combined into
a powerful tool for imaging interfaces in Earth's deep interior. Specially, a generalized
Radon transform (GRT) approach is developed to image heterogeneity at and near inter-
faces in Earth's lowermost mantle with broadband, three-component seismograms from
Global Seismograph Networks (GSN). With this GRT method I transformed r100,000
transverse-component ScS waveforms into image gathers of a core mantle boundary (CMB)
patch beneath Central America and juxtaposition of stacks of these gathers produces a 2-
D image profile. To enhance this image profile, I collaborated with statisticians and used
mixed-effects statistical modeling to produce the best estimates of reflectivity along with
their uncertainty. I demonstrate that the method outlined above works well and - thus -
paves the way to large-scale seismic exploration of the lowermost mantle. With the new
technology I mapped the structure at and near the CMB beneath Central and North Amer-
ica. Several interfaces are detected, and some of them are consistent with expectations
from phase transformations in Magnesiiim perovskite. If we know which interface is as-
sociated with a particular phase transformation, and if we know the thermodynamic (P-T)
relations of the stability fields of the phases, then we can estimate temperature from the
pressure as inferred from the depth at which the transition occurs in the seismic sections.
Here we associate a seismically observed wavespeed increase with the perovskite to post-
perovskite transition and a wavespeed decrease with the back transformation to perovskite.
Using P-T data from experimental and theoretical mineral physics we can then estimate the
lateral temperature variations and radial (thermal) gradients near the CMB. In addition, the
temperature of the CMB and global heat loss are estimated. To improve D" imaging even
further, I have constructed a generalized Radon transform approach, compensating for the
liquid outer-core, which can be used to transform seismic signals passing trough the outer-
core, such as SKKS and its precursors and coda. I apply this method to the same region as
used in ScS studies. The image gathers computed from SKKS are in excellent agreement
with the results (for the same image points) obtained from ScS. With this development



we now have a tool for detailed D" imaging - on sub-global scale - with joint interpreta-
tion (by means of the GRT and mixed-method statistics) of the broadband ScS and SKKS
wavefields.
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Chapter 1

Introduction

Earth's large scale radial stratification was a prime focus of seismology in the first half of

the 20th century. In the past decades research emphasis has shifted to mapping the lateral

variations in seismic propagation speed, changes in the depth to and character of deep

mantle interfaces, and the boundary layers associated with thermo-chemical convection.

The remote sensing of deep mantle discontinuities and, in particular, the lowermost mantle

(that is, the core mantle boundary - or CMB - and D"), is a challenge because the seismic

waves used to probe them propagate through Earth's heterogeneous shallow mantle before

they are observed.

The rapidly increasing availability of broad-band global network data and data from

dense receiver arrays, such as the USArray component of EarthScope, defines a need for

the development of methodologies for automated extraction of structural signal from large

data sets. To enable the detection, imaging, and characterization of singularities (includ-

ing interfaces) using large data volumes, I combine concepts from inverse scattering and

modem statistics into a two-step strategy. I first develop a generalized Radon transform

(GRT) of broad-band global seismic network data to produce so-called 'common image-
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point gathers', which reveal and characterize multi-scale variations in elastic properties

at and near interfaces. Subsequently, in collaboration with my colleagues, we develop a

theory for statistical inference of singularities (discontinuities).

In the rest of this chapter, I first discuss the relationship between inverse scattering

and tomography, between inverse scattering and forward modeling, and between the GRT

approach and other inverse scattering methods. Second, I argue that GRT is inseparable

from the statistical analysis. Third, I introduce the wavefields used in this thesis. Finally, I

give the outline of the thesis.

1.1 Inverse scattering

(Seismic) inverse scattering refers to a class of inverse theories used to characterize Earth's

structure on scale lengths comparable to or smaller than the wavelengths of the seismic

waves used as data.

1.1.1 Inverse scattering vs tomography

In current inverse scattering approaches, linearization of discontinuous perturbations (fine

scale) about smooth variations (coarse scale) is required. In such a framework, smooth

variations are determined with tomographic methods.

Seismic (transmission and normal mode) tomography has been successful in reveal-

ing long-period (smooth) changes in wavespeed (Dziewonski [1984]; Van der Hilst et al.

[1997]; Romanowicz [2003]). Structures at length scales far smaller than can be resolved

by tomography cause wavefield scattering, including reflections and phase conversions.

The scattered wavefield has been used in many studies, for instance, to estimate stochas-
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tic properties of deep mantle heterogeneity (e.g., Hedlin et al. [1997]; Margerin and Nolet

[2003]), to determine variations in depth to and reflectivity of known mantle discontinuities

(e.g., Paulssen [1988]; Van der Lee et al. [1996]; Shearer and Flanagan [1999]; Shearer

et al. [1999]; Gu and Dziewonski [2002]; Deuss and Woodhouse [2002]; Chambers et al.

[2005]), to explore the lowermost mantle (Garnero [2000]; Castle and Van der Hilst [2000],

and many others), and to search for previously unknown interfaces (e.g., Lay and Helm-

berger [1983b]; Revenaugh and Jordan [1991]; Kawakatsu and Niu [1994]; Vinnik et al.

[2001]; Castle and van der Hilst [2003]).

1.1.2 Inverse scattering vs forward modeling

Forward modeling of judiciously selected seismological phases has shown convincingly

that at and near the CMB strong heterogeneity exists on a wide spectrum of length scales

(e.g., Garnero [2000]; Rost and Revenaugh [2004]; Helmberger and Ni [2005]). How-

ever, forward modeling of complex waveforms is, as yet, only practical for relatively sim-

ple structural geometries, and it requires waveforms in which the signal of interest has

sufficient amplitude. The latter often implies a restriction to fairly small epicentral dis-

tance ranges, which - in turn - restricts the CMB regions that can be studied. More-

over, one needs to have prior knowledge of the target structures. As a complementary

technique, imaging by inversion of seismic data can overcome some of these limitations

and can be used to explore 'Terra Incognita'. Traditional seismic inverse theory, how-

ever, allows for the correct interpretation of only a fraction of the information contained

in multi-component broad-band waveform data. Moreover, noise from various sources can

mask weak signals in the seismic data. Signal can be enhanced by stacking, and in recent

years several exciting applications to lowermost mantle imaging have been published (e.g.,
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Thomas et al. [2004]; Hutko et al. [2006]; Avants et al. [2006b]). However, these studies

require laborious data analysis (including visual inspection and forward modeling at some

stage of the analysis), which complicates application to large data sets and geographical

regions.

1.1.3 GRT vs other inverse scattering approaches

We investigate scatterers (e.g., interfaces) in Earth's lowermost mantle (that is, the core-

mantle boundary and the so called D" region above it) with a generalized Radon transform

(GRT) adapted from application to near surface (hydrocarbon reservoir) imaging. A GRT

maps singly scattered waves to multiple images (or 'common image-point gathers') -for

different opening or scatter angles (source-receiver distances)- of the same target structure.

The theoretical analysis dates back to Guillemin [1985], but the first application to seismic

waves is credited to Beylkin [1985]. This early work was done in the context of hydrocarbon

reservoir imaging with acoustic waves and in the absence of caustics. Later extensions

included anisotropic media (Burridge et al. [1998]), resolution analysis (De Hoop et al.

[1999]), and generic elasticity with caustics (Stolk and de Hoop [2002]).

The GRT is a comprehensive theory/framework. Kirchhoff migration can be viewed as

a special case, typically, assuming the absence of caustics; in Kirchhoff migration one often

uses surface offset as the redundant variable, which leads to fundamental artifacts in image

gathers in the presence of caustics. [Revenaugh, 1995] presents an example of classical

Kirchhoff migration using all the data but loosing their sign information. Kichhoff time

migration is a special case of Kirchhoff migration - it assumes straight rays in an effective

medium that changes with the depth of image point (Simon et al. [1996]). Double beam-

forming (Scherbaum et al. [1997]) provides the input to so-called map migration (Hedlin
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et al. [1991]) revealing, geometrically, the propagation of singularities by the imaging op-

erators. Applying the GRT to a single data point generates an image distribution with as its

singular support an isochrone. If one has only a few isolated data points, one can overlay

the corresponding isochrones to localize the scatter point(Lay and Young [1996]).

1.2 GRT and statistics

The generalized Radon transform (GRT) of global seismic network data in heterogeneous,

anisotropic elastic media to map tens of thousands of seismograms results in a set of mul-

tiple images of the same target structure. These 'common image-point gathers' reveal

multi-scale variations in elastic properties. Presumably, any (local) reflector should show

up at least at (or close to) the same radius for any processed angle. However, due to the

difference in coverage, quality of data for different epicentral distances and inaccuracy in

background wavespeed model, this is not always the case. Therefore, instead of simply

stacking the image gathers (short for 'common image-point gathers') over different scat-

tering angles (and azimuths) into a single reflectivity profile, we use statistical methods to

estimate and enhance the GRT images (Chapter III, Ma et al. [2006]). A key notion of our

approach is that noise in the data and the image gathers is allowed to have mixed (that is,

white and coherent) components. The correlated components can be due to, for instance,

uneven source-receiver distribution, conflicting phases, multiple scattering, and the use of

an inaccurate reference model for (3D) mantle wavespeed, and the parameters that control

them can be estimated from the image gathers through prediction error minimization (also

known as generalized cross-validation).

Along with improved estimates of the reflectivity profile (the image), it also produces
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rigorous Bayesian confidence bands. These confidence bands replace forward modeling as

the initial model validation tool. This allows (routine) application to very large data sets

and can be used to focus the interpretation to structures that are imaged at a particular level

of confidence.

1.3 About the data

To investigate the lowermost mantle, core-related phases, such as ScS (PcP) and SKKS

(PKKP), and their precursors and coda are pertinent. Rost and Revenaugh [2004] found

a strong arrival in the early coda of major-arc PKKPab and interpreted it as an underside

reflection from D".With this arrival, they found a D" at 280 km above the CMB by con-

verting the traveltime to depth. Energy stack of seismograms (Figures 2-6B and 4-3) and

theoretic traveltime calculation show that the ScS and SKKS phase are rather clean from

other major phases for large distance ranges (ScS: 0 - 750; SKKS: 90 - 1800). In this thesis,

we use ScS wavefield to scan the core mantle boundary (CMB) area from the topside and

SKKS wavefield to scan from the underside 1. If we indeed see the same structures from

two totally different data sets, it is probably the best way to validate our results. Or even

better, we can do a joint inversion of ScS and SKKS data to scan the CMB area from both

the topside and underside. In principle, ScS and SKKS can be combined (through compen-

sation of the outer core) to form a GRT integration over migration dip directions covering

entire (unit) sphere. However, one should do the integration with caution: The integra-

tion will be sensitive to anisotropy. Conversely, we could use the integration to detect the

presence of anisotropy. The use of SKKS has several advantages. First, with SdS (we use

'The GRT approach developed in this thesis is ready for application to PcP and PKKP wavefields
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the subscript d for topside reflection and superscript d for underside reflection) phase, the

detection of lower interface of double crossing is relatively hard (Flores and Lay [2005]),

whereas the amplitudes of phase SKSdSKS are almost the same for a wavespeed increase

and decrease (see Figure 4-5). Furthermore, SKKS provides excellent data coverage. Since

the maximum epicentral distance for ScS data is about 80', and because there are almost

no receivers and events in large intraplate regions, such as oceans, the ScS middle point

coverage is very sparse there. Indeed, Central America and Eastern Eurasia are among the

few regions where ScS data coverage is likely to be sufficient for successful application of

the GRT with ScS data. On the other hand, the SKKS middle point coverage is very good

in most regions (see Figure 4-2). The main reason is that the epicentral distances used for

SKKS data are from 100-1800. All these features make the SKKS phase an excellent com-

plementary phase of ScS. On the other hand, to use SKKS data to image the CMB area from

the underside has its challenges. i) the lower limit of the earthquake magnitude which can

be used to image with SKKS data is higher; ii) SKKS is a 'mini-max' phase and its wave-

form is distorted by a wt/2 phase shift; iii) SKKS propagates not only in the solid mantle but

the liquid outer core, so that one has to compensate for the liquid outer-core; iv) For SKKS

imaging one has to deal with the coupled P-SV system. The potential mixture of SKSdSKS

and SKPdPKS seems to make this method almost infeasible. Fortunately, one can select

an epicentral distance range (100-180') in which there is no SKPdPKS energy because the

incidence angle of K at the CMB is beyond the post-critical angle for the mantle P-wave

(see Figure 4-1).
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1.4 Outline of thesis

In Chapter II (published in Journal of Geophysical Research, (11), B 12034, 2006), I con-

struct a generalized Radon transform (for heterogeneous, anisotropic elastic media) to map

broadband seismogram windows -comprising main arrivals with their coda and precursors-

into multiple images of a target structure. The method is applied to the CMB area be-

neath Central America. In Chapter III (published in Journal of Geophysical Research,

in press), we develop a theory for statistical inference of singularities (discontinuities).

Several "mixed-effect" models are introduced to enhance the GRT images and provide un-

certainty estimates. In Chapter IV (Geophysical Journal International, in preparation),

an extended GRT approach is developed to deal with both solid-solid and liquid-liquid

medium perturbations. I compare the results by this method with those by the method in

Chapter II. In Chapter V (adapted from a published paper in Science, (315), 1813-1817,

2007), I interpret our images in terms of mineral physics and geodynamics. The discus-

sion of this thesis is given in Chapter VI, where the key results of this research work are

summarized and future work related to this research is discussed.



Chapter 2

Imaging of structure at and near the

core mantle boundary using a

generalized Radon transform: I-

construction of image gatherst

Abstract

We introduce a new method for imaging heterogeneity at and near interfaces in Earth's low-
ermost mantle with broadband, three-component seismograms from global seismograph
networks. Our approach is based on inverse scattering and allows the extraction of perti-
nent signal from large data sets and requires few a priori assumptions about the hetero-
geneity under study, which makes it complementary to the forward modeling of selected
waveforms. Here (Paper I) we construct a generalized Radon transform (for heteroge-

'Published as: Imaging of structure at and near the core mantle boundary using a generalized Radon
transform: I- construction of image gathers, J. Geophys. Res., 111, B1230, doi: 10.1029/2005JB004241,
2006.
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neous, anisotropic elastic media) to map broadband seismogram windows - comprising
main arrivals with their coda and precursors - into multiple images of a target structure.
The 'common image-point gathers' thus produced reveal multi-scale variations in elastic
properties near deep interfaces. The GRT can be applied to narrow and wide angle data,
and the (automated) extraction of signal from data over a wide range of epicentral distances
enables exploration of CMB regions that cannot - with present-day data coverage - be im-
aged with the triplicated waveforms used in forward modeling studies. Tests with synthetic
data, produced both with idealized and actual source-receiver distributions, illustrate per-
tinent aspects of the theory and show that (multiple) weak interfaces can be detected and
located correctly, even in the presence of (random) noise that would prohibit visual inspec-
tion and modeling of the subtle signals. We transformed ~100,000 transverse-component
ScS waveforms into image gathers of a core mantle boundary (CMB) patch beneath Central
America. Juxtaposition of stacks of these gathers produces a 2-D image profile revealing
contrasts in elasticity near the target depth of the CMB and ~280 km above it. The latter
may mark the top of the so called D" region. The images also reveal a richness of structures
in between these depths. Combined with a statistical analysis of the significance of these
singularities (described in Paper II, Chapter III), the approach to imaging presented here
paves the way to large-scale seismic exploration of the lowermost mantle.

2.1 Introduction

Earth's large scale radial stratification was a prime focus of seismology in the first half of

the 20th century. In the past decades research emphasis has shifted to mapping the lateral

variations in seismic propagation speed and changes in the depth to and character of deep

mantle interfaces and boundary layers associated with thermo-chemical convection. The

relatively smooth variations in seismic wavespeed can be delineated by transmission and

normal mode tomography, e.g., Dziewonski [1984]; Van der Hilst et al. [1997]; Romanow-

icz [2003]. Structures at length scales far smaller than can be resolved by tomography

cause wavefield scattering, including reflections and phase conversion. Scattering of seis-

mic waves has been used, for instance, to estimate stochastic properties of deep mantle

heterogeneity (e.g., Hedlin et al. [1997]; Margerin and Nolet [2003]), to determine vari-

ations in depth to and reflectivity of known mantle discontinuities (e.g., Paulssen [1988];
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Van der Lee et al. [1996]; Shearer and Flanagan [1999]; Shearer et al. [1999]; Gu and

Dziewonski [2002]; Deuss and Woodhouse [2002]; Chambers et al. [2005]), to explore the

lowermost mantle (Garnero [2000]; Castle and Van der Hilst [2000], and many others),

and to search for previously unknown interfaces (e.g., Lay and Helmberger [1983b]; Reve-

naugh and Jordan [ 1991]; Kawakatsu and Niu [ 1994]; Vinnik et al. [2001]; Castle and van

der Hilst [2003]).

The remote sensing of deep mantle discontinuities and, in particular, the lowermost

mantle (that is, the core mantle boundary - or CMB - and D"), is a challenge because

the seismic waves used to probe them propagate through Earth's heterogeneous shallow

mantle before they are observed. Forward modeling of judiciously selected seismologi-

cal phases has shown convincingly that at and near the CMB strong heterogeneity exists

on a wide spectrum of length scales (e.g., Garnero [2000]; Rost and Revenaugh [2004];

Helmberger and Ni [2005]). However, forward modeling of complex waveforms is, as

yet, only practical for relatively simple structural geometries, and it requires waveforms in

which the signal of interest has sufficient amplitude. The latter often implies a restriction

to fairly small epicentral distance ranges, which - in turn - restricts the CMB regions that

can be studied. Moreover, one needs to have prior knowledge of the target structures. As

a complementary technique, imaging by inversion of seismic data can overcome some of

these limitations and can be used to explore 'Terra Incognita'. Traditional seismic inverse

theory, however, allows for the correct interpretation of only a fraction of the information

contained in multi-component broad-band waveform data. Moreover, noise from various

sources can mask weak signals in the seismic data. Signal can be enhanced by stacking,

and in recent years several exciting applications to lowermost mantle imaging have been

published (e.g., Thomas et al. [2004]; Hutko et al. [2006]; Avants et al. [2006b]). However,
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these studies require laborious data analysis (including visual inspection and forward mod-

eling at some stage of the analysis), which complicates application to large data sets and

geographical regions.

With the rapidly increasing availability of broad-band global network data and data

from dense receiver arrays, such as the USArray component of EarthScope, there is a well

recognized need for the development of methodologies for automated extraction of struc-

tural signal from large data sets. To enable the detection, imaging, and characterization of

singularities (including interfaces) using large data volumes, we combine concepts from

inverse scattering and modern statistics into a two-step strategy. The first step, presented

here, is the development of a generalized Radon transform (GRT) of broad-band global

seismic network data to produce so-called 'common image-point gathers', which reveal

and characterize multi-scale variations in acousto-elastic properties at and near interfaces.

In a companion paper, hereinafter referred to as Paper II, Ma et al. [2006] analyze these

gathers using 'mixed-effects' statistical models. The statistical analysis is used to enhance

the images and estimate formal (Bayesian) confidence levels. In our automated imaging of

Earth's deep interior, the latter replaces forward modeling of (stacks of) waveforms as the

(initial) means for model or image validation.

We develop a GRT for imaging of the lowermost mantle with the broad-band wavefield

formed by direct ScS and its precursors and coda. In Section 2.2 we develop the theory un-

derlying the GRT and describe how three-component broad-band data can be transformed

into image gathers. The GRT was introduced to seismic imaging by Beylkin [1985] and

Miller et al. [1987] but the development followed here builds on generalisations due to De

Hoop and collaborators (e.g., De Hoop et al. [1994]; De Hoop and Bleistein [1997]; Bur-

ridge et al. [1998]). In Section 2.3 we use synthetic seimograms to illustrate key aspects
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and test the performance of our methodology. We show that - in principle - the GRT can be

used to detect (multiple) deep Earth interfaces and estimate their reflection coefficients. We

also analyze how the radial resolution depends on the scattering angle. This dependence,

which is shown to be related to what is called the dilation in a wavelet transform, is of key

importance for the space-scale characterization of the interface. Furthermore, we demon-

strate that the GRT is effective in suppressing (random) noise. Finally, in Section 2.4 we

discuss pertinent aspects of the data processing, including the use of principal component

analysis (PCA) for identifying and separating the direct and scattered wavefields, and we

present preliminary results of our study of a CMB patch beneath Central America.

2.2 GRT to 'uniform' common image-point gathers

2.2.1 Historical perspective (anisotropic elastic case)

There have been many publications about high-frequency methods to invert seismic data

in acoustic media. These methods date back to Hagedoorn [1954]; from a seismic per-

spective, it has taken thirty years to develop the basic analysis (Schneider [1978]; Clayton

and Stolt [1981]; Stolt and Weglein [1985]; Miller et al. [1987]; Schleicher et al. [1993]).

From a mathematical perspective, the analysis started with the reconstruction of the sin-

gular component of the medium coefficients in the Born approximation, in the absence of

caustics, by Beylkin [1985] - using the framework of generalized Radon transforms. Bleis-

tein [1987] discussed the case of a smooth jump using Beylkin's results. The simplest form

of an asymptotic inversion procedure, however, can already be found in Norton and Linzer

[1981].
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Beylkin and Burridge [1990] discussed the asymptotic imaging of seismic data in the

Born approximation in isotropic elastic media, under a no-caustics assumption. The gen-

eralized Radon transform in anisotropic elastic media was developed by De Hoop and co-

workers (De Hoop et al. [1994]; Burridge et al. [1998]; De Hoop et al. [1999]). De Hoop

and Bleistein [1997] introduced the imaging and inversion in general anisotropic elastic

media, using a Kirchhoff-type approximation.

Guillemin [1985] discussed the so-called Bolker condition in the context of generalized

Radon transforms, which ensures invertibility of the modeling or single scattering oper-

ator in the least-squares sense. Stolk and de Hoop [2002] made use of this result in the

development and analysis of the generalized Radon transform in anisotropic elastic media

allowing the presence of caustics; explicit expressions and algorithmic aspects in this case

can be found in De Hoop and Brandsberg-Dahl [2000]. The foundations of the use of the

Kirchhoff approximation in the generalized Radon transform, in the presence of caustics,

were also given by Stolk and de Hoop [2002]. An implementation and application of these

results to exploration seismic data can be found in Brandsberg-Dahl et al. [2003].

In global seismology, applications and adaptations of the no-caustic isotropic elastic

generalized Radon transform to scattered teleseismic body waves can be found in Bostock

et al. [2001] and Poppeliers and Pavlis [2003]. Poststack migration in the context of re-

ceiver functions was discussed by Rydberg and Weber [2000].

2.2.2 GRT imaging of deep mantle interfaces

In essence, the GRT enables the transformation of a large number of broad-band seismic

waveform data into (multiple) images of a singularity in physical medium properties, for

instance a deep mantle interface. In order to do so, however, one has to account carefully
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for (smooth, possibly anisotropic) 3-D wavespeed variations in the background medium,

geometrical aspects such as the focal depth and the radiation patterns of the earthquakes

considered, and the uneven and sparse sampling (that is, acquisition geometry). Moreover,

in applications to earthquake data (that is, passive seismics) one has to estimate and remove

(for each earthquake) the source signature and (for each receiver) the instrument response.

In the subsections below we introduce the notation regarding the sources and receivers,

define the ray-geometrical aspects, and develop the transform itself. We explain the multi-

resolution aspects of 'common image-point gathers', and we discuss (anti-)aliasing and

other issues related to uneven spatial and spectral sampling.

Sources and receivers - definitions

We consider waveform data from many sources (earthquakes), indicated by superscript s,

recorded at many receivers (seismograph stations), indicated by superscript r. The stations

are not required to be part of a contiguous, geographically restricted array.

The earthquake epicenters are denoted by xs. We assume that the origin times ts are

reset to zero, and that the earthquake's time-rise function is deconvolved from the data

(the related practicalities are discussed in Section 2.4.2). For each earthquake we write the

equivalent body force f as

f (x, t) = -Mijdi (x - x s) H(t - ts), with ts set to 0, (2.1)

where Mij is the moment tensor. Note that we use the subscript summation convention.

The receivers, located at xr, record three displacement components up(xs, xr, t), p = 1,2, 3,

which - after pre-processing - will be used as input in the GRT.
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Scattering geometry - definitions

The geometry considered in transforming seismic data in a heterogeneous, anisotropic

elastic medium is illustrated in Figure 2-1 (top), where the image point is denoted by

Y = (Yi, Y2, Y3). The superscripts s and r indicate the association with a ray from a source

and a receiver, respectively. The 'two-way' travel time for a particular diffraction branch

associated with a ray path connecting xs with xr via y is denoted by T = T(x,xr, y).

The slowness vector of the ray connecting xs with y (evaluated at y) is given by pS(y);

in particular, pS(xs) indicates the slowness along this ray evaluated at the source. The

projection 7rs (xs) of ps(xs ) onto Earth's surface is a horizontal slowness. Furthermore, we

introduce the phase direction (that is, a unit vector normal to the wavefront) ks = pS/pS

and, following the notation by Cerveny [2001], the phase velocity Vs = 1/|pS|. A similar

notation is used for the quantities along the ray connecting the image point with the receiver

(that is, pr(y), pr(xr), r(xr), r, and Vr). With o the angular frequency, onrs and o)lrr

are (horizontal components of) wave vectors. (We note that (s, r, t, wS ,or, o) - that is,

space, time, and their Fourier duals, wave vector and frequency - defines a point in data

phase space.) Likewise, the polarization vector, h, associated with compressional- or shear

waves, is defined at the source, receiver, and image point.

The quantity that controls image resolution is what we will call the migration slowness

vector, pm(y) = pS(y) + pr(y), with a direction - known as the migration dip in the ex-

ploration literature - vm (y) - p pm(y)/ m (y) i. (We note that (y, pm(y)) defines a point in

image phase space.) Together, the migration dip and the phase directions of incoming and

scattered rays define the scattering vector

Y/ = (ks x ir) x V m (2.2)
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at image point y.

For a travel-time diffraction branch, and away from caustics at xr or x, the scattering

angle 0 between incoming and scattered rays at y is related to the scattering vector as

sin 8 = I|V, 0 = 0(xS,xr,y), (2.3)

and the scattering azimuth Vf is the angular displacement of the scattering vector at y,

S= V(, IX, y), (2.4)

normalized to one (that is, 'y/ ll ); see, again, Figure 2-1(top).

2.2.3 Map (de)migration and isochrons

Map migration describes how the geometry of a (specular) reflection - defined as a com-

bination of source and receiver coordinates, travel time, and horizontal slownesses - is

mapped to the location and orientation of a reflector:

S: (, , t, rs rr) (y,pm) at t = T(x,x, y), (2.5)

see, for instance, Kleyn [1977]; Douma and de Hoop [2006].

For given (xS,xr, t), the set of equal times T(xS,xr,y) = t defines an isochron. With

slownesses 7rs and Ir, which can be inferred from the data (for instance from travel time

slopes, polarization analysis, or vespegrams, see Rost and Thomas [2002]), the mapping I

locates y on an isochron. If such slowness information is not used, a data point (xS,xr, t)

smears over an isochron in the interior of the Earth, see Figure 2-1 (bottom). In fact,
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Figure 2-1: Schematic illustration of the path geometry (top) and the isochron concept
(bottom) considered in the generalized Radon transform (GRT) of ScS data. Top: The
source (xS) and receiver (xr) are separated by epicentral distance A. The image point at the
CMB is denoted y. Slowness vectors are given by p, and ir denote horizontal slownesses.
The scattering angle is 0 and scattering azimuth is Vr. The image is, essentially, created
by integration over pm. All other symbols are in the text. The two seismograms illustrate
that information about a predescribed image point y is gleaned from different parts of data
recorded at the different stations; for non-specular reflections part of the coda contributes
to the stacks, whereas for specular reflections the information is retrieved from the main
arrival. Bottom: For given (xS,x, t), the set of points y constrained by T(xS,xr,y) = t is
identified as an isochron; pm is normal to the isochron.

the impulse response of the kernel of the generalized Radon transform (considered as an

integral operator) coincides precisely with an isochron.

The use of isochrons for deep Earth imaging is not new. For example, Lay and Young

[1996] used them in their study of scattering in Earth's lowermost mantle. Isolating a

proper time window of the coda wave (such as S to ScS), they applied a convolutional model

approach to estimate for any scattered waves the arrival times t (at a station located at xr

for a given earthquake at xs) and the amplitudes. Thus a combination (s, xr, t, amplitude)
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is a data point, and multiple data points smear over a collection of isochrons. Instead of

integrating over all isochrons at a particular image point, as done by the generalized Radon

transform, Lay and Young [1996] considered a smooth mantle wavespeed model and kept

track of how many isochrons associated with their data points hit a particular scattering

(image) point in the lower mantle.

2.2.4 Generalized Radon transform inversion

With the geometrical concepts developed above we derive the basic form of the operators

that transform the waveform data to a set of common image-point gathers in a heteroge-

neous, anisotropic medium. The elastic properties of the medium under consideration,

here Earth's mantle and crust, are described by a stiffness tensor cijkl (i, j, k, I E {1,.., 3})

and mass density p. These parameters are decomposed as a sum of a smooth part (with

superscript (0)) and a (non-smooth) perturbation (superscript (1)):

p(x)= p x()(x) +p ')(x), Cijkl(X) W Ci +(X) (x). (2.6)

Accordingly, the (singly scattered) part of the displacement field associated with the per-

turbed medium properties is denoted with superscript (1), so that u = u(O) u(1). For now

we assume that an estimate of the smooth wavespeed variations (the background model)

is available, for instance from tomography. For a given background model, the medium

perturbations, which contain the discontinuities and other types of scatterer, are then found

by imaging (or inverse scattering) through application of the GRT.

We further assume that the perturbations are (non-smooth) changes in elastic parame-

ters across a local, laterally contiguous interface defined by a specific value of some func-
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tion 0 (De Hoop and Bleistein [1997])1. Such a function would describe, for example, the

topography of the interface. The interface normal is given by vo = V./IVO|. Multiple

interfaces are simply treated as a combination of such functions.

We can now formulate the migration of waveform data to uniform image gathers at a

predescribed (common) image point y. These image gathers will be inferred from Sw (y; 9, V),

which in turn is obtained from the pre-processed waveform data i7(1) through a GRT of the

following form2:

Sw(y; 6, y ) = j i (l)(xs,xr,y) pm(y) 3dvm. (2.7)

As illustrated in Figure 2-1, the source and receiver positions are here explicit functions of

the image point, migration dip, scatter angle, and azimuth; that is, xs = x(y, mvm, 9, Y) and

xr = xr(y, vm, 9, yt); these positions can be determined by ray tracing from image point y

upward until the rays intersect Earth's surface at the source and receiver side. The integra-

tion over migration dip vm is restricted to Em, which depends on (0, iy) and reflects the

effect of the acquisition imprint on the final image. In (2.7), ti(l ) represents the waveform

data of the singly scattered constituent i4P (here ScS and its precursors and coda) corrected

for amplitude, polarization, phase, and travel time at y [Burridge et al., 1998, (4.2)]:

source polarization waveform data

() (xS, xr, y) = W (xS,xr, y) hr(Xr) ( t1) (xS,xr, T (x ,xr,))

.2 [p(xr) ( xr)V()Vr(y)Vs (y)p(0) (xs)Vs(xs)l/ 2 [detQ2(xr,y) detQ2 (y, S)]1/ 2.8)

weights related to Green's functions geometrical spreading

'Mathematically, the jump function can be readily replaced by an element of a Zygmund class of order be-
tween 0 (i.e., a step function) and 1 (i.e., a ramp function), which also determines the local scaling properties
of the singularity. This generalization is important, for example, in investigations of phase transitions.

2This expression is a stripped down version of equation (20) in Brandsberg-Dahl et al. [20031; for in-
stance, the radiation-pattern inversion has been removed to enable the direct estimation of a single reflection
coefficient instead of multiple combinations of stiffnesses.
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Here, the contraction with hrp(Xr) represents rotations of the receiver components, and

W(xS,Xr,y)= ½Mqr(xs ) (hs(xS)pS(xs) +hS(xS)ps(xS)) (2.9)

accounts for the different source mechanisms. Furthermore, i•l) represent the original,

singly-scattered data u() corrected for possible phase shifts due to caustics:

i(1) (xs,xr, T(xS,xr,y)) = eXa(x',y,xs)U(l) (xS,xr,T(S,r,y)), (2.10)

with Ye the Hilbert transform and u(xr,y,xs) = i(xr,y) + K(y,xs) is the accumulated

KMAH index (Cerveny' [2001]) that keeps track of caustics that occur between xr and y

and between y and xs.Such caustics readily appear in heterogeneous (but smooth) media.

Finally, Q2(x r,y) and Q2(y,xs) are the relative geometrical spreading (Cerveny' [2001])

for the receiver and source rays, respectively. All other parameters are as defined in Sec-

tion 2.2.2.

Based on [De Hoop and Bleistein, 1997, equations (37)-(38)] the GRT in (2.7) is de-

signed to reconstruct a combination of a singular function that characterizes some interface

and a smooth (amplitude) function S(1) that represents the associated scattering coefficient,

S(') (y;9, V) (v p') - Ivy 0 16(0(y)),
smooth amplitude interface characterization

with S(1) strictly defined only for y on the interface defined as a zero level set of a function

0; the normal to the interface at point y is given by vo = Vy,/ IVyo. We note that if the

singularity represents a jump (that is, a first-order discontinuity) the scattering coefficient

represents the reflection coefficient.
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For given xs and xr , let xO be the specular reflection point with associated interface dip

vp (xA). For y in the vicinity of this specular reflection point, pm aligns with vo. Using

the first-order Taylor expansion of 0(y) about xO while noting that O(xO) = 0, that is,

4(y) - VxxŽ" -(y - XO), it follows that the interface characterization can be written as

(VO. pm)-i IVyO1 3 (0(y)) _ (pr)-i IVxO1O 5(vX 1xO -(Y-XI)) = (pI)-I 5(VO . (y-x')),

where

pO =pm(xO)l, suchthat vm(x O)= vO(xO). (2.11)

Using the homogeneity of the delta function (easily checked in its Fourier representation),

the interface can then be characterized as

(p)-I 6(vO - (y - x)) = -(pIvO - (y - x)),

and the assumption of a (common) source signature leads to the factorization

Sw(y; O, ) = S(1)(x; 6, ) w(o,)(p vo(6, ) .- (y - xO)), for ly - x I small, (2.12)

where w(e,,) are smooth functions that reveal the imprint at xO of the source-receiver dis-

tribution [De Hoop and Bleistein, 1997, equation (94)]. We recognize in (2.12) a dilation

(scaling with 1/pO) and a translation (by xA). Hence, for given direction v o , Sw(y; 8, Y)

behaves like a wavelet transform of the singularity being imaged at y. We will see later

(Section 2.3) that the dilation plays an important role in characterizing the (radial) scaling

properties of the singularities being imaged. In(2.12), (') (x; 0, yf) denotes the estimate
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of the scattering coefficient S(1)(x; 0, Vf) (see Appendix).

By adjusting the weighting functions inside the integral of (2.7) we change the GRT

given by Sw(y; 0, Vf) to a mapping J(y; 0, Vf) of di( 1) to (approximately) uniform image

gathers (IGs) in scattering angle 0 and azimuth y (cf. (2.18), Appendix):

- (y;0, V) :j t=(1)(xsxr,y) p)(y) dv3 .
y, : W (xS,xr,y)2 Iw(Xs,xr,y) d

With this result we derive the structural image through integration over 0 and y:

J(y) =1 fJ (y; 9, f) dO6dy. (2.13)

In the presence of caustics, J(y; 0, Vy) commonly generates false image events while the

stack JO(y) over (0, Vf) does not (see Stolk and de Hoop [2004] for details). In Paper II

this linear stack will be replaced by an integration over V followed by formal statistical

inference of singularities in the gather.

2.2.5 Sampling

Finally, in the construction and subsequent statistical analysis of the image gathers we have

to understand the effects of sparse and uneven sampling. Typically, the global wavefield is

sampled irregularly in xs and xr but regularly in t. By itself, irregular spatial sampling is

an advantage for our approach; in fact, regularly sampled data from regional arrays should

be subjected to aliasing tests. Irregular source-receiver sampling obtained by quasi-Monte

Carlo sampling of migration dip and scattering angle and azimuth even results in optimal

spatial resolution kernels for inverse scattering for a given number of data points (De Hoop
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and Spencer [ 1996]).

The sampling properties of the GRT can be described using a table generated by map

migration I (cf. (2.5))

{(xS,xr ,t, ),s, omlrr, O;x, Opm) t = T(xS,xr,x) ).

The braces, here, indicate that this set of points is a relation; note that, in general, there is

not a mapping between (x, O)pm) and (xS,xr, t, s, ,r, •r).

For a given grid, the Fourier duals in this table, that is, (xs, mrs), (xr , orr), (t, c) and

(x, op m ), should satisfy the Nyquist criterion, which essentially provides an upper bound

for frequency, fmax- = ax. For example, if Ar denotes the (average) station spacing on a

gridded array, then

fmax 17 <
- 2Ar

If needed, an anti-alias filter (for a design, see Lumley et al. [2001]) can be applied. For

sampling the image, we note that the magnitude of the (migration) slowness vector is given

by

p ml = [(Vs) - 2 + 2(Vs) - 1(Vr) - 1 cos()+ (Vr) -2] 1 / 2 , (2.14)

which also shows how |pm changes with scattering angle 0. In practice, spatial aliasing in

the image is not an issue because its sampling is part of the (computational) algorithm.

2.3 Resolution tests with synthetic data

We evaluate the performance of the methodology developed above with broad-band WKBJ

seismograms (Chapman [1978]) calculated from a radially stratified wavespeed model
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(ak135, Kennett et al. [1995]), on which we superimpose jumps in elastic parameters at

certain distances above the CMB. For example, Figure 2-2 (left) depicts seismograms cal-

culated for a 1.5% S-wavespeed contrast at 150 km above the CMB; the records on the

right are generated with contrasts at 150, 200, and 250 km above the CMB. Tests such as

the ones presented here demonstrate that the GRT can detect small medium contrasts in

noise-free data or if the noise in the data is random and white. Other types of noise can de-

grade the GRT stacks, however, and in Paper II (Chapter III, Ma et al. [2006]) we assess

the performance of the GRT in the presence of non-random 'noise' (e.g., due to uneven

data coverage, errors in the assumed background medium, or multiple scattering) and dis-

cuss how the GRT stacks can be enhanced through statistical inference (with mixed-effects

models).

We consider different geographical source-receiver distributions. In one series of tests

we use an idealized geographic distribution of source-receiver pairs (Figure 2-3A,B); in

another we use the actual earthquake-station distribution (Figure 2-3C). We show results

for (synthetic) data bandpass filtered between 1-10 s.

For the wavespeed models and associated ray geometries considered we can calculate

the reflection coefficient R as a function of scatter angle. The theoretical curve (Figure 2-

3B) and the synthetic data (Figure 2-2B) suggest that three angles are of particular interest.

(1) The intramission angle ii, at which no energy is reflected (that is, R = 0). In accord

with theoretical predictions, Figure 2-3A shows that the amplitude of SdS decreases with

increasing opening angle (with R < 0) for i < ii, becomes zero at i = ii, and increases again

for i > ii, but with opposite polarity (that is, R > 0). (2) The cross-over angle ix, beyond

which ScS, the CMB reflection, arrives before SdS, the reflection off the shallower interface

(which happens because of the imposed increase in wavespeed in the lowermost layer). (3)
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Figure 2-2: Record section of synthetic data for models with one (left) and three (right)
contrasts above the CMB, calculated with WKBJ. The red solid lines are the travel time
curves of ScS phase and the red dotted lines are the travel time curves of SdS phases. At
wide angles this reflection becomes stronger and crosses over with, and eventually arrives
in the coda of direct ScS. The inset in B shows, for narrow angle reflections, the weak
precursory energy (amplified). Narrow angle (0-ii); Wide angle (ii-ic), with ii and ic the
intramission and critical angle, respectively. For the parameters used here, ii=44.6 and the
critical angle for SdS is at 80.6 o; the cross-over between SdS and ScS occurs at 83.5 .

The critical angle ic, beyond which no energy is transmitted into the D" (head wave). We

define narrow angles as i less than ii and wide angles for i between ii and ix (or ic, if ic < ix).

In Figure 2-3B we compare the magnitude of the reflection coefficient inferred from the

GRT (see Appendix) and from Snell's law. The inferred reflection coefficient matches the

theoretical curve remarkably well, except near and beyond the critical angle (which in this

case is 2x - 80.60).

In addition to illustrating how ii, ix, and ic affect the appearance of the angle gath-

ers, Figure 2-3A,C demonstrates that the width of the reflectors increases (dilates) with

increasing scatter angle. This dilation - see (2.12) and the text below it - depends on 6 as

1/ cos (0/2). The degradation of radial resolution with increasing distance can be under-

stood from simple ray geometrical considerations: with increasing angle of incidence the

vertical slowness decreases and the travel time becomes less sensitive to perturbations in
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Figure 2-3: Illustration of the construction of GRT stacks (images) from image gathers at
different scatter angles. The traces on the left of panels (A) and (C) are image gathers at 53
scattering angles produced from the synthetic data as in Figure 2-2. The traces on the right
are stacks over narrow and wide angles (as defined in the text and in the caption to Figure 2-
2). We integrate over narrow and wide angles seperately because of the change in polarity
upon crossing the intramission angle ii; stacking over all angles would involve signals with
opposite polarities and cold thus mask interfaces. We use a 1-10s bandpass filter. The gath-
ers and stacks in (A) are produced from an artificial (regular) source-receiver distribution;
the results in (C) were computed using the data coverage depicted in Figure 2-6A. In (A)
and (C) the dilation shows up as 1/ cos (0/2) - the theoretical values are depicted by the
thin blue lines around the depth of the CMB. To aid visual inspection, the amplitude in the
(dashed) box in (A) and (C) is amplified by a factor of 20. In (B), the solid line depicts the
reflection coefficient calculated from the input model and the star is the reflection coeffi-
cient picked up by our GRT method (see Appendix). The intramission angle ii = 44.6 0 and
the critical angle ic = 80.6 .

discontinuity depth (in the limit of grazing rays the sensitivity vanishes because at the im-

age point the depth perturbation is perpendicular to the ray). Most forward modeling stud-

ies consider (triplicated) waveforms at distances larger than - 750 (which is at the large

distance end of what we call wide angle data) because the SdS phase is weak at smaller

distances. This leaves a fairly small epicentral distance range that can be used. Moreover,

these data have relatively poor resolution to the depth of interfaces. For our purposes, how-

ever, the (predictable) variation in depth resolution provides valuable information; indeed,
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Figure 2-4: Images obtained from narrow angle stacks produced from synthetic data, illus-
trating the resolution of the GRT. (A) The recovery of the input model with a contrast at
150 km above the CMB. (B) The recovery of the input model with contrasts at 150 km, 200
km, and 250 km above the CMB. The amplitudes above the dashed line are multiplied by
a factor of 35 to make them comparable to those of the CMB.

the redundancy contained in the narrow and wide angle data helps us constrain both the fine

scale and coarser scale radial variations in elastic properties. This property can be exploited

to quantify the space-scale properties of the singularities being imaged.

The ability to reproduce the dilation (1/pO in (2.12)) and the reflection coefficients con-

firms the correct behavior of our GRT. We can also demonstrate that our GRT is able to

detect multiple interfaces. For this purpose, we chose 41 imaging points along the great

circle transect from (-105W, 0) to (-75W, 30N). Figure 2-4 was generated by the lateral

juxtaposition of image gathers stacked over narrow angles. Using the synthetic data in Fig-

ure 2-2A,B, the images depicted in Figure 2-4A,B demonstrate that the CMB and multiple

interfaces within D" are well recovered by the GRT.

Finally, we demonstrate that random noise in the data is suppressed effectively by the

GRT. For this test we add noise to data generated from a model with, as before, a CMB and

a wavespeed increase at 150 km above it (Figure 2-5). In Figure 2-5, top right, we show the

image obtained by applying the GRT to the data without noise (shown in top left panel).
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The CMB as well as the shallower reflector are resolved at depths that correspond to the

contrast in wavespeed in the background model used. Next, we perform the GRT to the

data contaminated with noise; the result is shown in Figure 2-5, bottom right. The result is

practically the same as that of the noise-free data case. Tests like this demonstrate that the

GRT is robust under the addition of white random noise. Even if the signal-to-noise is so

low that it is impossible to see the signal from the 'top' reflector in the raw data (see inset

in Figure 2-5, bottom left), the GRT still yields the contrasts at the right position because it

makes use of the redundancy in the data.

2.4 Imaging the CMB beneath Central America

We apply the GRT to a broadband wavefield formed by ScS (and its precursors and coda)

that sample a 50 x 50 core mantle boundary (CMB) beneath Central America (Figure 2-

6A). This region has been studied intensively and several investigators have found evidence

for structural complexity within D" (e.g., Garnero [2000]; Buffett et al. [2000]; Thomas

et al. [2004]). Here we present a sample 2-D image of lowermost mantle structure; a more

complete analysis and interpretation of such images is presented in Chapter II (Ma et al.

[2006]) and Chapter V (Van der Hilst et al. [2007]).

2.4.1 ScS data selection and pre-processing

For all events considered here, origin times and source locations (hypocenters) were ob-

tained from Engdahl et al. [1998] and moment tensors and magnitudes from the Harvard

CMT catalog. For all events in our data set, three-component broad-band waveforms were

retrieved from the Data Management Center of the Incorporated Research Institutions for
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Figure 2-5: Illustration of the robustness of the GRT in the presence of random noise in the
data. Top left: same as Figure 2-2A. Red lines are theoretical travel time curves for ScS
(solid) and SdS (dashed). Top right: GRT image trace (solid red line) constructed from the
synthetic data shown on the left and the wavespeed profile used to generate the synthetic
waveforms (blue curve). Bottom left: Data as in top panel after addition of (random) noise.
The arrival of ScS can still be discerned in the noisy data, but signal from the top reflector
has disappeared in the noise. Bottom right: GRT image trace (solid red line) constructed
from the noisy data shown on the left. The image is practically identical to the noise-free
image.

Seismology (IRIS).

The range of epicentral distances that show the most prominent specular ScS reflections

is 20 - 70 0, but as input to the GRT we used data in the distance range from 0 - 80 0. We

further require that the image points y are within the CMB patch considered here. The

'1,300 earthquakes (with mb > 5.2, origin times 1988-2002) recorded at one or more of a

total of ' 1,200 stations (Figure 2-6A) yield a total of -65,000 broad-band data (Figure 2-

DO
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Figure 2-6: (A) Geographic map of the region under study, depicting the epicenters of
the - 1,300 earthquakes (blue stars) and the locations of the - 1,200 stations (inverted red
triangles) that yielded the data used in the construction of the common image-point gathers.
The 500 x 500 CMB bin is indicated by the densely sampled rectangle: small black dots
mark specular CMB reflection points of the -65,000 ScS data displayed in the panel on
the right. The small yellow dots that delineate the NW-SE trending section line mark the
locations of the image gathers constituting the 2-D profile presented in Figure 2-9; the
large yellow dot represents the location of the IGs and angle stacks shown in Figure 2-
8. (B) Stack of the -65,000 ScS(SH) data with reflection points in the CMB bin shown
in (A). Processing details: data source IRIS-DMC; bandpass filter: 1 - 10s; earthquakes:
mb > 5.2, origin time between 1988-2002. Inset, top left: generic ray geometry of ScS. NB.
of these data, ~ 35,000 were used for the construction of the 2-D profile shown in Figure 2-
8. (- 30,000 data were rejected either because the specular reflection point was too far
from the image points or because the number of seismograms for particular earthquake
was inadequate for PCA.)

6B). Subsets of this data set are use to construct GRT images at specific CMB locations.

Before we can perform the GRT we subject the data to several pre-processing steps.

First, we account (by deconvolution) for the different instrument responses of the seismo-

graph stations from which data are used. Second, we band-passed all data between 1-10

s. Third, we remove effects of source and receiver differences on the displacement field

u. To obtain a (common) band-limited source signature, which allows the factorization

in (2.12), we account as well as we can for the differences in rupture mechanisms of all

U2

230 250

u



CHAPTER 2

earthquakes involved. For this purpose we check the first-onset polarity and deconvolve

the time derivative of the source time-rise functions, which can be estimated from CMTs

or from a principal component analysis (see Section 2.4.2). Furthermore, all travel times

are corrected for Earth's ellipticity (Kennett and Gudmundsson [1996]).

For the CMB bin and the source-receiver pairs considered here, the cone of associated

dip directions has an opening of about 24 deg, which restricts the detectable structural dip

angles. (We note that we only consider a cone perpendicular to the CMB, which restricts

the structural dip angles; this limitation can be removed by considering multiple cones.)

Furthermore, we invoke a bound on the difference between two-way travel time T(xs , xr, y)

and the travel time of the specular reflection at image point y. Finally, the broad-band

seismograms are subjected to windowing in order to obtain time series that comprising

main arrivals, their coda, and their precursors.

2.4.2 Principal Component Analysis (PCA)

As with other techniques involving stacks of earthquake data, we need to account for the

differences in source signature of the many different earthquakes involved. Of primary

interest here is the source time (rise) function. This can be inferred from the Harvard

CMTs, but the frequency content and the type of data used to obtain the CMT solutions

is quite different from those used in our study. Instead of CMTs we use a principal com-

ponent analysis (PCA) - see, for instance Rondenay and Fischer [2003] - to estimate the

relevant parameters directly from the data. As the direct wavefield we can use either ScS

or (teleseismic) S; the latter has the advantage of not being involved in scattering in the

CMB region but a disadvantage is that we cannot use some very narrow angles (associ-

ated with epicentral distances less than 300). The following steps are used to estimate the
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time-rise functions and to separate the direct and scattered wave fields: (1) The transverse

components excited by the same earthquake are divided into different groups according to

epicentral distances - if there are fewer than three records in one or more groups, the event

(and associated data) is not used; (2) For each group, a Hilbert-transform is applied to the

seismograms; (3) The transformed seismograms are time-normalized using delay times ob-

tained from multi-channel cross-correlation (e.g., VanDecar and Crosson [1990]); (4) The

seismograms are projected onto the first principal components (see Ulrych et al. [1998]),

which are determinined for each group. (5) A 100 s window around the calculated travel

time of the direct wave is then used to obtain an emperical 'time-rise' function for each

record, which is deconvolved from the direct and scattered wave fields to obtain the data

used for imaging of the CMB and structure above it, respectively. For PCA with ScS as the

reference phase this process is illustrated in Figure 2-7.

2.4.3 Preliminary 2-D image

We draw from the -65,000 ScS displacement records in Figure 2-6B to construct GRT

images of the lowermost mantle beneath Central America (Figure 2-6A). We first consider

an image gather and angle stacks at a particular image point y and then construct a 2-

D profile by lateral juxtaposition of 41 angle stacks. In the current study we restrict the

analysis to the bottom 400 km of the mantle in order to avoid contamination with the S

wavefield.

For y at (-900 W, 15'N) we integrate over scattering azimuth Vt and form image gathers

for different scattering angles 0 and, hence, radial resolution bands (Figure 2-8). The

preliminary results shown here are obtained by integration (according to (2.13)) either over

narrow and wide opening angles, for ScS as the primary phase (Figure 2-8A), or over wide
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Figure 2-7: Illustration of principal component analysis. (A) (Preprocessed) raw data (see
Section 2.4.1). (B) Deconvolution of the raw data using PCA estimation of the derivative
of the ScS time rise function (using a time window of 100 s around ScS). (C) Raw data
deconvolved with the ScS estimate minus the field shown in (B). Traces as in (B) and (C)
are used to image the CMB and shallower structure, respectively, as shown in Figure 2-
8A. Similar such estimates based on teleseismic S as the direct wavefield were used for
Figures 2-8B and 2-9.

angles only, for S (Figure 2-8B). We integrate over narrow and wide angles seperately

because of the change in polarity upon crossing the intramission angle; stacking over all

angles would involve signals with opposite polarities and cold thus mask interfaces. The

resulting angle stacks are depicted on the right of Figures 2-8A,B. The stacks for either ScS

or S as the primary phase used in PCA both reveal contrasts in elastic parameters at N0 km

(that is, the reference depth of the CMB) and -280-340 km above it. There is also strong

evidence for structure in between.
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Figure 2-8: Construction of image gathers and angle stacks with real data for an (arbitrary)
image point marked by the yellow dot in Figure 2-6: (A) PCA with ScS as the direct
wavefield, (B) PCA with (teleseismic) S. Similar to Figure 2-3, in each panel we show
to the right of the image gathers the stacks over the scattering angles. (As before the
theoretical prediction of the dilation is given by the thin blue lines around the depth of the
CMB.) Note that for PCA with S we only considered wide angle data.

We repeat this procedure to create angle stacks at other image points along a ~2,500

km long great-circle transect from (-105'W, 300N) to (-750W, 0). Lateral juxtaposition

of these stacks creates a (scatter) density plot for the deepest 400 km of Earth's mantle. Of

the ~ 65,000 records depicted in Figure 2-6B, ~ 35,000 were involved in this calculation.

The other data were not used either because their specular reflections were too far from the

line of section considered or because the number of seismograms for particular earthquake

was inadequate for the principal component analysis (see above). The image in Figure 2-9

shows high scatter from the depth corresponding to the CMB, and it indicates substantial

structural complexity in the lowermost mantle above it. In addition to a weakly undulating

feature near 280-340 km above CMB, which seems laterally continuous over many hun-

dreds of km, the image reveals pronounced structures at smaller distances above the CMB.

We note that these structures are not present in the tests with synthetic data calculated from
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Figure 2-9: 2-D image of the CMB and lowermost mantle beneath Central America. Using
a total of - 35,000 broad band records, this 2,500 km long profile is produced by juxtapo-
sition of and linear interpolation between angle stacks of the image gathers for 41 image
points, evenly spaced along the line of section depicted in Figure 2-6A. As an example, the
stack depicted in Figure 2-8B is plotted at the NW (that is, left) end of the profile (large
yellow dot in Figure 2-6A). The gray-scale part of the image depicts the CMB contrast
whereas the part in color (amplified by a factor of five relative to the CMB part) reveals
structure (stratification?) in the lowermost mantle. The dashed line marks the blue contrast
(with side lobes in red) at -280-340 km above the CMB, which may represent the top of
the so called D" region. The image is rich in structure at depths between the CMB and
the top of D" but we refrain from further interpretation until we have performed a rigorous
statistical analysis (Ma et al. [2006]).

a signle contrast above CMB (e.g., Figure 2-4).

2.5 Discussion and concluding remarks

To enable the efficient exploration of interfaces in Earth's lower mantle over large geo-

graphical areas we will combine inverse scattering (through a generalized Radon transform)

with (mixed-effect models) statistical inference and model validation. The generalized

Radon transform (GRT) of broad-band ScS data is developed here; the statistical analysis

is presented in Paper II (Ma et al. [2006]). The GRT method uses three-component, broad-

band waveforms and exploits the redundancy in large modem data sets. In this context,

with redundancy we mean that the combination of specular and non-specular reflections -

at different scattering angles - produce multiple images of the same points in the image.
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The radial resolution of interface depth depends on (i) the scattering angle (through the di-

lation, as discussed above and as shown, for instance, in Figure 2-3) and (ii) the frequency

of the data used. For periods of - 5 s, scatter angles of ' 100', and shear wavespeed of ~ 8

km/s, the (quarter wavelength) radial resolution is (0.25 x 5 x 8)/cos(1000 /2) -15 km.

In contrast to labor intensive forward modeling of individual or stacked waveforms, our

imaging method is highly automated and imposes few a priori constraints on the geometry

and nature of the structures that we attempt to image. Indeed, the only prior knowledge

concerns the type of seismic phase considered (here, ScS and its coda and precursors), so

that appropriate time-windows can be extracted from the recorded wavefield, and the re-

quirement that (at least locally) the singularities form a contiguous interface. With this

information, the data themselves will yield structure in the neighborhood of a predefined

imaging point. Since submission of this manuscript, several studies have published re-

sults from Kirchoff migration stacking methods (e.g., Avants et al. [2006a]). Our method

has several aspects in common with this technique but differs in that it is explicitly 3-D

and that it accounts for wave amplitudes (geometrical spreading and source radiation) and

caustics due to wave propagation in a heterogeneous background model. Furthermore, in

our automated approach, statistical inference (Paper II) replaces modeling of the (Kirchoff)

stacks as the primary means for model validation. Of course, forward modelling can be

used to explore in more detail structures of particular interest revealed by our method, but

that is beyond the scope of the analysis presented here.

We have performed a series of tests with synthetic data to confirm theoretical predic-

tions, to establish the accuracy of the GRT, and to test the performance of the GRT in

the presence of (random) noise. Adding noise to the synthetic data, giving signal-to-noise

ratios well below 1, demonstrates that the GRT can detect and locate medium contrasts
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correctly even if the pertinent signal is not apparent from visual inspection of the 'raw'

data. With sufficient data coverage, multiple interfaces as well as interfaces marking small

medium contrasts (of the order of a few per cent) will then be imaged correctly. Sources of

error that are not 'random' will, however, degrade the GRT images and may increase the

minimum medium contrast that can be reliably detected and imaged. Examples of more

realistic, non-random noise include the distortion of the image gathers due to the uneven

source-receiver distribution, the presence of signal due to multiple scattering, and the ef-

fects of using an incorrect background wavespeed model. In Paper II we use statistical

inference and validation methods to deal with such complications and to quantify the un-

certainty of the resulting GRT images. Because this is not done here we will refrain from

detailed interpretations of the sample result presented above.

An important aspect - and source of uncertainty - of the GRT presented here as well as

similar such methods based (somehow) on the stacking of earthquake data is the estimation

and removal (by deconvolution) of the different source pulses. Imperfect removal of the

pulse can produce artificial structure in the stacks. Chambers et al. [2005] and Avants et al.

[2006a] visually inspect the deconvolved data and remove bad traces. This labour intensive

approach is feasible if one uses 'only' several hundred waveforms. For the applications

that we are interested in - that is, automated processing of tens or hundreds of thousands

of records - this is not feasible and other approaches toward source pulse estimation and

deconvolution must be sought. We have considered here a principal component analysis

(PCA) but we are exploring the use of more robust (statistical) methods.

We have demonstrated the feasibility of the GRT method with an application to

35, 000 broad-band records of ScS waves that reflect off the CMB beneath Central Amer-

ica. The (preliminary) image profile inferred from these data (Figure 2-9) reveals strong
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contrasts in elastic parameters at about 0, that is, at the depth of the CMB. It is encouraging

that with neither visual data inspection nor prior assumptions about the geometry of target

structures the CMB appears so clearly in the images (e.g., Figures 2-8 and 2-9). The 2-D

image also reveals a quasi-continuous structure between 280 and 340 km above the CMB.

It is tempting to interpret this as the 'top' of the so called D" layer. Changes in elastic

parameters near this depth have been the subject of many seismological studies (e.g., Lay

and Helmberger [1983b]; Tromp and Dziewonski [1998]; Sidorin et al. [1999]; see Gar-

nero [2000] for a comprehensive review), but there is as yet no consensus on this transition

and its radial and lateral extent. Our preliminary results are consistent with an undulating

surfaces (Thomas et al. [2004]), but they also reveal structures that could be interpreted

as jump-like steps in the discontinuity (Hutko et al. [2006]). Further study is required in

order to establish whether such steps are real or whether they can represent a continuous

phase boundary (as suggested by Sun et al. [2006]) and whether they are a unique, local

phenomenon (as implied by Hutko et al. [2006]) or a more general feature of D".

The image presented here also provides tantalizing evidence for interfaces closer to

the CMB. This may suggest that the lowermost mantle is stratified and more complicated

than hitherto thought. Further study is needed, however, to establish the (statistical) sig-

nificance and lateral extent of these multiple transitions. We expect that incorporation of

constraints from experimental and theoretical mineral physics with the seismological esti-

mates of interface regularity will help distinguish between compositional, mineralogical,

and petrological boundaries. Mineral physicists have recently discovered a phase transfor-

mation of MgSiO 3 perovskite at a pressure that could coincide with the contrast depicted

between 280-340 km above CMB (Murakami et al. [2004]; Shim et al. [2004]). It should

be noted, however, that important aspects of this purported phase transition remain either
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unknown or uncertain (Dan Shim, MIT, personal communication, 2005).

In addition to statistical analysis (Paper II) and cross-cutting seismology-mineralogy

analyses, a logical follow-up of the study presented here would be the exploration of much

larger CMB regions. This extension of our current study is possible because of the avail-

ability of large volumes of data through international data centers. We note, however, that

elsewhere in the world the data coverage may not be as good as considered in the area of

interest here, which would make the statistical analysis for image enhancement and valida-

tion (Paper II) all the more important.
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2.7. APPENDIX: AMPLITUDE ANALYSIS OF THE GRT IMAGE GATHERS

2.7 Appendix: Amplitude analysis of the GRT image gath-

ers

In this appendix we discuss an expression for S( 1) by accounting properly for the source

and contrast-source radiation patterns in modeled seismic data. This also leads to an in-

troduction of residual amplitude compensation within the GRT - here, derived from the

Born-Kirchhoff approximation for scattered body waves.

The relative contrast in the medium parameters is formally defined by the 'vector'

(p )(y) c (y) T

)y(1) (y) = ()(2.15)
c(y) p(O)(y) p(O)(y)VS (y) Vor(y)

Its dimension (number of independent parameters) depends on the local symmetry of the

elastic medium. Here, Vs and Vor are the phase velocities at y averaged over phase angles.

We have assumed that c(1)(y) - (1)(y, O (y)) with (c(l))'(y, 0(y)) = C(y) 6(0(y)), where'

denotes the derivative with respect to the second argument, and C denotes the local magni-

tude of the jump across (a specific vaulue) of the function 0 that defines the interface. Then

[De Hoop and Bleistein, 1997, (38),(62)]

S(1)(x0; e, V) = W(XA,x2,X) 2wT(xsxr,x )C(x0), r s,r -s,r(X, v,, e, yf), (2.16)

where w denotes the 'vector' of radiation patterns

w(x,r,y) = {h(y)h (y), [h(y)p(y)h (y)]V(y)V(y)T. (2.17)

We refer to SM') as linearized scattering coefficients; S(1) is a filtered realization of S(1),
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where the filter is determined by the actual illumination. From the expression for S(1) we

may extract the linearized reflection coefficient

S(')(xO; 6, y) 1
W2(Xs, xr, )2 [Vs(xO)Vr(x )3]1/2(Vo . pm )(x )2'

To estimate directly this reflection coefficient we thus replace in the GRT the obliquity

factor Ipm(y)l 3 by Ipm(y)|. If, in contrast, we want to relate the image directly to the

stiffness perturbation, we have to use another modification of transform (2.7): instead of

, (y; 0, Vy) we then define the image gather J,(y; 0, yt) as

J(y; 6, V) := (xS,xy) Ipm(y) dvm. (2.18)
JEvm W(xs,xr,y) 2 w(xS,xr,y)

Here, I w(x,xr, y) I is the Euclidean norm of the 'vector' of radiation patterns. Thus defined,

J(y; 0, iy) represents a dimensionality preserving transformation of data to a set of images:

the common image-point gathers (IGs).

At specular reflection points, S 1') in (2.16) gets replaced by

e(xO; , y)TC(xo ) with e(x; 0, W) - = w(xr(Xo, vO, )XOxS( Vo ))

We anticipate that e is only weakly dependent on (0, yf) so that the image gathers J (y; 0, y)

are approximately uniform in (0, yi).



Chapter 3

Imaging of Structure at and Near the

Core Mantle Boundary using a

Generalized Radon Transform: II -

Statistical Inference of Singularitiest

Abstract

We present Part II of our approach to high resolution imaging of deep Earth's interfaces
with large volumes of broad-band, three-component seismograms. We focus on the low-
ermost mantle - also referred to as D" region - but the methodology can be applied more
generally. Part I (Chapter II, Wang et al. [2006]) describes the generalized Radon trans-
form (GRT) of broad-band ScS data (comprising main arrival, precursors, and coda). The
GRT produces "image gathers", which represent multiple images of medium constrasts at

tPublished as: Imaging of Structure at and Near the Core Mantle Boundary using a Generalized Radon
Transform: II - Statistical Inference of Singularities, J. Geophys. Res., inpress. As the second author of
this paper, I helped build the statistical models. Furthermore, I performed all synthetic tests and applied the
statistical models to the seisimc images.
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the same image point near the base of the mantle. With a method for statisticial infer-
ence we use this redundancy to (i) enhance the GRT images through improved recovery of
weak contrasts and through suppression of spurious oscillations in the GRT image gathers
and (ii) provide uncertainty estimates that can be used to identify the robust features in
the images. Using the image gathers from Paper I (Chapter II, Wang et al. [2006])as in-
put, we use mixed-effects statistical modeling to produce the best estimates of reflectivity
along with their uncertainty. In this framework, random noise in the signal is separated
into white and coherent components using the geometry of the (GRT) imaging operators
and a generalized cross-validation method. With synthetic data we show that conventional
GRT images deteriorate substantially, in some cases to the point at which weak reflectors
can no longer be detected, due to effects of uneven sampling, wave phenomena that are not
accounted for in the underlying single scattering approximation, or errors in the assumed
background wavespeed model. We demonstrate that even in these circumstances statistical
analysis can yield adequate estimates of the true model. GRT imaging produces robust
images of the core mantle boundary (CMB) beneath Central American and suggests the
presence of several structures in the D" region, in particular between 100-200 and between
270-320 km above the CMB proper. Most of these structures are significant at the 1 o (that
is, 68%) level, but at 2T (95%) confidence the images show, at various depths above the
CMB, intermittent instead of laterally contiguous features.

3.1 Introduction

The remote sensing of deep mantle discontinuities, for instance the core mantle boundary

(CMB), is a challenge in part because the seismic waves used to probe it propagate (at

least twice) through Earth's heterogeneous mantle before they are observed and in part

because the diagnostic seismological signals are often too small for direct observation and

(forward) waveform modeling. Since the pioneering work by Lay and Helmberger [1983a],

many seismologists have tried to image the so called D" region of enhanced heterogeneity

in the bottom 300 km or so of the mantle (see Garnero [2000] and Helmberger and Ni

[2005] for extensive reviews). Recently, mineral physicists presented compelling evidence

for a phase transition in the mantle silicate (Mg,Fe)SiO 3 - from perovskite (pv) to the so-

called post-perovskite (ppv) phase - at pressures that roughly coincide with the changes
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in elastic parameters inferred from seismic imaging (Murakami et al. [2004], Oganov and

Ono [2004], Shim et al. [2004]). The presence of a phase transition is consistent with earlier

seismological observations and geodynamical arguments (Sidorin et al. [1999]; Van der

Hilst et al. [2007]).

These are exciting developments for studies of Earth's deep interior. But much un-

certainty remains. On the one hand, estimates from theoretical and experimental mineral

physics of the pressure at which the transition occurs show a large uncertainty, and the

temperature and composition dependencies are not yet precisely known (Shim [2005]).

Consequently, the depth at which the pv-ppv transition occurs has an uncertainty of several

100 kilometers. On the other hand, the seismological detection and characterization of such

subtle and remote changes in elasticity faces formidable observational and theoretical (and

computational) challenges. Various types of noise and scatter from 3-D heterogeneity can

mask weak signals in seismic data. Along with the massive size of modem data sets, this

poses severe limitations on forward (waveform) modeling. The increasing availability of

large volumes of densily sampled broad-band data has begun to allow application of sub-

surface imaging methods based on inverse scattering, which exploits more efficiently the

rich information contained in seismic waveforms.

To meet the challenge of imaging and characterizing structure at and near remote inter-

faces and boundary layers, we are developing techniques for the automated identification,

extraction, and interpretation of structural signal pertinent to subtle medium contrasts. Our

approach differs in several important ways from forward modeling: First, we exploit the

redundancy in large data volumes. Second, we make only a few restrictive a priori assump-

tions about the structures of interest. Third, we use data from a wide range of incidence an-

gles. A simple analysis of reflections at an interface that marks a wavespeed increase shows
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that the reflection coefficient is very small for near vertical incidence and increases dramat-

ically toward critical incidence. For this reason, waveform modeling is usually restricted

to observations made near (and beyond) the critical incidence, that is, large epicentral dis-

tances. In addition to the obvious reduction in target regions that can be studied, and the

need to deal with triplicated waveforms, one should also realize that the radial resolution

to interface depth degrades markedly with decreasing vertical slowness. Indeed, the wide

angle reflections considered in forward modeling have, in general, rather poor sensitivity

to the depth of the contrasts being studied. Narrow angle data provide better resolution of

discontinuity depth, but because of their small amplitudes they are rarely used in forward

modeling. A further difference is that we can estimate formal uncertainties on the estimates

of interface properties.

We combine concepts from inverse scattering and modem statistics into a two-step

strategy. As the first step, Wang et al. [2006], hereinafter referred to as Paper I (Chapter

II, Wang et al. [2006]), developed a generalized Radon transform (GRT) of global seis-

mic network data in heterogeneous, anisotropic elastic media to map tens of thousands

of seismograms to a set of multiple images of the same target structure. These 'common

image-point gathers' reveal multi-scale variations in elastic properties. For a detailed dis-

cussion and a historical perspective we refer readers to Paper I (Chapter II, Wang et al.

[2006]).

In the second step, which is the focus of this paper, we obtain estimates of variations

in Earth's deep interior from the image gathers using a statistical approach, in which the

image gathers are modeled nonparametrically using mixed-effects statistical models. In

this framework, the random noise in the signal is allowed to have white and coherent

components, and the latter are estimated from the data through prediction error minimiza-
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tion (also known as generalized cross-validation). This methodology, a flexible type of

Tikhonov regularization, can be used with different types of correlated noise and with the

typically sparsely and unevenly sampled image gathers owing to the geographic distribu-

tion of sources and receivers.

The mixed-effects estimate of the reflectivity profile replaces the linear stack in the

conventional GRT. This achieves three specific goals: first, it enhances signal-to-noise in

the image gathers; second, it adapts to and mitigates effects of error in the background

wavespeed model, and third, it provides quantitative uncertainty estimates, which are more

satisfactory than the ones from ubiquitous bootstrapping of slowness stacks. Of key im-

portance is the 'pre-stack' aspect of the analysis: the 'common image point gathers' (and

not the 2-D image profiles) are subjected to statistical analysis, and the optimal gathers are

combined into the stack for that image point. This allows us to exploit the additional in-

formation contained in the dependence on scatter angle and to identify and remove poorly

constrained gathers as well as artifacts due to, for instance, incorrect back ground velocities

and presence of signal that cannot be modeled with single scattering.

In Section 3.2 we briefly summarize the (geometrical) aspects of the GRT that we need

for the statistical analysis. In particular, we mention how three-component broad-band

global network data can be transformed to so called common image-point gathers. In Sec-

tion 3.3, we explain the concept of mixed-effects statistical models and describe how we

transform the image gathers to statistical estimates of discontinuities. Technical aspects

of parameter estimation in mixed-effects models are presented in Appendix 3.8. In Sec-

tion 3.4 we test the effectiveness of the methodology on synthetic data against the presence

of various types of noise, the imprint of source-receiver geometry, and imperfections of the

mantle (wavespeed) model. Finally, in Section 3.5, we apply the method to the ScS wave-
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field (containing ~80,000 broad-band records) for the purpose of imaging the CMB and

overlying D" region beneath Central America. In addition to a laterally continuous image

of the core mantle boundary, the resulting 2-D image profile reveals intriguing structure,

including multiple interfaces, in the few hundred km above the CMB.

3.2 Common image-point gathers

For a detailed discussion of the construction of the GRT we refer the readers to Paper I

(Chapter II, Wang et al. [2006]), but for completeness sake we mention here the aspects

that are relevant for the development of the statistical methods. In essence, The GRT en-

ables the automated transformation of a large number of seismic waveform data into a set

of multiple images of the same structure in the vicinity of a target region. In order to do so,

one has to account for variations in volumetric wave speed or, in general, density normal-

ized stiffness (in case of an anisotropic model) and such geometrical aspects as the focal

depth and radiation patterns of the earthquakes considered, the various move-outs due to

the large range of slownesses and epicentral distances of the data used, and the effects of

uneven sampling. The geometry involved in the reconstruction is illustrated in Figure 3-

lA. Figure 3-1B depicts the study region considered here as well as the distribution of ScS

reflections at the CMB associated with the broad-band wavefield used used to construct the

image profiles presented later in this paper.

With y = (Yi ,Y2,Y3) the image point and superscripts s and r the association with a

ray from a source and a receiver, respectively, the 'two-way' travel time for a particular

diffraction branch associated with a ray path connecting xr with xs via y is denoted by

T = T(xS,xr,y). The slowness vector of the ray connecting a source point xs with image



3.2. COMMON IMAGE-POINT GATHERS

point y, evaluated at y, is given by pS(y), and pS(xS) indicates the slowness along this ray

evaluated at the source. Furthermore, we introduce the phase direction as = pS/lpSI and

the phase velocity Vs according to pSl - 1/V s. A similar notation is employed for the

slowness vector related quantities along the ray connecting the receiver with the image

point, namely pr(y), pr(xr), and a' and V'.

270 290 310

Figure 3-1: Left: The geometry of the GRT with ScS precursors and coda waves. For
illustration purposes, the ray geometry and associated imaging parameters are shown for
scattering at image point y. The objective of the work presented here - and in Wang et al.
[2006] - is the high resolution imaging of the structures in the lowermost mantle, also
referred to as D" region, that may arise from boundary layer processes (e.g., flow), lateral
variations in composition, and pressure induced phase changes (as depicted in the inset,
after Garnero [2000]). Right: geographical map of study region. Small black dots depict
-80,000 (specular) CMB reflection points associated with the broad-band ScS wavefield

used to construct the image profiles presented in this paper.

A key element in the GRT, the migration dip, v m (y), is the direction vm(y) = pm (y)/Ipm(y) I

of the migration slowness vector, pm(y) = ps(y) + pr(y). Together, the migration dip and

the phase directions of incoming and scattered rays define the scattering vector,

S= (a s xar) xVm at y.

)P,~P^"

4

UW 5!ý

(3.1)
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For a particular travel time diffraction branch away from caustics at xr or xs, the opening

(or scattering) angle, 0, between incoming and scattered rays is related to the scattering

vector according to

sin6 = iy aty; O = (xS,xr,y). (3.2)

The scattering azimuth, qy, is the angular displacement of the scattering vector, normalized

to one: y/| yiI. An image gather at y can now be obtained by integrating, for each (0, Y),

the pre-processed global network data over migration dip vm (Figure 3-1A).

With a generalized Radon transform the data are transformed to an extended image

volume, J(y; 6, Vt). Typically, one distinguishes the depth coordinate from the other co-

ordinates representing the image point y; an image gather is formed by plotting the image

(or reflectivity) as a function of depth, which forms a radial reflectivity profile, against

scattering angle and azimuth (0, yt). Integration over scattering azimuth, yt, then yields

azimuth-integrated (normalized) reflectivity profiles as a function only of scattering angle.

On the right of Figure 3-2 we plot for each opening angle the best estimate of reflectivity as

a function of depth (using statistical models as discussed in the next section) along with the

best estimate of radial variations in reflectivity inferred from the angle dependent traces.

Lateral juxtaposition of this estimate then produces 2-D image profiles.

The fact that image gathers form multiple images (namely, one for each pair of scatter

angle and azimuth (6,yt)) of the same image point represents redundancy in the data. This

is exploited in the statistical development of the GRT but should be accounted for with care.

First, in Paper I (Chapter II, Wang et al. [2006]) we noticed and analyzed the dilation with

scattering angle 0 as well as the possible presence of a polarity flip at a particular scattering

angle. Second, artifacts (with residual moveout in (0, iy)) may appear due to the presence
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0mo
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opening angle (degree)

Figure 3-2: Image volume generated in Paper I (Chapter II, Wang et al. [2006]). Right:
common image point gathers in (scatter, or opening) angle for a selected geographic lo-
cation at the CMB; for each scatter angle the best estimate of the (azimuth-integrated)
reflectivity as a function of depth is shown. To the right of these gathers we show the GRT
trace, which represents the optimal estimate of the radial contrasts in reflectivity at that
particular CMB location. We note that the statistical inference described in this paper is
used to produce the best possible estimate of such an GRT trace for a specific location; as
such, it replaces direct (non-) stacking linear stacking over azimuth and scatter angle. Left:
2-D image profile that results from lateral juxtaposition of 40 of such GRT images. Peaks
in contrast as revealed by the GRT produce blue 'events' in the seismic section to the left.
We note that except for interpolation between the GRT traces, no lateral smoothing or other
image processing (or statistical inference) is used to produce such 2-D image profiles.

of caustics. (These can be removed by extending the GRT as in Stolk and de Hoop [2002].)

Third, imperfections in the wavespeed model will lead to residual moveout with (0, V).

Fourth, the limited acquisition footprint leads to small shifts in (radial) depth in reflector

images, different for each (0, p). Fifth, scattered phases different from the phases scattered

off the neighborhood of the CMB can lead to artifacts (locally) in the image gathers.
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3.3 Statistical inference of singularities

3.3.1 From image gathers to medium contrasts

How can we best extract (robust) information about contrasts in elastic (medium) param-

eters, that is, radial reflectivity profiles J(y), from the above-mentioned image gathers

(IGs)? Traditional methods involve stacking over (0, y),

J(y) = f J(y; 0, y) dOdy. (3.3)

Indeed, a structural image could be obtained by performing a GRT, followed by an integra-

tion over scattering angle and azimuth. With array observations, the signal-to-noise ratio

could be improved, for instance, by means of phase-weighted stacking, which is non-linear

in the data (Schimmel and Paulssen [1997]). However, this approach does not fully benefit

from structural information that might be contained in the 'noise'. Moreover, it would not

be clear how to assess the uncertainty of the final estimate.

Singularities in one-dimensional signals could be detected by means of wavelets, but the

resolution and uneven coverage of the (multi-dimensional) image gathers make an approach

based on the wavelet transform unfeasible.

The analysis that we develop here can be viewed as a focusing procedure, in which the

geometry and statistics of 'noise' in the data is used to enhance the scanning for singulari-

ties or discontinuities through common image-point gathers. In the data we distinguish and

model separately the systematic (non-random) and random components, hence the name

'mixed effects' statistical modeling. (We note that this approach is similar to Tikhonov

regularization with random effects.)
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Assuming that we have IGs in the angle domain (that is, J(y; 0, y)) we estimate an

optimal reflectivity profile J(y) through 'mixed-effects' statistical inference instead of

(linear or non-linear) stacking, as in (3.3). This allows us to mitigate more effectively

the systematic errors due to uncertainty in background velocity, source location and origin

time, and for imaging artifacts, artifacts owing to phase misinterpretation and, e.g., near

source scattering, and errors introduced during preproces sing (e.g., filtering).

3.3.2 Mixed-effects models

Motivation and Strategy

To motivate the methodology, we recall how a line is fitted to observed data using the

linear model Yi = a + Oxi + Ei i = 1,..., n, where x i are fixed design points and Ei are

independently and identically distributed (usually Gaussian) with mean zero and variance

a2 . Typically we estimate the slope 3 and intercept a using a least squares approach based

on minimizing the residual sum of squares 1  (Yi- a - 3xi) 2.

Suppose that instead of fitting a straight line we wish to fit a curve to the data; thus we

write our model as Yi = r (xi) + Ei. The residual sum of squares that is to be minimized can

be written as

n
1 n (y 7 (xi))2 . (3.4)
ni=

1

By fitting a curve we mean that not only do we want to estimate the value of 77 (x) at x = xi

but, in fact, at any x in the domain. Clearly this problem is ill-posed as there are many

functions that pass through all the observed data points with a zero residual sum squares.

We need to impose some restrictions on 77 (x) in order to regularize the problem and obtain

a reasonable function estimate (see Figure 3-3).
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One approach is to assume that the function 7 (x) is a linear combination of polynomi-

als. However, polynomials over large intervals often display undesirable oscillations and

other artifacts, especially when such polynomials are of order greater than three. Another

approach is to find a balance between the residual sum of squares and a measure of the

smoothness of the unknown function, measured, for example, by a functional J(ir). To

obtain such a functional, we use the norm of the first derivative: J(7) = f n'(x)2dx. In our

case, smoothness is justified by the smoothing effect of a convolution of the reflector with

a deterministic resolution filter, which reflects the acquisition imprint.

Figure 3-3: Curve fitting with an arbitrary function showing a simple linear interpolation
(over-fitting), a least squares fit, and a smoothing spline estimate.

least squares

smoothing
spline
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To fit the data with smooth function, instead of (3.4) we minimize

n

where A is a smoothing parameter that controls the trade-off between the goodness-of-fit

and smoothness of r7. This method is commonly called penalized least squares or Tikhonov

regularization. The minimization of (3.5) is performed in a space of functions where the

evaluation of a function at a point is a continuous linear functional (i.e., a reproducing

kernel Hilbert space). Remarkably, the function 1 (x) that minimizes (3.5), r77, turns out

to be a finite linear combination of particular basis functions. The minimization problem

is, thus, reduced to solving a linear system for the coefficients of this linear combination.

The parameter Au is estimated through a refined leave-one-out cross-validation. Penalized

least squares has been studied extensively in the literature; see, e.g., Wahba [1990] and Gu

[2002] for comprehensive treatments of the subject.

A disadvantage of the described method is that it does not perform well with correlated

noise, which limits its applicability in a variety of settings. To overcome this difficulty

we use 'mixed-effects' statistical models, which explicitly distinguish systematic (non-

random) from random components. They provide a unified framework for modeling a

variety of correlated data (Vonesh and Chinchilli [1997], Wang [1998] and Pinheiro and

Bates [2000]). For our purposes, an important characteristic of these models is that it can

flexibly accommodate angular dependence and account for coherent noise and artifacts.

Azimuth-integrated angle gathers are functions of depth and angle that can be modeled

as

Gi= J'(yj; Oi, IV) dV = g(0i,yj) +±Eij,
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where g(Oi,yj) is the ideal noiseless angle gather at angle Oi and (radial) depth yj, and Eij

are random noise terms that are usually coherent. Our goal is to estimate g(6i,yj), which

should be a singular function of depth (smoothed by the convolution with some pulse) that

varies slowly with angle (including a dilation). To achieve this goal, we make additional

assumptions on g and the noise. For g, we use a flexible functional representation in terms

of some basis functions qpf in depth. The noise is modeled as a sum of a discrete harmonic

process and white noise. The angle gather is thus modeled as

Gij= g(Oi,yj)+h(8i,yj)+Eij, i= 1,...,a, j= 1,...,b. (3.6)

Here, h(6i,yj) = Il hk(Oi) ok(Yj) represent a harmonic process that models coherent

noise through sinusoid functions ok(y) in the depth coordinate. For a fixed angle 0i, the

coefficients hk(Oi) are assumed to be uncorrelated, but hk(Oi) and hk(Qj) may be correlated

for Oi # Oj. The errors Eij are independent Gaussian random variables with mean zero and

variance a 2. A refined model for the noiseless IG that include angle dilation is given by

g(Oi, aiyj), which replaces g(0i,yj).

To estimate g, we need estimates of the covariance parameters of the random effects

(i.e., hk), including sinusoid frequencies determining the 0k. We will consider three partic-

ular cases of (3.6) that can be analyzed efficiently. We use the same notation for random

errors, Eij, for the different models below.
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random

Figure 3-4: An illustration of how the noise adds to an image trace in the random intercept
(left), depth-harmonic (right), and angle-dilation depth-harmonic (center, indicated by dot-
ted dilation curves) models. In the center we plot actual image gathers for different opening
(or scatter) angles 0. The random intercept model estimates the best 'common component'
in theses traces (left panel surface, middle trace), which is allowed to move up-and-down
in order to find the best fit to the gathers. The depth-harmonic models detect and correct for
spurious oscillations in radial direction: at the right, the middle trace depicts the best image
estimate, and the adjacent traces show this trace with a (randomly chosen) harmonic either
added to or subtracted from it. The third model, the angle-dilation depth-harmonic model,
is similar to the depth-harmonic model proper, but it also accounts for the angle-dilation
(depicted with dotted lines in the center panel) that results from the geometry of the GRT
image problem at hand (see Paper I).

Random-Intercept Model

For weak angle dependence we can approximate g(9i,yj) in (3.6) by

g(Oi, aiyj) , bi + g(aiyj).

.ew-

(3.7)
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We start with the simple model in (3.7) that uses a single parameter to aggregate higher

order approximation terms and which also ignores the angle-dilation effect:

Gij = bi + g(yj) + Eij, i= 1,...,a, j = 1, .. ,b, (3.8)

where the bi are Gaussian N(0, 0a2 ). Clearly (3.8) is a particular case of (3.6) obtained by

setting g(aiyj) = g(yj) and h(Oi,yj) = bi.

We estimate g(y) by minimizing a penalized sum of squares similar to (3.5) Robinson

[1991]
ab 2 a

(Gij - g(yj) - bi)2 b 1b+ +nX J(g) (3.9)
i=1 j=1 

s i= 1

where J(g) = fg'(y)2 dy quantifies the smoothness of g and the smoothing parameter L

controls the trade-off between the goodness-of-fit and smoothness of g. Since the parame-

ters X and - 2/-2 provide a large family of possible estimates, one has to choose values that

lead to good estimates as measured by the goodness of fit and smoothness of the estimate.

To choose the parameters we use a method known as generalized cross-validation (GCV), a

method that is widely used in Tikhonov regularization (Wahba [1990]). The basic idea is as

follows. We start by fixing the angle (optimal parameters are chosen for each fixed angle,

i.e., each fixed i). For each j and choice of parameters we obtain estimates bi,-j and gj(yj)

of bi and g(yj), respectively, using all the data but Gij. That is, we predict the value of Gij

using the data Gif for f 7 j (the notation -j means that the jth observation has been deleted

from the data set). These estimates in turn provide the prediction Gij,-j = bi,-j + -j(yj)

of Gij. It has been shown (see Wahba [1990]) that by using the deleted estimates one ob-

tains better estimates of the prediction error which is what we want to minimize. Ordinary

cross validation chooses the parameters that lead to the smallest value of Jj(Gij - Gij,-j)2
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In the Appendix this is discussed in more detail.

We use Bayesian confidence intervals as a benchmark for assessing the uncertainties in

the estimate of g(y). We calculate posterior means and variances of g(y) under the Bayes

model and use them to construct 95% and 99% confidence interval estimates. An important

feature of these intervals is that they approximately have the correct across-the-function

coverage probability. That is,

-1 P [ g (yi) E Cpl(yi) •P
i= 1

where Cp (yi) is the Bayesian confidence interval and P is the coverage (we use / = 0.95

and 0.99). Although these intervals were originally derived under the independence as-

sumption, there are straightforward extensions that can be used with correlated data. See

Wahba [1983], Nychka [1988] and Ma [2003] for details.

Depth-Harmonic Model

Now we take a different approach to model the noise in the data. Instead of combining all

the effects in a simple random effect, we model the harmonic process explicitly. We extend

the random-intercept model (3.8) to

Gij = I aik COS( OikY j + Pik) + bi + g(yj) + -ij, (3.10)
k

where the coefficients aik and phases Pik are random and independent, and the frequencies

(Oik are fixed but unknown.

Since the harmonic component is fixed for each angle, we may think of it as a sinusoid

signal contaminating g(y). Thus, although it could be included as a random effect, it is
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easier to fit and remove it from each trace. This fitting is done using ARMA time series

techniques described in the Appendix. The corrected Gij is then analyzed using the simpler

random-intercept model.

Angle-Dilation Depth-Harmonic Model

To account for the angle-dilation (see Paper I) as well as a harmonic process of coherent

noise, we use the following modification of (3.10) to fit the data:

Gij-= aik cos(OikYj + Pik) +bi-+g(aiyj) + Eij ,  i= 1,...,a, j= 1,...,b, (3.11)
k

where ai is the angle-dilation effect. As the remaining noise Eij is assumed white, the term

bi has to account for higher order angle-dilation effects not modeled by g(aiyj). The lack

of structure in the boxplots of the residuals shows that this assumption is reasonable.

The parameters are estimated in two stages: The first stage is the same harmonic cor-

rection as before. In the second stage the parameters ai and bi are simultaneously estimated

with other parameters through penalized least squares (see Appendix for more details).

In Figure 3-4, we illustrate the properties of the different mixed effects models. In the

center, we plot an actual image gather (as in Figure 3-10). On the left we illustrate the

random intercept effects: the best image estimate (middle curve) is randomly shifted up or

down. On the right we illustrate the depth harmonic effects: a randomly chosen harmonic

is added (back) or subtracted (front) to the best image estimate (middle curve). The angle-

dilation of the third model is indicated by two parting (dotted) curves in the image gather

in the center plot.
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3.3.3 Model validation

The adequacy of a statistical model is checked by comparing, at each scattering angle, the

data Gij to the estimates Gij under the corresponding model. We study plots of the resid-

uals defined as eij = Gij - Gij normalized by the model estimate 6T of the noise standard

deviation a (i.e., e@ = eijl/). Boxplots of the angle-dependent residuals provide infor-

mation about the shape of the residual distribution (that is, its median, interquartile range

and presence of outliers). For example, inadequacies in the background elastic properties

would lead to biased residuals not centered around zero, with a magnitude that depends on

how the structure is sampled (i.e., the scatter angle). Residuals centered at zero without

discernible patterns indicate that the estimate model is reasonable. Examples of boxplot

analysis are given below.

3.4 Study: Synthetic ScS data

In Chapter II we used WKBJ synthetics to explore certain aspects of image recovery with

GRT, including its performance on random, additive noise in the data. Here we use the

same synthetic data (Figure 3-5, left) to test the performance of our statistical inference

method on non-random noise in the image gathers. The data are generated from a 1-D,

spherically symmetric background model with a wavespeed increase at 150 km above the

CMB (Figure 3-5, right). Figure 3-5 also illustrates the distance ranges associated with

'narrow' and 'wide' scattering angle data. At narrow angles, the signal from the top of D"

is a precursor to ScS, see inset in Figure 3-5 (left), but owing to a small reflection coefficient

it has a small amplitude and will be difficult to detect in raw data. At larger scatter angles

the reflection becomes stronger, and it arrives closer to and, eventually, after the direct ScS
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Figure 3-5: Synthetic data and illustration of the robustness of the GRT in the presence of
random noise in the data. Left: synthetic (WKBJ) records of ScS and SdS, that is the signal
from a weak reflector at 150 km above the CMB. The inset shows the weak precursory
energy, for narrow angle reflections. At wide angles this reflection becomes stronger and
crosses over with, and eventually arrives in the coda of direct ScS. Red lines are theoretical
travel time curves for ScS (solid) and SdS (dashed). Right: GRT image trace (solid red line)
constructed from the synthetic data shown on the left and the wavespeed profile used to
generate the synthetic waveforms (blue curve).

arrival.

We explore how each of the statistical models described in the previous section han-

dles the following constituent effects in the estimation: highly irregular sampling (due to

the actual, uneven distribution of stations and events), random additive noise in the image

gathers (for example, due to scattering not explained by the single scattering approxima-

tion), and random harmonic noise in the image gathers (for example, due to isolated spec-

tral components generated by the imaging). For each test, we show the GRT image (that

is, the substack over the image gathers for different scatter angle) both for the narrow and

the wide angle data. However, the statistical results discussed and shown here are based

on data associated with the large scattering angles (in Figures 3-6-3-9 the GRT image re-

stricted to large scattering angles is indicated by a vertical arrow). In Figures 3-6-3-9, the

black curves represent the statistical estimate of g(y) and the light green bands depict the
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95% Bayesian confidence intervals. For comparison, we also plot the true model (red line).

3.4.1 Effects of 'station-event' sampling

1-D reflectivity

0 50 100 150 (a) (b) (c)

opening angle (degree)

Figure 3-6: Effect of the acquisition imprint, that is, source-receiver distribution. The left
panel shows image gathers for a range of opening (scatter angles) and, right next to them,
the result of the GRT restricted to narrow (left) and wide (right, with arrow) scattering an-
gles. The narrow and wide angle data are illustrated in Figure 3-5. The three panels on
the right show estimates of the reflectivity profiles using the random intercept (a), depth-
harmonic (b), and angle-dilation depth harmonic (c) statistical models. The bands around
the mean estimate (black line) correspond to 95% Bayesian confidence intervals. For ref-
erence, the red line depicts the true signal.

First, we analyze the effect of acquisition imprint. Acquisition is here viewed as the

spatial distribution of stations and events. If the stations and events were regularly spaced,

aliasing would be an immediate concern. This is not quite the situation, but the effects due

to the actual acquisition, locally, are related. In Figure 3-6 we illustrate how our approach

treats these effects, using a realistic acquisition geometry. The image gathers on the left

reveal significant scatter associated with non-random sampling. The two traces directly
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to the right of the image gathers illustrate the action of the GRT restricted to small scat-

tering angles (left trace) and large scattering angles (right trace, with arrow). The image

is distorted in that the phase of the two events associated with the reflectors has changed.

The panels on the right show the mixed-effects model estimates ((a): random intercept,

(b): depth harmonic, (c): angle-dilation depth harmonic). The black line in the middle of

the 95% confidence band shows the mean estimate and the red line shows the signal to be

recovered. We see that the three different methods are all capable of undoing the effects of

irregular event-receiver sampling, and restore the phase.

3.4.2 Effects of noise in the image gathers

In Figure 3-7 we have added random noise (energy not explained by the single scattering

approximation) to the image gather obtained from the noise-free data in Figure 3-5 (left),

subjected to a realistic acquisition geometry. The GRT image traces (small and large scat-

tering angles) directly to the right of the image gather are strongly affected by the noise; in

fact, the top reflector is no longer visible, whereas multiple weak, false reflectors appear.

The random-intercept model is capable of providing a clean estimate of the image (Fig-

ure 3-7A), including the top reflector. The estimate is consistent with the true model (red

line). Because the added noise did not have a harmonic component, there is no perceptible

difference in performance between the random intercept model and either of the harmonic

models (Figure 3-7B-C).

In Figure 3-8 we have added random noise with a harmonic component to the image

gather obtained from the noise-free data in Figure 3-5 (left) again subjected to a realistic

acquisition geometry. The GRT image traces (small and large scattering angles) directly

to the right of the image gather are both affected by the noise; the top reflector has disap-
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Figure 3-7: Estimation in the presence of random noise in the image gathers. For this
purpose, we added random noise to the image gathers shown in Figure 3-6, that is, for a
realistic acquisition imprint. Both the narrow and wide angle GRT stacks reveal significant
jitter and neither suggests the presence of a reflector at 150 km above CMB. In contrast,
the top reflector is detected in the statistical estimates, even though the images of it are
slightly distorted compared to the true model (red line). In the absence of a harmonic noise
component, all three models detect the contrast at the CMB.

peared, and more spurious signals are visible. If untreated, the latter can produce spurious

events in the image profiles. The random-intercept model estimate (Figure 3-8A) is be-

ginning to have problems recovering the top reflector as seen by the true signal (red line)

being mostly outside the error band. We also see remnant oscillations of the harmonic

components that the random-intercept model could not remove. The depth-harmonic mod-

els (Figure 3-8B-C) clearly perform better; many of the harmonic oscillations have been

removed and the the estimate (black line), with the error bars, is consistent with the true

signal.
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Figure 3-8: Same as Figure 3-7 but now for harmonic instead of random noise. While
performing better than the GRT without statistical estimation, the random-intercept model
begins to break down in the presence of a strong harmonic component in the noise structure;
indeed, trace (a) reveals much spurious structure and the estimates of the contrasts at CMB
and 150 km above it deviate significantly from the actual model (red line). Both harmonic
models - traces (b) and (c) - retrieve the model well (that is, within 2 a they are the same
as the true model), but the angle-dilation depth harmonic model (c) performs slightly better
than the standard depth harmonic (b).

3.4.3 Effects of an inaccurate wavespeed model

An important assumption in the application of the GRT as developed in Paper I (Chapter

II, Wang et al. [2006]) is that we have a reasonable estimate of the elastic properties, say

the wavespeed, of the background. Incorrect properties of the back ground model would

produce (scatter) angle-dependent artifacts in the image gathers. We recall that the model

validation operates on the pre-stack image gathers, which helps us recognize and correct

such artifacts. In order to demonstrate this premise, we again form GRT images using

the noise free, WKBJ modeled data (Figure 3-5, left), but now we assume background

properties that are different than those used to produce the synthetic data. The perturbed

A
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wavespeed model assumed in the GRT and the one used to produce the data are shown in

the inset to Figure 3-9.

The GRT image traces are affected by the use of the incorrect model. In fact, for small

scattering angles, the top reflector has become almost invisible. Figure 3-9A-C demon-

strate that the different mixed-effects models are all capable of recovering the image of

both reflectors. However, we observe a clear deterioration in spatial resolution, and the

depth estimate of the reflectors have decreased. Tests like these show that not knowing

the background wavespeeds well does not prevent us from detecting interfaces, but it may

produce artificial boundary topography.

1-D reflectivity

300
E

0 100

. CMB

100
0 50 100 150 (a) (b) (c)

opening angle (degree)

Figure 3-9: Same as Figure 3-6 but for image estimation with an inaccurate wavespeed
model. As before, we use synthetic data generated from a model with a simple step-wise
increase in wavespeed at 150 km above the CMB (solid gray line in inset, top left), but as
back ground model for the GRT we assumed a model with a slightly different D" structure
(blue dashed line in inset, top left).
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3.5 Imaging the lowermost mantle beneath Central Amer-

ica

We illustrate the proposed methodology with a study of inference of singularities over a

50' x 50' patch of the core mantle boundary (CMB) beneath Central America, using the

broad-band data from Paper I (Chapter II, Wang et al. [2006]). The data selection and

preprocessing is explained in Section 2.4.1.

3.5.1 Statistical analysis of an ScS common image-point gather

We select a particular location and image gather, and apply the analysis of the previous

section. In Figure 3-10 we show the gather for large scattering angles (left), the associated

GRT stack (first trace to the right), and an image estimate with the depth-harmonic model

(second trace to the right). The blue lines indicate the dilation derived from the GRT (see

Chapter II). The (linear) GRT stack contains multiple reflectors, but the (nonlinear) image

estimate suggests that not all of them are real. Indeed, we note the general difference in

appearance of the statistical estimate compared to the GRT stack. The estimate shows the

CMB - symmetric, zero phase, unlike in the GRT stack - as well as a clear indication of

a reflector about 240 km above it - within 95% confidence level. This suggests that the

location and width of the two main peaks are consistent with the model of the lowermost

mantle and the data resolution bounds used. The image estimate of the CMB appears on

the coarsest resolution viewed with respect to the expected dilation in the image gather

(blue lines). One may argue for the presence of a weak reflector about 115 km above the

CMB, marked as X in Figure 3-10, but it remains within the error bars associated with 95%

confidence.
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Figure 3-10: A typical image gather associated with large scattering angles, and a GRT
stack versus an image estimation based on the depth-harmonic model. The bands of two
colors in the depth-harmonic estimate correspond to 95% and 99% confidence error bars.
The GRT stack suggests a scatterer ~ 100 km above the CMB , but the statistical estimate
only shows a weak, broad structure (marked by X), which may suggest that it is not (statis-
tically) significant.

3.5.2 2-D image profile

We form an 2-D image profile (which in the context of this paper represents a synthesis

of the mean statistical estimates) by repeating the analysis in the previous subsection for

a large number of CMB points along a 2500 km long great circle path. We also address

the validity of the different mixed-effects models - for this purpose, we have selected 6

locations in the profile, indicated by (a) through (f).
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In Figure 3-11 we present the results collectively. The top image profile is obtained with

the random-intercept model, whereas the bottom two image profiles are obtained with the

angle-dilation depth-harmonic model. The bottom profile uses a dual color scale to display

structure above the CMB (color) at an amplification by a factor of five compared to the

structure around the CMB proper (grey tone). Superimposed on the bottom panel are the

statistical estimates at the mentioned 6 locations. Below these profiles, for these locations,

we plot the image estimates accompanied with the 95% Bayesian confidence intervals, for

the random-intercept model (top row), the depth-harmonic model (middle row), and the

angle-dilation depth-harmonic model (bottom row).

For location (a) we carry out a detailed validation of the entire image gather. The cor-

responding boxplots are shown on the lower left. Each mixed-effects model accounts for

coherent noise in the traces in its own way. For the three mixed-effects models introduced

in this paper, we provide illustrations of the within-angle residuals eij as defined in Sec-

tion 3.3.3. Each boxplot shows a box bounded by the 25% and 75% percentiles of the

residual distribution (for eij with j fixed). This interval provides information about the

spread of the distribution. The line within the box indicates the median, and the whiskers

provide information about the symmetry and tails of the distribution. For all three models

we observe that the residuals are close to centered at zero, which is an indication that the

mean estimates seem reasonable. Their variability changes with angle, however, which is

a measure of the degree of adequateness of the models. Such unmodelled variability may

have an effect in uncertainty estimates.

As was the case in the examples presented in Figures 3-6-3-9, at first glance the three

statistical models may seem to perform similarly. Upon closer inspection, however, we

can see differences. We compare the models by viewing how the boxplots of residuals are
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scattered around zero. The depth-harmonic models show less structure and fewer outliers

than the random-intercept model, which may indicate that the they provide a better fit for

our data. Furthermore, the spatial (depth) resolution has improved slightly (the peaks are

sharper) by including angle-dilation. With the depth-harmonic models, however, we still

see different dispersion across angles that may affect uncertainties. This may be caused by

angle dependence in the depth of the singularities, an indication of errors in velocity model,

perhaps associated with anisotropy in the lowermost mantle.

In Figure 3-12 we compare the best image estimate with the profile of Paper I (Chapter

II, Wang et al. [2006])(also shown in Figure 3-2). Visually, the differences between results

of GRT imaging with or without statistical analysis are fairly small. This is reassuring

because it demonstrates that the structures are constrained by the data and not introduced

by the statistical analysis. In detail, however, the effects of the statistical inference are

visible (as marked). Statistical inference and validation lead to the suppression of rapid

oscillations that are not required by the data, resulting in a smoother image. Furthermore,

most of the seismic events in the image reveal more lateral continuity than in the original

result presented in Paper I (Chapter II, Wang et al. [2006]). As important as the visual

effects, however, the statistical analysis presented here provides a means for estimating

uncertainty, which will be key for subsequent interpretation of the structures that are visible

in the image profiles. As an example, in Figure 3-13 we show the structures in Figure 3-

12B at various levels of probability by muting structure that does not exceed the width of

a particular confidence interval at that location. Figure 3-12B appears to be significant at

68% (lo) confidence level, but - as expected - only a few structures appear significant

at 95% confidence. This example demonstrates how our analysis can be used not only to

detect structure but also to identify and isolate the most robust features.
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It should be noted that in the application introduced here 'mixed-effects' modeling is

only used to estimate an optimal radial (reflectivity) profile at a particular image point at

the CMB. In a similar vein, the lateral coherence in Figures 3-12 and 3-13 can be enhanced

by applying the statistical models to the horizontal (space) distance parameter, but such

image processing is not done here.
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Figure 3-11: Top: 2-D image profile resulting from processing with angle-dilation) depth
harmonic model. A dual color scale is used to display structure above the CMB (color) at
an amplification by a factor of five compared to the structure around the CMB proper (grey
tone). Superimposed are the statistical estimates at six arbitrary positions. Below the image
profiles, from left to right we show the boxplots used in the validation (see Section 3.3.3)
and the statistical estimates for six locations along the 2D image profiles. Top row: random-
intercept model; Middle row: depth harmonic model; Bottom row: angle-dilation depth
harmonic model.
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Figure 3-12: Comparison of original 2-D image profile (presented in Chapter II), at the
top, through application of the (angle-dilation) depth harmonic model, at the bottom. There
is no exaggeration in the vertical scale.

3.6 Discussion and concluding remarks

The aim of the research described here and in Paper I (Chapter II, Wang et al. [2006]) is to

develop a novel approach to 3-D seismic imaging of the lowermost mantle using concepts

from inverse scattering and modem statistics. In particular, we aim to exploit both the wide

angle reflections, which are used in most modeling studies because the large reflection

coefficient produces arrivals that can be recognized in raw data, but which produce very

poor depth resolution, as well as the narrow angle reflections, which are associated with

weak reflections but which produce superior depth resolution. In fact, the recognition - and

use - of this angle dependence of radial resolution, which is reflected in the angle-dilation

discussed in Paper I (Chapter II, Wang et al. [2006]), allows high resolution imaging and

multi-scale analysis of weak interfaces in Earth's deep interior.

The combined use of the generalized Radon transform (GRT) and the mixed-effect

statistical inference presented here exploits the redundancy in the broad band data and al-
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Figure 3-13: Panels (A) and (B) show, respectively, the structure in Figure 3-12B that is
significant at the 68% and 95% confidence levels. This display is obtained by keeping only
the features at each depth that are significantly different from zero at the chosen confidence
level and muting the rest.

lows the transformation of large volumes of global network data to statistical estimates and

quantitative analysis of elastic singularities (such as discontinuities). Through the use of

mixed-effects models we can distinguish between and deal with true random noise in the

data, random noise in the GRT images due to scatter that is not considered in the GRT the-

ory, and artifacts between the assumed and real wavespeeds of the medium. The examples

discussed in Section 3.4, and illustrated in Figures 3-6-3-9, demonstrate that this does, in-

deed, enhance the ability to extract weak signal from noisy data. In some cases the changes

may seem subtle, but given the overall difficulty of - and interest in - imaging D" structure

even small improvements are very welcome. Moreover, our statistical approach enables us

to estimate uncertainties - in a Bayesian context - so that we can know with some confi-

dence whether imaged structures are real or (statistically) insignificant. Also, in the future,

it will allow a more rigorous analysis of the regularity (including such scaling parameters

as roughness, sharpness, type of onset, and scale-dependent impedance contrast) of the
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transitions in elastic parameters detected here. This information will be gleaned from the

wavenumber dependence of image gathers with scattering angle.

In contrast to methods based on forward modeling, our method imposes few a priori

assumptions about the geometry and nature of the structures that we attempt to image. In-

deed, the structures revealed in the images are entirely controlled by the data themselves.

The GRT only assumes that at a predefined image point the interfaces are contiguous, but

in practice this is not a serious restriction. Furthermore, we assume to have a reasonable

estimate of, or reference for, the smooth elastic properties of the medium. The latter as-

sumption is not taken lightly; indeed, our statistical analysis quantifies the extent to which

it is satisfied and, moreover, enables us to model and adjust for this type of 'noise' in the

image gathers. This is possible because of the pre-stack nature of our analysis: the statis-

tical inference operates on image gathers at a large range of scatter angle, and not on the

stack - or GRT image - itself.

In the general context of mixed-effect models, we have considered three particular

cases: (i) a random-intercept model, which assumes that the noise in the data - or in the

GRT images - is white, (ii) a depth harmonic model, which identifies and removes spurious

oscillations in radial direction, and (iii) an angle-dilation depth harmonic, which considers

the dilation - and concommittant reduction in radial resolution - with increasing scatter

angle that is inherent in the GRT imaging under consideration. With synthetic data we

demonstrate that without a rigorous statistical approach, subtle wavespeed contrast may be

overlooked - or spurious ones introduced - with a traditional GRT.

We found that the performance of the random-intercept model is in many cases similar

to that of the depth-harmonic and angle-dilation depth-harmonic models. The good per-

formance of this simple model is largely due to the data driven nature of the model fitting
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strategy. In particular, the use of a modified cross-validation procedure to select the tuning

parameters of the model (see appendix for details) leads to robust optimal smoothing of the

data that deviates significantly from the simple structure of the noise. On the other hand,

the estimation procedure of the depth-harmonic models (see appendix for details) could

further reduce the noise level through integration of cross-validation with estimation pro-

cedures similar to those studied in Guo [2002]; this is a topic of current research [Ma and

Zhong, in preparation].

We demonstrated the feasibility of the method with an application to the ScS wave-

field that reflects off the CMB beneath Central America. The data are described in Paper

I (Chapter II, Wang et al. [2006]). Visual inspection suggests that the application of the

mixed-effects models leads to an image with better lateral definition of interfaces (in addi-

tion to information as to the statistical significance of each scatterer), but that the different

mixed-effect models used yield rather similar results. This may indicate that the level of

harmonic noise in the real data is low or that the coherent noise is not truly harmonic.

However, quantitative model validation suggests that the (angle dilation) depth harmonic

models, which suppress spurious oscillations in the 2-D image profiles, produce slightly

better data fits and uncertainty estimates.

The image produced by ~80,000 broad-band ScS data (e.g., Figure 3-11) reveals strong

contrasts in elastic parameters at about 0, that is, at the depth of the CMB and, locally,

near 150 and between 270-320 km above it. It is tempting to interpret the latter as the

(fragments of the) 'top' of the so called D" layer. Changes in elastic parameters near

this depth have been the subject of many seismological studies (e.g., Lay and Helmberger

[1983a]; Tromp and Dziewonski [1998]; Sidorin et al. [1999]; see Garnero [2000] for a

comprehensive review), but there is as yet no consensus about this transition and its radial
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and lateral extent. Our results suggest that the structure may not be (laterally) continuous.

The images also reveal significant scatter in between the presumed top of the D" layer and

the CMB proper. Collectively, our observations suggest that the D" region is more complex

than expected from models based on simple perovskite to post-perovskite transitions. This

implication will be explored elsewhere (e.g., Van der Hilst et al. [2007]).
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3.8 Appendix: Estimating the model parameters

(i) Random-Intercept Model

In the standard formulation of penalized least squares regression, the minimization of

(3.9) is performed in a reproducing kernel Hilbert space 4 C {~g : J(g) < oo} in which

J(g) is a square semi-norm, and the solution resides in the space Jtj G span {Rj(yi, -) : i =

1,... d}, where Jfj = {g : J(g) = 0} is the null space of J(g), and R(., .) is the so-called

reproducing kernel in Y8 e Jj. The solution has an expression

k d

g(y) = fv (Pv(y) + I cjRj(yj,y), (3.12)
v=l j=1
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where { 0vk } is a basis of Yj 1

Substituting (3.12) into (3.9), one minimizes

a b 2 a
(Gij -0(yj)' -((zj)'c-b)2 "2 b2 +n0ctQc (3.13)

i=1 j=1 i=1

with respect to p = (P31, 2, , 3k)t, c = (cl,...,cd)t and b = (bl,..., ba), where p(y) =

(Rj(yl,y), .. ., R(yd, y)), and Q is d x d with the (j, k)th entry RJ(yj, yk). Estimates of ,

c and b are obtained by setting to zero the derivatives of (3.13) with respect to c and b. The

minimizers of (3.13) are solutions to the normal equation,

StS StR StM P StG

RtR RtR+(na)Q RtMc = RtG , (3.14)
M t S M t R Mt M + TI b M t G

where G = (G11,...,Gab)t , S is n x k with the (i, v)th entry 4v (yi), R is n x n with the

(i, j)th entry (pj(yi), M is n x a block diagonal identity matrix, Q is n x n with the (j,k)th

entry J(qpj, I9k) = RJ (vj, vk), and z = 02/a2 and I is identity matrix. The normal equation

of (3.14) can be solved by a Cholesky decomposition followed by backward and forward

substitutions. Possible singularity of the matrix can be properly handled through pivoting

in Cholesky decomposition; see, e.g., Golub and Van Loan [1989] and Kim and Gu [2004]

for details.

1For example, take a function g defined on [0, 1] with J(g) = f(g")2 dy and -Vj = {g: g(y) = f1 + 12Y}.
In this case we get the popular cubic splines and the reproducing kernel is Rj (x, y) = k2 (x)k2 (y) - k4(x - y),
where kv = By/v! are scaled Bernoulli polynomials. See Wahba [1990] and Gu [2002] for comprehensive
treatments of the subject.
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The fitted values G = SP + R'+ Mb can be written as G = U(0, z)G, where

StS StR StM St

U(, T) = (S,R,M) RtR RtR+(nX)Q RtM Rt

M tS  MtR MtM + -I M t

and C+ denotes a generalized inverse of C satisfying CC + C = C, C+CC+ = C+, (CC + )t =

CC+ , and (C+C)t = C+C. This inverse is also known as Moore-Penrose inverse.

For different values of X and z, (3.14) defines a family of possible solutions. Optimal

values of these parameters are obtained by minimizing the generalized cross-validation

score
n- 1 Gt(I - U( • , r))2G

[n-I tr(I- U(,rZ))]
2

Gu and Ma [2005] showed that under very general conditions the minimizers of V(A, T)

yield an optimal smoothing asymptotically.

(ii) Depth-Harmonic Model

To correct for harmonic components of the noise we proceed as follows. For a fixed angle,

any profile g(9, y) is a function of depth y that we will just denote by g(y). These functions

may be contaminated by coherent noise caused my unmodeled oscillations in the subsur-

face. One possible model for this oscillations is a harmonic process ,i aicos(wiy + 4),

where ai and Oi are, respectively, random amplitudes and phases, and the frequencies

omegai are fixed but unknown. Each realization of the process is just a sum of sinusoids

and each profile is contaminated by a different harmonic process. Hence, removal of a

harmonic process from a profile is equivalent to correcting for sinusoid signals.
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To find sinusoids hidden in the data we use a method developed by Quinn and Fernan-

des [1991]. To explain the main idea we assume a single sinusoid. A profile is modeled

as g(y) = a cos( oy + 0 ) +g(y), where g(y) is the clean signal we want to recover. A si-

nusoid can be annihilated with a second order filter. Indeed, we note that g(y) satisfies the

difference equation

g(yj) - 2cos( o) g(yj-1 ) + g(yj- 2) = g(yj) - 2cos(t ) g(yj-1) + g(yj-2).

ARMA fitting techniques can then be used to estimate the frequency (0 and then obtain

amplitude and phase through least squares. The frequency estimate can be interpreted as

a local maximizer of a smoothed periodogram. The case of more than one frequency is

treated in a similar way; there are difference operators that annihilate all the sinusoids. For

more details on this methodology see Quinn and Fernandes [1991].

Once the harmonic components are estimated from data, we can obtain the harmonic-

component extracted profile: Gij = Gij - Xk aik cos( 0ikYj + Oik ). Then the model can be

fitted as before, that is, one minimizes

a b 2 a
( Gij - (yj) tf - qp(zJ) t'c -bi )2• b + , cQc. (3.16)

i= j=1 j= i 1

(iii) Angle-Dilation Depth-Harmonic Model

As in the Depth-harmonic model, the harmonic components are estimated from the data

and then subtracted from to obtain the corrected profile Gij. We estimate (3.10) using
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penalized least squares

ab 2 a

j1 ( ij-g(aiyj)-bi)2 + ib +nJ(g).1
i=1 j=1 s i=1

(3.17)

The minimization is carried out iteratively as follows:

(0) As the initial estimate we use he maximum likelihood estimates of the linear mixed-

effects model Gij = aiyi + bi + Eij.

(1) For estimated &i, we minimize the following functional to obtain / and -

a b 2a
1 ((ij - (iYj) t - (&izj) t c)2 + bs2 ni= 1±LctQc
i= j=1 j= i1

(3.18)

(2) For estimated/3 and C, we estimate ai by minimizing

a b

i=1 j=1

)t - qp(aizj)t )•2.

Steps (1) and (2) are iterated until convergence.

(3.19)



96 CHAPTER 3



Chapter 4

Inverse scattering with SKKS coda

waves: imaging the core side of the

CMBt

Abstract

In our previous studies we developed a method for imaging the heterogeneity at and near
the core mantle boundary with broadband ScS transverse component data. Moreover we
developed a statistical model to produce the image of the D" discontinuity with variable
confidence levels. In this paper, we extend our previous development in as much as that we
allow for (known) discontinuities in the background model; we can then incorporate the
outer core in the background and use the SKKS phase (radial component) and its coda to
scan the D" discontinuity from the underside. We furthermore demonstrate that the SKKS
phase is a phase that is supplementary to ScS phase and that is of importance for the imaging
of the D" discontinuity. Synthetic seismograms calculated with the WKBJ method are used
to test the performance of our method. As a proof of concept, we transform - 18,000 radial-
component SKKS waveforms into image gathers of a CMB patch beneath Central America.

tInverse scattering with SKKS coda waves: imaging the core side of the CMB, Geophys. J. Int.,
mauscript in preparation.
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The structure of the SKKS image gathers is consistent with ScS image gathers.

4.1 Introduction

To detect heterogeneities in Earth's interior that are singular in nature, the use of scattered

body wave phases is pertinent. The singular parts of these waves contain information about

non-smooth variations in material and physical properties of the Earth.

Most work to date inferring the structure of the CMB region (for example, Garnero

[2000]) has employed forward modeling to fit the waveforms of phases like S-ScS and

SKS-SPdKS-SKKS on selected high-quality seismograms. For early results on modeling

core phases, we refer to Choy [1977]. Wang et al. [2006] developed an inverse scattering

approach based upon the generalized Radon transform (e.g., Beylkin [1984]; De Hoop et al.

[1994]; De Hoop and Bleistein [1997]; De Hoop et al. [1999]; De Hoop and Brandsberg-

Dahl [2000]; Stolk and de Hoop [2002]; Brandsberg-Dahl et al. [2003]), to image selected

neighborhoods of the CMB using ScS data. In addition, statistical methods were applied to

produce images of D" discontinuities and estimate their uncertainty. However, using only

the ScS data to scan the CMB area from one side (topside) and the statistical method to

validate our results has its drawbacks: 1) the data coverage is insufficient for some regions,

specially for regions below the center of oceans. 2) interfaces with a wavespeed drop are

harder to detect than a wavespeed increase (Flores and Lay [2005]).

The approach developed and new data set used in this paper can overcome these draw-

backs. With the extension presented here, we can use SKKS wavefield to scan the D" from

below. We can thus produce images with SKKS phases and with ScS phases of the same

region; given that the relevant data are so different, a consistent result would serve as a
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validation. The use of SKKS has several advantages. First, unlike the SdS phase, the ampli-

tudes of phase SKSdSKS are almost the same for the same amount of velocity increase or

decrease (see Figure 4-5). Second, SKKS provides excellent data coverage. Since the max-

imum epicentral distance for ScS data is about 80 degree, and because there are almost

no receivers and events in large intraplate regions, such as oceans, the ScS middle point

coverage is very sparse there. Indeed, Central America and eastern Eurasia are among the

few regions where ScS data coverage is likely to be sufficient for successful application of

the GRT with ScS data. On the other hand, the SKKS middle point coverage is very good

in most of the regions (see Figure 4-2). The main reason is that the epicentral distances

used for SKKS data are from 100-180 degrees. All these features make the SKKS phase

complementary phase of ScS. Of course, to use SKKS data to image the CMB area from

the underside has its challenges. i) the lower limit of the earthquake magnitude which can

be used to image with SKKS data has to be higher because the SKKS rays propagate along

longer raypaths, as compared with ScS rays; ii) since the SKKS propagates not only in

the solid mantle but the liquid outer core, one has to deal with both solid-solid and solid-

liquid interfaces; iii) for ScS imaging, we only use the transverse (SH) component and we

only need to deal with a relative simple system, whereas for SKKS imaging, one has to deal

with the coupled P-SV system. However, the potential mixture of SKSdSKS and SKPdPKS

seems to make this approach almost infeasible. Fortunately, one can select an epicentral

distance range (100-180 degree) in which there is no SKPdPKS energy because the inci-

dence angle of K at the CMB is beyond the post-critical angle for the mantle P-wave (see

Figure 4-1).

Rost and Revenaugh [2004] found a strong arrival in the early coda of major-arc PKKPab

and interpreted it as an underside reflection from D". With this arrival, they found a D" at
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Figure 4-1: The K-wave incidence angle at the CMB vs the epicentral distance for SKKS
phase. The inset is the K - K reflection and K - S conversion coefficients vs the incidence
angle at the CMB. For an epicentral distance A < 184 , the K-wave incidence angle a >
36 . a = 36 0 is the critical angle where the K-wave completely reflects, thus no energy of
P-wave in the mantle for an epicentral distance smaller than 184 .

280 km above the CMB by converting the traveltime to depth. However, trying to use

PKPdPKP phase to find the D" discontinuity is not easy. First as mentioned above, due

to the dramatical P wavespeed change from the outer core to the mantle, it readily reach

the critical angle for the incidence of K and the mantle P-wave. Therefore, the epicen-

tral distance range where this phase shows up is highly limited. The triplication of PKKP

around this distance range further complicates the situation. Second, whenever there exists

a PKPdPKP phase, the PKSdSKP phase must also appear. This may cause misinterpreta-

tion of the depth of interfaces. While the usable distance range for PKPdPKP is limited and

complicated by the triplications, the distance free of SKKS triplication is large (100 0-180")

and the SKSdSKS phase is not contaminated by the SKPdPKS phase.

> :I

· · ·
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Figure 4-2: Global distribution of number of ScS (top) and SKKS (bottom) middle points
in a 100 x 100 bin. Data source is IRIS-DMC; earthquakes have mb > 5.2, with origin
time between 1988 and 2002.

A global energy stack of SKKS(SV) shows a later, previously unidentified arrival about

1 minute after the main SKKS phase (see the black box in Figure 4-3). It's tempting to

interpret it as the under side reflection from D" given the fact that this arrival still shows up

when using deep events only.

The main goal of this paper is to develop a mixed fluid-solid generalized Radon trans-

form approach to inverse scattering adapted for coda waves in global seismology, and to ap-

ply this approach to a range beneath Central America. In Section 4.2 we develop the theory

underlying the GRT and describe how three- component broadband data can be transform

into image gathers. In Section 4.3 we use synthetic seismograms (calculated with WKBJ
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Figure 4-3: Stack of the 100,000 global SKKS(SV) data. Processing details data source
is IRIS-DMC; band-pass filter is 10-50 s; earthquakes have mb > 5.2, with origin time
between 1990-2002.

Chapman [1978]) to test the performance of our methodology. We show that in principle,

the GRT with SKKS phase can be used to resolve interfaces with either a wavespeed in-

crease or wavespeed decrease, which are different to see with ScS data (Flores and Lay

[2005]). This feature makes GRT with SKKS very suitable for resolving low wavespeed

layers under high wavespeed layer. We also demonstrate that the reflection coefficients,

relative to SKKS, can be estimated. Finally, in Section 4.4 we present preliminary results

of three imaging points, compare them with the ScS images, and then we show the results

of joint inversion of ScS and SKKS.
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4.2 Inverse scattering

The inverse scattering transform we present here makes essentially use of multiple scattered

waves, by incorporating discontinuities in the background. The transform, nonetheless, is

very closely related to the GRT and falls in the category of liberalized LS inversion for

singularities.

Although the mathematics needed to develop the GRT method are quite complex, the

principal idea of this method is relatively simple. The GRT method projects the scattering

potential into the data as integrals over isochrone surfaces; in turn, integrating the data over

isochrone surfaces recovers an image of the scattering potential.

In the sections that follow, we develop the generalized Radon transform (GRT) method

by first obtaining the Green's function and Green's tensor from the governing equations in

both solid and fluid media. Then we assume that the wave that propagates in a perturbed

medium has the same raypath as that in a smooth background medium and the wavefield

perturbation is linearly dependent on the medium perturbation. The above assumptions

are known as the Born approximation (Aki and Richards [1980]). The general form of the

problem is

U = F& , (4.1)

where u is the scattered wavefield, & is the medium perturbation, and F is an integral

operator.

Applying the adjoint operator F* to both sides of equation 4.1 yields

F*u = F*F6c , (4.2)
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Figure 4-4: Schematic illustration of the path geometry of SKKS (bottom) and SKSdSKS
(top) considered in the generalized Radon transform (GRT) of SKKS data. Bottom: The
source and receiver are separated by epicentral distance A. The image point at the CMB is
denoted y. The summation of the slowness vectors of the two legs of SKKS are given by v.
The scattering angle is 0 and scattering azimuth is Vp. The image is, essentially, created by
integration over v.

where F*F is the normal operator. Taking the generalized inverse of equation 4.2 produces

images of the medium perturbation:

&c = (F*F)-1 F*u . (4.3)

The GRT inversion defined by equation 4.3 can, under certain conditions, be subjected

to restricting the inversion operator to a prescribed scattering angle and azimuth (0, j).

This inversion produces common image point gathers which represent an image of the

Earth's interior at common locations.
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4.2.1 The governing wave equations

We first look at the propagation of seismic waves in both solid and fluid media. In the

solid regions of the Earth, typically shells such as the mantle, the particle displacement

ui = ui(x , t) satisfies the elastic wave equation

p dt2u i -dj(Cijki £Uk) = fi , (4.4)

where p = p(x) is the scalar density of mass, Cijkf = Cijkf(x) is the elastic stiffness tensor,

and fi = fi(x, t) is the body-force source density. The stress rij in the solid is related to

the displacement as Tij = cijkedtUk in accordance with Hooke's law. The elastodynamic

Green's tensor, Gip (X,X', t), which is the solution of the wave equation for a point source at

(x', t), satisfies the equation

p a2Gip - dj(CijkdfAGkp) = 5ip-(x-x')a(t), (4.5)

subject to the condition of causality, Gip(x, x', t) = 0 for t < 0. The modes of seismic wave

propagation (in the mantle) are P, SV and SH in the isotropic case, and qP, qS 1 and qS2 in

the anisotropic case.

In the fluid regions of the Earth, typically shells such as the outer core, the acoustic

pressure p = p(x, t) satisfies the acoustic wave equation

Kat 2P - j((Yp) = q, (4.6)

where a = a(x) is the scalar reciprocal density of mass, K = K(x) is the compressibility

or reciprocal of bulk modulus, and q is the time derivative of the volume source density of
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injection rate. The scalar traction in the fluid is the opposite of the pressure; the particle

velocity vi in the fluid is related to the pressure as vi = _p-p 1 d,-ip. The acoustic Green's

function, G(x,x',t), satisfies the equation

Kca, 2G- ad(adjG) = (x - x')S(t) (4.7)

subject to the condition of causality, G(x, x', t) = 0 for t < 0. The mode of seismic wave

propagation in the outer core is denoted by K.

The frequency domain equations both for the solid and the fluid regions are obtained

by replacing -idt by co.

4.2.2 The source representation

Next, we need a term that describes the excitation (normally a body force) of the wavefield.

We write the equivalent body force in terms of the so-called symmetric stress glut tensor S,

(4.8)

the stress glut tensor is related the source moment tensor as

(toSij) (xo, to) = Mij6(xo - s) S(to - ts) . (4.9)

Substituting equation 4.8 into 4.9 we obtain

fj(xo, to) = -Mijdis(xo - s) H(to - ts) ,
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where H(to - ts) is the step function. For convenience, and without loss of generality, we

shift ts to 0 for each event.

4.2.3 Geometrical ray Green's tensor

A standard method for solving a wavefield excited by a volume source is to obtain the

solution of the governing equations assuming a point source, then obtain the final solution

using the superposition principle.

First, we discuss the high-frequency Green's tensor restricting the analysis to the solid

in the absence of a fluid region. Away from caustics at the receiver at x and at the source at

x', the Green's tensor admits the oscillatory integral representation

Gip(x,x',t) = - Re ( Re i(x)p(x)A(m)(x,x') exp[io (t - T(m)(x,x'))]dm , (4.11)

in which

1
A(x,x')= (4.12)

4 r[p(x)p(x')  (x, x')]1/ 2 '

where

A(xx) = |v(x')V (xw) (4.13)IIv(x')V d(yO)

and 4 denotes the normalized polarization vector of the wave-type under consideration. The

amplitude A(m) is obtained from A upon multiplication by the phase factor, exp[-i(r/2)t (x, x')],

accounting for the KMAH index t. The index m labels the branches of the travel time func-

tion. We suppress the index m in our notation. In (4.13) v denotes the group velocity and

V denotes the phase velocity; xW denotes the coordinates in the wavefront at x while yo
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denotes the coordinates on the slowness surface at x'. Also,

V(x')_(x,x') := [.1(x,x')/(V(x)V(x'))]1/2 = |detQ 2(x,x') 1/2 = y(x,x')

can be identified as the reciprocal of relative geometrical spreading (see, for example, [Aki

and Richards, 1980, (9.46)] in the case of P waves); the matrix Q2 is a quantity, defined

in [Cerveny, 2001, (4.3.5)], that is amenable to numerical computations. The travel time

along the ray or path connecting x with x is denoted by T(x, x'); the index m keeps track of

multipathing.

Secondly, we discuss the high-frequency Green's function for the case of a analysis to

the fluid in the absence of a solid region. Away from caustics at the receiver at x and the

source at x', the Green's function admits the oscillatory integral representation

G(x, x',t) = - Re B(m) (x,x) exp [io (t- T (x, x))] d, (4.14)
m

in which

[B(xx') P(x)p(x')cf(x)cf(x')]1 / 2

B(x, (xx) (4.15)

with cf = (C - 1 cK)1/2 denoting the wavespeed. The amplitude B(m) is obtained from B upon

multiplying by the phase factor accounting for the KMAH index. Thus the index m labels

the branches of the travel time function. We suppress the index m in our notation.
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4.2.4 Incident field

Substituting (4.10) for the inhomogeneous right-hand side of the wave equation (4.4), using

Duhamel's principle, we obtain for its solution

ui(x,t) c -I Re 4i(x) (4p (S)y7q(S) + 4q(S)Yp(s))Mpq

A(m)(x, s) exp[-io (t - T(m)(x,s))] do, (4.16)

in which

yp(s) = (ds,p T)(x, s) (4.17)

is the p-component of the slowness vector at s associated with the ray connecting s with x.

This equation can be compared with [Aki and Richards, 1980, (4.88)-(4.90)] upon reducing

the elastic stiffness to the isotropic elastic case with Lame parameters X1 and yu. In these

equations, Mpq = / (iapVq + iqVp)A in which v is the normal to the fault surface, iip is

the average displacement discontinuity, and A is the fault area. Then the source radiation

pattern can be written in the form

F(s) = M-lMpqp(s) V(s)yq(s) , M = yAlluA .

4.2.5 Background fluid-solid interface

Boundary conditions

The coefficients in the above equations are associated with a background model. In such

a model, the coefficients are assumed to be smooth except at a fluid-solid interface, I say,

such as the globally estimated core-mantle boundary (CMB). At a solid-fluid interface, the
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following boundary conditions apply: (i) the normal component of the particle displace-

ment is continuous, (ii) the normal component of the surface traction in the solid and the

scalar traction in the fluid are equal, (iii) the tangential components of the surface traction

in the solid vanish.

Solving the boundary value problem

We couple the fluid and solid expressions developed above by solving the boundary value

problem. We assume that the source is contained in the solid region while the receiver is

contained in the fluid region. Asymptotically, the solution is adapted to include a transmis-

sion coefficient. This implies that the amplitude in the oscillatory integral representation

becomes 4p (x-) C(x,x'),

1 0
Gp(x,x',t) = Re p(x)(x,x) exp[ico(t- Tm) (x,x'))]d. (4.18)

m

With xy the point of refraction on the fluid-solid interface 1, the travel time in the phase

function becomes

T (x,x') = T (x, x) + T(xX,x') .

The amplitude, C(x, x), is derived as follows. The incident displacement amplitude (the -

refers to the solid (lower mantle) side of 1) follows to be

u ()-=[ p((x') ||v(x')II 1/2 U(x' )

[ p(x')V(x') 1/2 1 1
S(p(xy- V(xy))_ - ((x )-,x')4np(x')V(x')
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using that

Ir (" 'I x " I
lim £(x", x)U( x )=
x" -fx' 44rp(x')V(x') '

while the pressure amplitude at the receiver is related to the pressure amplitude at the fluid-

solid interface (the subscript '+' refers to the fluid (core) side of Y) according to

P(x) =[ pf(X))+ f(W
(Pf (XI) Cf (XE)) +I

1/2 gQX)P

P(x)
2 (x)

In the solid (mantle) the geometrical spreading is related to the relative geometrical spread-

ing as [Cerveny', 2001, (4.14.44)]

Y(xy ) = V(xX) |v(xX) l-det(Q2(xX,x'))det(P(x')) 1/2

Invoking the boundary conditions at the fluid-solid interface, accounting for its curvature,

implies that

F(x )  1C(x,x') = (pf(x)cf(x))1/ 2 7(xX) 1
Y(x, x') 4 r(p(x,)V(x'))1/2 (

where we have the factorization

•2 (x,x')= |det(Q2 (x,x:)HQ2(x",x') )11/2

(4.19)

(4.20)

Here (cf. [Cerveny, 2001, (4.14.71)])

(4.21)

in which MF is the Fresnel zone matrix at x1, and A' = 0.
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In general, the fluid-solid boundary conditions have to be solved numerically. This

is accomplished by expressing the fluid quantities in pressure and the solid quantities in

displacement and then solving the remaining system of algebraic equations. In (4.19) a

transformation to a flux-normalized transmission coefficient is applied, which we write as

7 (xY) = TK ~.. Here, the flux normalizing factor is given by

(p(x) ) )-1/2  ( (p(xx)v(x )I-1/ 2  1
9---(4.22)

(Pf(X)cf(X1))1/2 Y (X)_ (Pf(x)cf(x)) 1/2 (cos_01)1/2 '

where 0y- is the angle of incidence.

For an isotropic elastic solid-fluid interface, the following expressions can be obtained

for the transmission coefficient (4.19). We write TKS = (-iO)(pfcf)+ [C 1TKS(PCsl)-I]

in which

TKS(l,p 2 )= P , p=(p +p 2)1/ 2 , (4.23)
ASCH

in which the slowness vector is written in interface normal components, y= (PP2, Y2,P,S)

with (Pl,P2) tangential to the interface; ASCH is the Scholte denominator associated with

surface waves propagating along a solid-fluid interface 1,

Pf -4 1 -2 22ASCH = - PCS y[(-S - P 2)2  P T2 PYS] .4ps

Equation (4.23) appears in the generalized ray analysis of this transmission problem in a

configuration of a fluid and solid half space. Analogue expressions are obtained for TKp.

'We identify D/(7s)core = (2psc2) 2AscH, cf. [Aki and Richards, 1980, pp.436,451] upon identifying p2
rCMB

with p2 + p2. The transmission coefficient for incident SV, transmitted K displacements is SP [Aki and
Richards, 1980, p.150] which maps to cf 'TKS(pcs1)-1. The coefficient SP is easily adapted to WKB calcu-
lations in a layered SNREI model [Aki and Richards, 1980, p.437].
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4.2.6 Modeling: The short-period Born approximation

We have obtained the source and the Green's tensors in Section 4.2.2 and 4.2.3 respectively.

In this section we will describe the scattered wavefield in terms of the medium contrasts.

Let u denote the scattered displacement field. Substituting the high-frequency Green's

tensors evaluated in the background into the Born approximation for the scattered displace-

ment yields

up(rt,s) = (FSc)p = -Mqr((s) X Re I 1x (-02)q(S) p(r) ?r (S) (x, s, r)

wT (x, s, r)c(x) exp[io(t - T(m)(x, s, r))]dV(x) do, (4.24)

where we denoted the quantities associated with a ray connecting the scattering point x

with an earthquake location s by -and the quantities associated with a ray connecting the

scattering point x with a station at r by ^. The quantity J-(x, s, r) is essentially the product of

amplitudes that are possibly complex through the appearance of the exponential containing

the KMAH index. The travel time is the sum

T(x,s, r) = T(x, s) + T(r,x) . (4.25)

We employ the shorthand notation

W (x, s, r) = Mqr(s) (I q(S) ?r (S) r + r (s)()) = M(s)V(s)- F (s) . (4.26)

We distinguish the cases where the scattering point x is contained in the solid (x E Xs) and
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where the scattering point x is contained in the fluid (x E Xf); we have X = Xs UXf. Thus

up(r, t,s) = us(r, t,s) + uf (r, t,s)

where us (r, t, s) - representative of topside reflection - is obtained by subsituting X = Xs,

J(x, s,r) = p (x)A(x)A(x) , (4.27)

in which

A(x) = A(s,x) , A(x) =A(r,x) , (4.28)

and

(4.29)

In the isotropic case, this expression reduces to

w(x, s, r) = {1,cos(SS (x, s, r))}

for SH-to-SH scattering, and

w(x,s, r) = {cos(OSS(x,s,r)),cos(2SS(x, s, r))}

for SV-to-SV scattering. Here

cos(Os s (x, , r)) = cs(x)2 i(x) i(x)

(4.30)

(4.31)
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For uf(r, t, s) - representative of underside reflection - we obtain the substitutions X = Xf,

J(x,s,r) = r(x)C(x)C(x) , (4.32)

in which

C(x) = C(s,x) , C(x) = C(r,x) , (4.33)

while

w(x,s, r) = { 1,Cf(x)2 (x)(x) } . (4.34)

We write

cos(OKK(x, S, r)) = Cf (x)2~'(x)i(X ) .

4.3 Resolution tests with synthetic data

We test the performance of the methodology developed above with synthetic broad-band

seismograms of SKKS. We calculate time windows containing SKKS using the radially

stratified wavespeed model ak135 (Kennett et al. [1995]). For the calculation of the wave-

forms we superimpose jumps in elastic parameters at certain distances above the CMB. The

seismograms in Figure 4-5A are calculated from a model with a 3% wavespeed increase at

250 km above the CMB and a 3% wavespeed decrease at 150 km above the CMB.

SKKS and SKSdSKS are so-called min-max phases and their waveform is distorted by

a 7r/2 phase shift (see Figure 4-5A). This can be modeled with a Hilbert transform, but the

most straightforward way is to deconvolve the phases by themselves. To achieve this goal,

we followed the procedures explained in Chapter II. That is, we first use multi-channel

cross correlation (MCCC) to align the synthetic data, followed by a principal component
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Figure 4-5: A. Record section of synthetic data for model with two contrasts (one increase
and one decrease) above the CMB, calculated with WKBJ. The red solid lines are the travel
time curves of SKKS phase and the red dotted lines are the travel time curves of SKSdSKS
phases. B: Record section of synthetic data: after deconvolved by the PCA estimated SKKS
phase. The top black boxes in A and B is the blow-up of the bottom black boxes in A and
B respectively.

analysis (PCA) to estimate the SKKS phase, and then deconvolve the estimation from the

full synthetic seismograms. The resulting seismograms (after deconvolution) are shown in

Figure 4-5B.

In one series of tests we use an idealized (geographical) distribution of specular reflec-

tions (Figure 4-6A,B); in another we use the actual earthquake-station distribution (Fig-

ure 4-6C). We show results for (synthetic) data bandpass filtered between 10-50 s (Fig-

ure 4-6A,C).

The 28 traces in the left of Figure 4-6A,C are extracted trace by trace from synthetic

data with different epicentral distances (scatter angles). Aliasing is visible in Figure 4-6C

due to sparse and uneven sampling.

For the wavespeed models and associated ray geometries considered we can calculate

the reflection coefficient R relative to SKKS as a function of scatter angle. We then compare

it with the relative reflection coefficient inferred from the GRT. These two coefficients

generally agree well with each other (see Figure 4-6B).
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Figure 4-6: Illustration of the construction of GRT stacks (images) from image gathers
at different scatter angles. The traces on the left of panels (A) and (C) are image gathers
at scattering angles produced from the synthetic data as in Figure 4-5. The traces on the
right are stacks over scattering angles. The gathers and stacks in (A) are produced from an
artificial (regular) source-receiver distribution; the results in (C) were computed using the
data coverage depicted in Figure 4-8.
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Figure 4-7: The amplitude above the dashed line are multiplied by a factor of 5 to make
it comparable to that at the CMB. This figure shows the recovery of the input model with
a wavespeed decrease at 150 km above the CMB and a wavespeed increase 250 km above
the CMB.

We demonstrate that our method is able to detect multiple interfaces with opposite ve-

locity changes. For this purpose, forty-one imaging points are chosen along the great circle

transect from (-105W, 0) to (-75W, 30N). Figure 4-7 is generated by the lateral juxtaposi-

tion of IGs stacked over all angles.
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4.4. IMAGING THE CMB BENEATH CENTRAL AMERICA

4.4 Imaging the CMB beneath Central America

We apply the GRT method to a broadband wavefield formed by SKKS (and its precursors

and coda) that sample a 500 x 50 core mantle boundary (CMB) beneath Central America

(Figure 4-8). This region has been studied intensively and several investigators have found

evidence for structural complexity within D" (e.g., Garnero [2000]; Buffett et al. [2000];

Thomas et al. [2004]). Here we present three image gathers of lowermost mantle structure.

4.4.1 Data preprocessing and analysis

The generalized Radon transform is applied to data from many events and seismic sta-

tions. One could view this transform as a focusing procedure using 'arrays' of sources and

receivers, searching for singularities in the Earth's interior, here the lowermost mantle.

The data are collected from the following sources. Estimates of origin times and source

locations (hypocenters) are obtained from the EHB (Engdahl et al. [1998]) data base for all

events. Three-component broadband waveforms for all events in our data set are obtained

from IRIS (Incorporated Research Institutions for Seismology). The minimum magnitude

considered in this study is set at mb > 5.5. The range of angular epicentral distances was

chosen from 100 - 180' to void the potential mixture of SKSdSKS and SKPdPKS. The

preprocessing sequence is similar to the one we explained in Chapter II and the published

paper (Wang et al. [2006]). We use SKKS phase as reference phase to apply the principal

component analysis (PCA). The band-pass filter we used in this study is 10 - 50 s.

The application of the generalized Radon transform requires binning in scattering angle

0. From a physical point of view, we should match the bin size with the reflected-wave

Fresnel zone. This match will only be possible for selected neighborhoods of the CMB.
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The Fresnel volume can be determined by ray tracing through the condition

min{T(y,s) + T(x,y, r) - T(r,s),s +- r} = lfol

where fo represents the peak frequency and y lies on the boundary of the Fresnel volume.

The binning in 0 requires a traveltime correction: Data from intervals Ae (), for given

('common') v and y, are stacked prior to which traveltime variations with A = A(v, 0, Y)

are corrected for using Grand's spherically symmetric model.

To form the final gathers, the outcome of the generalized Radon transform is stacked

over azimuth yf, with the appropriate weights. The transform is essentially an integration

over dip directions (and implicitly over isochrones); the cone of associated dip directions

has typically an opening of about 24 degrees. The detectable structural dip directions must

be contained in this cone. The CMB topography is covered by this cone assuming it is mild

(Morelli and Dziewonski [1987]; Sze and van der Hilst [2003]).

4.4.2 Preliminary results: three image gathers

In this section we demonstrate the performance of our method to infer interfaces in the

vicinity of the CMB. Presumably, any (local) reflector should show up at least at (close

to) the same radius for any processed angle. However, due to the difference in coverage,

quality for different epicentral distances, this is not always the case. Thus, the statistical

analysis developed in Chapter III is very much needed to extract the coherent signals.

To illustrate the concepts developed so far, we draw from - 18,000 SKKS displacement

records in Figure 4-8 to construct GRT image gathers of three locations beneath Central

America (Figure 4-8, blowup) [figure needs to be updated]. We estimate the image gather
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4.4. IMAGING THE CMB BENEATH CENTRAL AMERICA

Figure 4-8: Geographic map of the region under study, depicting the epicenters of the
~2,200 earthquakes (blue stars) and the locations of the - 1,200 stations (inverted red tri-
angles) that yielded the data used in the construction of the common image-point gathers.
The 50 o x 500 CMB bin is indicated by the densely sampled rectangle: small black dots
mark specular CMB reflection points of the - 18,000 ScS data. The inset in the left is the
blowup of the black block in the right. The red arrow is profile B-B' in Figure 5-1. The
image gathers of the three yellow dots from left to right are shown in Figure 4-9A, C, and
B.

using all radial resolution bands corresponding to different scattering angles (epicentral

distances). (Figure 4-9. Unlike imaging with ScS data, where SdS changes its polarity

upon crossing the intramission angle, SIdS' keeps a fixed polarity for the epicentral distance

range from 100-180 0. Therefore, it's reasonable to make the estimate over all the angles to

obtain the image gathers. The resulting three image gathers are shown in Figure 4-9A-C.

The right two traces in Figure 4-9A-C are the image gathers for the same image points

with SKKS (left) and ScS (right) data. The CMB is resolved using both ScS and SKKS

data. Strong refectors are observed for all the three image points with SKKS study which

is close to the L1 structure, the top of ppv lens, in Figure 5-4. We can also identify the

L2 structure which presumably is the base of ppv lens (Van der Hilst et al. [2007]) in
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Figure 5-4A. In Figure 5-4B, L2 structure is within the side lobe of CMB reflection due to

the long frequency band chosen in this study. However, further investigation is required to

understand why the locations for all the reflectors are not quite the same for SKKS and ScS

studies.
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Figure 4-9: Illustration of angle gathers and angle stacks with real data for three image
points marked in the blowup in Figure 4-8. L1 and L2 follow the meaning in Van der Hilst
et al. [2007]. The right two traces are the angle stacks of SKKS data and ScS data (from
Figure 3.B in Van der Hilst et al. [2007] ).

4.5 Discussion and concluding remarks

The generalized Radon transform generates out of data a collection of angle common-

image-point gathers. The generalized Radon transform maps data as a function of 5 vari-
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4.5. DISCUSSION AND CONCLUDING REMARKS

ables globally to a set of images (of best resolved parameter combinations) parametrized by

scattering angle and azimuth, which again yields a function of 5 variables. We stack over

scattering azimuth. The mapping may generate artifacts in the presence of caustics that are

well understood and can be suppressed. The gathers associated with a common image point

admit a refined process of denoising and detecting singularities associated with scatters, the

unfolding of caustics, and an analysis of (ir)regularity of variation in material properties at

multiple scales. Potentially, by combining a sufficient number of bins, the local curvature

of the CMB can be estimated.

The GRT is a comprehensive theory/framework. Kirchhoff migration can be viewed

as a special case, typically, assuming the absence of caustics; in Kirchhoff migration one

often uses surface offset as the redundant variable, which leads to fundamental artifacts in

image gathers in the presence of caustics. (Revenaugh [1995]) is an example of classical

Kirchhoff migration using all the data but loosing their sign information. Kichhoff time

migration is a special case of Kirchhoff migration - it assumes straight rays in an effective

medium that changes with the depth of image point (Simon et al. [1996]). Double beam-

forming (Scherbaum et al. [1997]) provides the input to so-called map migration (Hedlin

et al. [1991]) revealing, geometrically, the propagation of singularities by the imaging op-

erators. Applying the GRT to a single data point generates an image distribution with as its

singular support an isochrone. If one has only a few isolated data points, one overlays the

corresponding isochrones (Lay and Young [1996]).

In principle, ScS and SKKS can be combined (through compensation of the outer core)

to form a GRT integration over migration dip directions covering entire (unit) sphere. How-

ever, one should do the integration with some caution: The integration will be sensitive to

anisotropy. Conversely, we could use the integration to detect the presence of anisotropy.
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The major interfaces observed with ScS and SKKS are consistent with each other (Fig-

ure 4-9). The difference in locations of the interfaces may indicate that the lower mantle

is anisotropic. We expect that a joint inversion of ScS and SKKS wavefields and their pre-

cursors and coda will generate more accurate images and provide further insight on the

anisotropy in the lower mantle. Figure 4-2 indicates that the best region for such a study is

Eurasia, from Urals to Japan, and perhaps into SW Pacific to New Zealand.



Chapter 5

Implications of a post-perovskite lenst

Abstract

With the imaging technology discussed in Chapters II and III we can explore the deep
mantle on an unprecedented spatial scale. As a first example we used about 80,000 broad-
band core-related ScS waves were used to image the structure at and near the core mantle
boundary beneath North and Central America through a generalized Radon transform ap-
proach. Mixed-effect statistical models were applied to produce the images and estimate
uncertainties. We present three profiles beneath Central and North America. Multiple,
piecewise continuous interfaces in the D" layer are observed. The observed depth varia-
tions of a widespread interface - 150-300 km above the CMB correlate with tomographic
S-wavespeed perturbations. This interface, which we interpret as the top of the D" layer,
is consistent with the so-called post-perovskite transition. A deeper interface, associated
with a wavespeed drop, may represent the back-transition to perovskite and, thus, the base
of a lowermost mantle lens rich in post-perovskite. The complexity within this lens may be
due to multiple phase transitions. With the assumption that these interfaces are associated
with the perovskite to post-perovskite and post-perovskite to perovskite transformations,
respectively, and that the Clapeyron slope of these transitions is - 10 MPaK- 1, we estimate
that the temperature near the top of the D" layer beneath Central America is - 700 K colder
than ambient mantle. We inferred that the temperature change across the thermal boundary
layer is 1500 ± 100 K and that the temperature of the mantle at the CMB is 3,950 ± 200 K.
The inferred local heat flux is 80-160 mWm - 2. The estimated average heat flux of 50-100

tBased on Van der Hilst et al, Science, 315, 1813-1817, 2007.
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mWm- 2 implies a global core flux of 7.5-15 terawatts.

5.1 Introduction

The interface between the lowermost mantle and the outer core, the core-mantle boundary

(CMB), represents the most dramatic contrast in (mass) density and visco-elastic properties

within the Earth's interior. It marks the change from solid silicates to liquid metals. The D"

was initially introduced by Bullen [1949] as a division of the lower mantle (Layer D) and

was later treated as the top of the discontinuous velocity increase about 200-300 km above

the CMB. Interpretation of the D" in terms of geodynamics and mineral physics remains a

huge challenge due to its unreachability and complexity (Wysession et al. [1998]; Garnero

[2000]). But the recent discovery of the phase transition from perovskite (pv) to post-

perovskite (ppv) in (Mg,Fe)SiO 3 explains many previously unexplained seismic features

of the D" layer, such as the presence of a seismic discontinuity, its Clapeyron slope, the

contrast in elastic properties across it, and the anisotropy and bulk-shear velocity anti-

correlation just above the CMB (e.g., Oganov and Ono [2004]; Murakami et al. [2004];

Shim et al. [2004]; litaka et al. [2004]; Merkel et al. [2006]; Wentzcovitch et al. [2006]).

If one can identify the seismologically inferred interfaces associated with the ppv tran-

sition, using the pressure-temperature dependence of this transition, one can, in principle,

estimate the temperature variations along the interfaces. Estimating the temperature gradi-

ent - and, thus the core heat flux - is possible if we can identify seismic interfaces due to

double-crossing of the phase boundary (Hernlund et al. [2005]; Lay et al. [2006]).

Seismic (transmission and normal mode) tomography has been successful in revealing

long-period (smooth) changes in wavespeed (e.g., Dziewonski [1984]; Van der Hilst et al.
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[1997]; Romanowicz [2003]). Structures at length scales far smaller than can be resolved

by tomography cause wavefield scattering, including reflections and phase conversions.

The scattered wavefield has been used in many studies, for instance, to estimate stochas-

tic properties of deep mantle heterogeneity (e.g., Hedlin et al. [1997]; Margerin and Nolet

[2003]), to determine variations in depth to and reflectivity of known mantle discontinuities

(e.g., Paulssen [1988]; Van der Lee et al. [1996]; Shearer and Flanagan [1999]; Shearer

et al. [1999]; Gu and Dziewonski [2002]; Deuss and Woodhouse [2002]; Chambers et al.

[2005]), to explore the lowermost mantle (Garnero [2000]; Castle and Van der Hilst [2000],

and many others), and to search for previously unknown interfaces (e.g., Lay and Helm-

berger [1983b]; Revenaugh and Jordan [1991]; Kawakatsu and Niu [1994]; Vinnik et al.

[2001]; Castle and van der Hilst [2003]). But the most detailed constraints on D" structure

to date have come from forward modeling of shear waves reflected at or near the CMB (Lay

and Garnero [2004]; Helmberger and Ni [2005]).

Waveform modeling has its drawbacks, however. It is, as yet, only practical for rela-

tively simple 1- or 2-D structural geometries, the uniqueness of which is not easily estab-

lished. Furthermore, it mainly uses signal associated with near and post critical incidence

because the reflection coefficient is then sufficiently large to produce signal that can be

seen (in raw data or after stacking) and modeled. However, the necessary restriction to

narrow epicentral distance ranges discards most of the available seismic data and strongly

limits the geographical regions beneath which the D" can be studied. Kirchhoff migration

stacks have revealed a local step in the D" discontinuity (Hutko et al. [2006]), but strict

selection and visual inspection of data from near-critical reflections hinders the type of D"

exploration that is needed to know whether such steps are unique phenomena, ubiquitous

features, or - perhaps - partial recoveries of multiple interfaces.
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5.2 Methodology and data

In this study, we first use the GRT approach (Chapter II, Wang et al. [2006]) and statistical

methods (Chapter III, Ma et al. [2006]) to obtain images of two-dimensional (2-D) sec-

tions. Subsequently, we combine the information thus obtained with results from mineral

physics to estimate temperatures at and above the CMB.

Three steps - illustrated in Figure 3-2 - are involved in obtaining our images. First,

after careful data selection, the time windows containing the (transverse-component) ScS

wavefields are used to construct radial image gathers of the same image point for different

opening (or scatter) angles. Second, we use statistical models to estimate a single radial

profile for this particular one image point from these 'common image point gathers' (see

Figure 2-3). Third, lateral juxtaposition of these 1-D profiles for different image points in

one particular cross-section generates a 2-D images for this section.

Estimating the temperature requires the following information. First, we need to iden-

tify a particular phase transition with a seismological interface; Second, we need to esti-

mate the in situ pressure at that interface from its depth; Third, we need to know the ther-

modynamic (P-T) conditions, that is, the Clapeyron slope, of the stability of the mineral

constituents at the interface. The pressure estimates then yield temperature. Furthermore,

temperature estimates at different depths constrain the thermal gradient and, thus, under

assumption of thermal conductivity, the radial heat flow across the D" layer. For this pur-

pose we assume a (steady state) thermal diffusion across a thermal boundary layer into a

half space represented by the lower mantle. We take the first diffusion length as the thermal

boundary layer (TBL) and the average temperature gradient across this layer as the thermal
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gradient of the D" layer. The temperature at depth z (Zcmb = 0) is

T(z) = Tcmb - ATHSerf(z/H), (5.1)

where Tcmb is the temperature at the CMB and the error function (erf) describes heat diffu-

sion into a half space and ATHS the total temperature contrast across the half space. From

ATHS we estimate the contrast across the TBL as

ATTBL = erf (1)ATHS = 0.84ATHS. (5.2)

For different Clapeyron slopes we calculate the temperature at positions B3 and B4 (i.e.,

T(B3) and T(B4)). For a given diffusion length H, we can then find a unique solution of

Tcmb and ATTBL (Figure 5-5).

Compared to the studies in Chapter II and III (Wang et al. [2006]; Ma et al. [2006]),

here we included data from more recent earthquakes and from another bin (of 300 x 30';

see Figure 5-1). About 80,000 transverse-component ScS seismograms, from - 1,500

earthquakes (mb > 5.2, origin time 1988-2006) recorded at one or more of a total number

of - 1,200 seismic stations, were used in this study (Figure 5-1B). For all events con-

sidered here, origin times and source locations (hypocenters) were obtained from Engdahl

et al. [1998], hereinafter referred to as EHB. For all events in our data set, three-component

broadband waveforms were retrieved from the Data Management Center of the Incorpo-

rated Research Institutions for Seismology (IRIS). For details of the data processing we

refer to Chapter II (Wang et al. [2006]). The most important aspects are: band-pass fil-

tering (accepting periods between 1-20 s), suppression of the effects of different record-

ing systems through removal of the instrument response, estimation (and removal - by
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deconvolution- from the data) of the source signature using a polarity check and a princi-

pal component analysis, amplitude normalization to the ScS reflection avoid predominance

of a few large earthquakes, and correction for Earth's ellipticity.

5.3 D" structure and temperature

Three image profiles, interpolated in 3-D space, are presented in Figure 5-2. A clear CMB

is revealed, but since the existence of this boundary is not disputed, we will focus the

discussion on the complex pattern of scatters and interfaces up to 400 km above it. We

illustrate the GRT image after statistical analysis in the top panels in Figure 5-4. For com-

parison with the smooth wavespeed variations, in the bottom panels we display the tomo-

graphically inferred variations in S-wavespeed and superimpose the scatters at more than

75% confidence level. In the rest of this chapter, we focus on three structures labeled L1,

L2, and L3.

5.3.1 Post-perovskite transition

Structure Li is the most obvious structure in Figure 5-4 (except for the CMB itself). It

shows up in all the three profiles. This piecewise continuous structure is unambiguous be-

cause it is laterally continuous and because it has an amplitude that is a significant fraction

of the CMB peak. Many localized studies of the D" discontinuity beneath Central America

have been performed and the results were listed in Table 1 in Thomas et al. [2004]. Studies

1 (Lay and Helmberger [1983b]), 2 (Kendall and Nangini [1996]), 5 (Kendall and Nangini

[1996]), and 6 (Kendall and Shearer [1994]) revealed a D" elevation from 250-290 km,

which are remarkably consistent with our result in profile A-A'. Studies 7 (Ding and Helm-
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Figure 5-1: A: The upper part is the tomographic P-wavespeed variations (Kdrason and
van der Hilst [2001]). Deep subduction is observed beneath Central America. The lower
400 km is obtained with our GRT method. Superimposed on the tomography/scattering
image are schematic ray paths of ScS waves reflecting at and above the CMB: a depicts
specular CMB reflections, which contribute to the main ScS arrival in the seismogram
shown, b depicts scattering above the CMB, which produces precursors, and c depicts
non-specular reflection (at CMB or above it), which arrive mainly in the coda of ScS .
B: Geographic map of the study region with bounce-points of the 80,000 ScS data used
in our inverse scattering study (black dots), along with the lines of cross section for the
2-D images shown in Figures 5-2 and 5-4. At each yellow dot, the generalized Radon
transform produces radial profiles of contrasts in elastic properties (inset lower left). Only
structure outside the 75% confidence level (thin lines) is discussed here. The green line
depicts the profile in Hutko et al. [2006]. The two large yellow dots are where the steep
D" topography are observed by this study and Hutko et al. [2006]. The thick blue line
delineates the possible boundary between the cold mantle (right) and the hot mantle (left).
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berger [ 1997]), 8 (Kendall and Shearer [1994]), and 10 (Reasoner and Revenaugh [1999])

reveals a D" elevation from 180-200 km, much smaller than other studies. These observa-

tions are consistent with the steep D" topography change observed in profile B-B'. While

most of the previous studies emphasized only on selected (discrete) points or small CMB

patches beneath Caribbean, the GRT described here constrains L1 over thousands of kilo-

meters (and millions of kilometer squared). We only present three profiles here, but other

sections can be generated in order to illustrate the 3-D structure of the D" discontinuity.

The bottom panels of Figure 5-4 reveal a strong correlation between the depth variation

of L1 with the change in S-wavespeed. The origin of the wavespeed variations is not well

known, and it is likely that chemical heterogeneity plays a role (Van der Hilst and Kdrason

[1999]). If the S-wavespeed change is mainly contributed from a thermal origin, however,

our LI structure indicates a positive Clapeyron slope in almost everywhere beneath Central

America. Sidorin et al. [1999] assumed that the tomographic S-wavespeed variations have a

thermal origin only. Starting from a reference point where the position of D" discontinuity

was best constrained, assuming a Clapeyron slope 6 MPaK- 1, they integrate over the whole

Earth and obtained the map of the D" elevation. In a recent analysis, using similar approach

Sun et al. [2006]) chooses a different reference point and results in a D" elevation deeper

by c 95 km. But our L1 structures is remarkably close to the original prediction (solid blue

lines in Figure 5-4, lower panels). Our L1 structure has a larger topography than predicted

from y= 6 MPaK- 1. This suggests that the actual Clapeyron slope, y, must be larger than 6

MPaK - 1 , which would be consistent with the estimates from mineral physics (Oganov and

Ono [2004]; Tsuchiya et al. [2004]; litaka et al. [2004]; Hirose et al. [2006]; Hernlund and

Labrosse [2007]), that the amplitude of the real S-wavespeed variations was tomographi-

cally underestimated, or that compositional effects on shear wavespeed are more important
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than assumed by Sidorin et al. [1999]. But - at least qualitatively - L1 is consistent with

predictions from the post-perovskite (ppv) transition. If this interpretation is correct, we

can estimate the (lateral variations in) temperature from lateral changes in interface depth.

For ypp, = 10 MPaK - 1, the temperature difference between Al and A2 is - 600 K, and

the difference between B 1 and B2 is ~ 700 K. In turn, for Grand's S-model (Grand [2002])

these values imply an empirical dlnVs/dT = 1.5 x 10-5K - 1. (NB this conversion factor

implicitly accounts for effects of compositional heterogeneity and can be used to estimate

3-D thermal anomalies from the shear wavespeed tomography.)

The position where a steep topography is observed in our study along section B-B'

is close to where a step-like jump is reported by Hutko et al. [2006]. Interestingly, even

though our profile B-B' is perpendicular to theirs a topography jump is observed in both.

This suggests that these 2-D sections sample a NW-SE trending structure This also demon-

strates that a 3-D scan of the area is important for a better understanding of the D" topog-

raphy. Seismic tomography (Figure 5-1) reveals that some cold debris sinks all the way

down to the CMB beneath Central and south America (Grand [2002]). Hutko et al. [2006]

suggest that the step-like jump is due to the folding of the subducted slab. Tan et al. [2002]

and Ribe et al. [2007] showed that slab buckling is, indeed, likely to occur in this region.

5.3.2 Post-perovskite lens

The GRT results suggest the presence of complex structures in between interface Li and

the CMB. Of particular interest are the ones labeled L2. The red color is used to mark a S-

wavespeed decrease (see L2 in Figure 5-1). Thomas et al. [2004] also reported a wavespeed

decrease above CMB, but the location was different from our results pertaining to L2 (it

was deeper, that is, closer to the CMB, and more parallel to the D" interface).
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0 310 (km)

Figure 5-2: Three-dimensional exploration seismology of the lowermost mantle. Seismic
images of the lowermost mantle (CMB to 400 km above it) are produced by lateral juxta-
position of radial general Radon transform profiles (Figure 3-2) calculated at image points
along the section lines shown in Figure 5-1. Structure outside 75% confidence bands (Ma
et al. [2006]) includes the CMB (at 0 km) and several scatter interfaces above it. Thinly
dashed lines indicate scatter interfaces (L1, L2) highlighted in Figure 5-4. This 3-D rendi-
tion illustrates the large spatial scales over which inverse scattering with the ScS wavefield
can be used to explore the lowermost mantle. The intersection points of sections are labeled
Xl and X2. The background color is the D" elevation above the CMB predicted by Sidorin
et al. [1999].The correlation between L1 and the predicted values is very good.
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Figure 5-3: After Thomas et al. [2004]: Shaded regions and numbers correspond to the
specific studies listed in Table 1 in Thomas et al. [2004].

A wavespeed drop that is too close to the CMB cannot be resolved due to the presence of

side lobes of the CMB reflection. Two dipping interfaces on both sides of profile B-B' are

observed. They gradually dip towards and approach the CMB where the shear wavespeed

is high and the temperature is - assumed to be - low. Even though it can't be observed

directly with our method, we argue that L2 is, effectively, at the CMB between 1000-

2000 km along B-B'. Since the Clapeyron slope for ppv transition is positive, the lower

the mantle temperature the deeper the back transition (ppv - pv), if exists. However,

the previous estimated CMB temperature, Tcmb, varies form 3,750 K to 4,800 K (Stacey

[1992]; Alfe et al. [2002]; Knittle and Jeanloz [1991]), which is higher than Tppv,cmb . This

indicates that ppv is instable at the CMB and a back transition must occur somewhere above

the CMB, and close to it in regions with very low lowermost mantle temperatures. The

----------.
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second crossing is hard to detect with ScS data (Flores and Lay [2005]), not only because

it could be masked by the CMB side lobes but because the amplitude of seismic signal (in

particular, SdS with large epicentral distances) is often weaker (NB: this is not true for the

underside reflection SidS', see Chapter IV). But recent studies provide evidence for it near

the CMB beneath the Pacific (Lay et al. [2006]) and the Cocos plate (Sun et al. [2006]). The

topography of the L2 is anti-correlated with that of L1, which supports the interpretation

in terms of the back transformation and provides tantalizing evidence for the existence of

a lowermost mantle lens that is rich in post-perovskite. From the images we estimate that

this lens has a length of > 2300 km and a thickness of - 250 km.

5.3.3 Mantle temperature near CMB

In Section 5.3.1 we showed how we can use interface L1 to estimate the temperature vari-

ations laterally at 150-300 km above the CMB. Unlike previous studies in which double

crossing points were used to infer the thermal structure above the CMB (Hernlund et al.

[2005]; Lay et al. [2006]), our images provide double crossing points over laterally contigu-

ous parts of the D". In section 5.2 we explained how one could use such double crossings

to estimate radial temperature variations. However, in equation 5.1 we have three unknown

variables Tcmb, ATHS, and H, while we have only two data points for every double crossing

pair. Therefore, we need to explore a range of parameter combinations to obtain insight

into the trade-offs between them. For one double crossing pair we first find a solution

of Tcmb and ATHS for a given TBL thickness, H, and a fixed Clapeyron slope, yppv = 10

MPaK - 1. Subsequently, we varied H and obtained a series of Tcmb and ATHS. The results

are shown in Figure 5-5 for double crossing pair (B3, B4). For other pairs of double cross-

ing points, we obtained similar results. Not surprisingly, H increases with the increasing
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Figure 5-4: Reflectivity from inverse scattering, at more than 75% confidence (Ma et al.
[2006]) (top) and S-speed (dlnVS) from tomography (Grand [2002]) (bottom). Scatter im-
ages are obtained by interpolation between GRT profiles (Figure 5-1B, inset) calculated
every 1 ( 60 km at CMB) along sections A-A', B-B', and C-C' in Figure 5-1. For the
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for tomography is given between B-B' and C-C'. In the top panels, L1, L2, L3 label the
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scatterers (visually enhanced) are superimposed on the tomography profiles, with dark grey
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uous, L3 has an intermittent, "en echelon" appearance. The solid (dashed) blue lines in
the bottom panels depict the phase transition location predicted by (Sidorin et al. [1999])
((Sun et al. [2006])). Points Al-2 and B1-4 on L1 and L2 are used for temperature calcu-
lations (Figure 5-5). The grey scale below B-B' depicts the lateral variation in temperature
gradient along the CMB (for yppv = 10 MPa/K). In the central portion of the section dT/dz
cannot be determined directly because the occurrence of the double crossing cannot be
resolved.
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of temperature, that is, from colder to warmer D" regions. Tcmb and ATHS are relatively

stable for H = 100 to 200 km. Thus with an assumption of y'pp = 10 MPaK- 1, we infer

Tcmb = 3950 + 200 K and ATTsB = 1500 ± 100 K (Figure 5-5C). These estimates depend

on the actual pressure-temperature of ppv transition. The uncertainties for such kind mea-

surements can reach 200-400 K or 5-100 GPa. But the following estimate depends only on

the Clapeyron slope. For a Clapeyron slope ypp, = 10 MPaK- 1:

Tcmb T Zppv,cmb + 290K. (5.3)

For a Clapeyron slope yppv = 10 MPaK - 1, Tppv,cmb ' 3700 K. Within error, our estimate

of Tcmb is consistent with the estimate of 4100 K in Lay et al. [2006].

Since the out-core is liquid, the temperature just below the CMB must be larger than

the melting temperature of core materials there. It is interesting to find that experimental

and theoretical research has yielded estimates of the melting temperatures of pure Fe in

a wide range of values, from 3200 ± 200 K (Boehler [1993]) to 4800 ± 200 K (Williams

et al. [1987]). The addition of minor elements could reduce the melt temperature by up to

1000 K, so that the melt temperature of the alloy could be as low as 2200 K, but Boehler

et al. [1995] proves that the effect of oxygen and sulfur, the major trace elements in the

outer-core, is fairly small. If our estimate of the temperature of the CMB is correct, the

melting temperature in Williams et al. [1987] may be too high.
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CMB (dashed lines) and the temperature change, TTBL, across the thermal boundary layer
(solid lines) as a function of TBL thickness, H, and for ypp,=8, 10, and 12 MPa/K. Stable
estimates are obtained for H= 100-200 km (grey shading).
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5.3.4 Core heat flux

In the previous subsection, we estimated the temperature drop, ATTBL, across the TBL for

given H. Then the average temperature gradient across the TBL can be estimate as

dT ATTBL
- = - (5.4)
dz H

For H = 100 - 200 km, we estimate -T=7-16 Kkm- 1. Lay et al. [2006] gave values of

8.5 ± 2.5 Kkm - 1. After obtaining the thermal gradient, we can estimate the heat flux

dT ATTBL

q Cdz - H ' (5.5)

where K is the thermal conductivity.

The estimates of the regional and global heat flux are highly uncertain for the following

reasons: First, the estimate of I-, even if it's accurate, is a point estimation. We took the

higher bound (16 Kkm - 1) as the representative of cold D" area and the lower bound (7

Kkm- 1) as the globe average. However, the actual gradient would be larger than these val-

ues if the wavespeed perturbations are (partially) due to chemical variations (Van der Hilst

and Kdrason [1999]). Second, the value of thermal conductivity, K, isn't well constrained.

A K = 10 Wm-1 K- 1 (Stacey [1992]) has been used by many people. However, one cannot

rule out the possibility that K is as small as 5 Wm- 1K- ' (Hofmeister [1999]; Van den Berg

et al. [2005]). Nevertheless, we infer the global heat loss of 7.5 to 15 terawatts, which is

higher than conducted along the core adiabat.
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5.3.5 Other D" interfaces?

While structure Li and L2 are semi-continuous, the structure labeled L3 is a lot more

scattered. With the current study, it's difficult to argue if it's a partial detection of inter-

faces or due to point scatters. The possible buckling of the slabs, along with preserved

compositional heterogeneities, can perhaps provide some of the complexity detected here.

Alternatively, local changes in temperature or chemical composition (e.g., in iron content

(Williams et al. [1987]) or partitioning between pv and magnesiowiistite (Kobayashi et al.

[2005]) can readily create multiple crossings fo the phase boundary. Alternating, irregular

ppv and pv lenses (or layers) may be more realistic than a single ppv lens (Shim [2005])

and can explain some the multiple, but intermittent, scatter interfaces. This calls for further

investigation by means of joint imaging and geodynamical and petrological modeling.

5.4 Summary

The observed D" interfaces allow us to estimate the lateral temperature variations in the

lowermost mantle beneath Central and North America. At a site of deep subduction, Cen-

tral America, the lowermost mantle is - 700 K colder than the surrounding mantle. Double

crossing points from the seismically computed post-perovskite lens give determinations of

the temperature of the CMB and the thermal gradient across the thermal boundary layer

(TBL). We infer the temperature of the CMB Tcmb = 3950 ± 200 K, which is consistent

with the Iron melting temperature given in Boehler [1993]. We allow the thermal conduc-

tivity to change from 5-10 Wm-'K - 1 and estimate the global average heat flux of 50-100

mWm- 2 and a total heat loss of 7-15 TW. The latter is lower than the value obtained by Lay

et al. [2006] but higher than conducted along the core adiabat. This estimate is consistent
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with the suggestion by Nimmo et al. [2004], made to satisfy the current inner-core size and

the high heat flow, that the core contains 400 ppm potassium.

5.5 Future work

The three image profiles, interpolated in 3-D space, show the potential of using our meth-

ods for the systematic, 3-D, high resolution investigation of the lowermost mantle over

larger regions. The global ScS and SKKS (see Figure 4-2) midpoint distribution indicates

that similar high resolution D" imaging should be possible in many places, for example,

beneath a large area of Eurasia. Admittedly, the first images resulting from our methods are

ambiguous in some places. We expect that the methods will be improved in many ways,

such as further refinement of inverse scattering, better data pre-processing techniques, and

the addition of data. We can also use waveform modeling for targets of particular interest to

give new understanding of the D" layer. We expect that a joint inversion of ScS and SKKS

wavefields and their precursors and coda will generate more accurate images and provides

further insight on the anisotropy in the lower mantle.
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Concluding remarks

6.1 Summary

The generalized Radon transform was initially introduced in exploration seismology as a

method for detecting hydrocarbon reservoirs. In this thesis, we developed a mixed fluid-

solid generalized Radon transform approach to inverse scattering adapted for coda waves

in global seismology. A theory for the statistical inference of singularities (discontinuities)

was also developed to produce images of interfaces and estimate their uncertainty.

With the outlined methods, we scan the lowermost mantle beneath Central and North

America from both topside (ScS) and underside (SKKS). About 80,000 transverse-component

wavefields were used for ScS study and - 18, 000 radial-component wavefields were used

for SKKS study. The major findings of this thesis are: (1) A clear CMB was revealed. The

existence of this boundary is not disputed, but this is the first image of the CMB with a

length scale of > 3,500 km; (2) The D" discontinuity interface was constrained over thou-

sands of kilometers beneath Central and North America. The depth of this interface varies

from - 150 - 300 km. Combined with the results obtained from mineral physics, we es-
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timated the lateral temperature variation along the D" discontinuity and found that the D"

beneath Central American, a site of deep subduction, is - 700 K colder than the ambient

mantle; (3) Steep topography of the top of D" layer was observed. This observation along

with the result by Hutko et al. [2006] suggests an existence of a NW-SE trending structure;

(4) A lowermost mantle lens that is rich in post-perovskite was observed. With the dou-

ble crossing points from this lens, assuming a Clapeyron slope of 10 MPa- 1, I inferred the

temperature of the CMB as 3950 ± 200 K, the thermal gradient across the thermal boundary

layer from 7 - 16 Kkm- 1. Using the inferred thermal gradient, assuming a thermal con-

ductivity iK = 5 Wm-'K - 1, I estimated that global heat loss is from 7.5 to 15 terawatts; (5)

A rich pattern of scatterers and interfaces was observed between the top of the ppv lens and

the CMB. This may indicate multiple phase transitions within the D" layer; (6) The major

interfaces observed with ScS and SKKS are consistent with each other. The difference in

locations of the interfaces may indicate that the lower mantle is radially anisotropic.

The D" discontinuity interfaces observed agree with various previous studies (Lay and

Helmberger [1983b]; Kendall and Shearer [1994]; Kendall and Nangini [1996]; Ding and

Helmberger [ 1997]; Reasoner and Revenaugh [ 1999]; Sidorin et al. [ 1999]; Hernlund et al.

[2005]). The estimated temperature of the CMB is consistent with iron melting temperature

obtained by Boehler [1993]. The inferred global heat loss of 7.5 to 15 terawatts is lower

than the value obtained by Lay et al. [2006] but higher than conducted along the core

adiabat. This estimate is consistent with the suggestion by Nimmo et al. [2004], made to

satisfy the current inner-core size and the high heat flow, that the core contains 400 ppm

potassium.
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Figure 6-1: Schematic ray geometry of a variety of phases that can be used in mantle
discontinuity studies (here shown for P-waves).

6.2 Future Work

The three image profiles, interpolated in 3-D space, show the potential of using our meth-

ods for the systematic, 3-D, high resolution investigation of the lowermost mantle over

larger regions. The global ScS and SKKS (see Figure 4-2) midpoint distribution indicates

that similar high resolution D" imaging should be possible in many places, for example,

beneath a large area of Eurasia. Admittedly, the first images resulting from our methods are

ambiguous in some places. We expect that the methods will be improved in many ways,

such as further refinement of inverse scattering, better data pre-processing techniques, and

the addition of data. We can also use waveform modeling for targets of particular interest

to give new understanding of the D" layer. We expect that a joint inversion of ScS and

SKKS wavefields and their precursors and coda will generate more accurate images and
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provide further insight on the anisotropy in the lower mantle. Figure 4-2 indicates that the

best region for such a study is Eurasia, from Urals to Japan, and perhaps into SW Pacific to

New Zealand.

As presented in Figure 3-2, the GRT always produces a series of radial profiles for the

same target image point. This redundancy provides not only the possibility to statistical

analysis but feasibility to characterize the interfaces (e.g., the type of jump across inter-

faces). Such regularity estimation is a topic of research ongoing.

Figure 6-1 shows different types of seismic arrivals which can be used for a GRT study.

With one or more of the phases presented here, and with only slight modifications of the

GRT method, we can, in principle, study all the possible discontinuities in the mantle. We

can also apply a similar approach to imaging the inner-core boundary (ICB).
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2-1 Schematic illustration of the path geometry (top) and the isochron concept

(bottom) considered in the generalized Radon transform (GRT) of ScS data.

Top: The source (xl) and receiver (xr) are separated by epicentral distance

A. The image point at the CMB is denoted y. Slowness vectors are given

by p, and 7r denote horizontal slownesses. The scattering angle is 0 and

scattering azimuth is V. The image is, essentially, created by integration

over pm. All other symbols are in the text. The two seismograms illus-

trate that information about a predescribed image point y is gleaned from

different parts of data recorded at the different stations; for non-specular

reflections part of the coda contributes to the stacks, whereas for specular

reflections the information is retrieved from the main arrival. Bottom: For

given (x,x, ,t), the set of points y constrained by T(xI,xr,y) = t is identi-

fied as an isochron; pm is normal to the isochron . . . . . . . . . . . . . . 32



2-2 Record section of synthetic data for models with one (left) and three (right)

contrasts above the CMB, calculated with WKBJ. The red solid lines are

the travel time curves of ScS phase and the red dotted lines are the travel

time curves of SdS phases. At wide angles this reflection becomes stronger

and crosses over with, and eventually arrives in the coda of direct ScS.

The inset in B shows, for narrow angle reflections, the weak precursory

energy (amplified). Narrow angle (0-ii); Wide angle (ii-ic), with ii and ic

the intramission and critical angle, respectively. For the parameters used

here, ii=44.6 ° and the critical angle for SdS is at 80.6°; the cross-over

between SdS and ScS occurs at 83.5 0. .................... 40

2-3 Illustration of the construction of GRT stacks (images) from image gathers

at different scatter angles. The traces on the left of panels (A) and (C) are

image gathers at 53 scattering angles produced from the synthetic data as in

Figure 2-2. The traces on the right are stacks over narrow and wide angles

(as defined in the text and in the caption to Figure 2-2). We integrate over

narrow and wide angles seperately because of the change in polarity upon

crossing the intramission angle ii; stacking over all angles would involve

signals with opposite polarities and cold thus mask interfaces. We use a

1-10s bandpass filter. The gathers and stacks in (A) are produced from an

artificial (regular) source-receiver distribution; the results in (C) were com-

puted using the data coverage depicted in Figure 2-6A. In (A) and (C) the

dilation shows up as 1/ cos (0/2) - the theoretical values are depicted by

the thin blue lines around the depth of the CMB. To aid visual inspection,

the amplitude in the (dashed) box in (A) and (C) is amplified by a factor of

20. In (B), the solid line depicts the reflection coefficient calculated from

the input model and the star is the reflection coefficient picked up by our

GRT method (see Appendix). The intramission angle ii = 44.6' and the

critical angle ic = 80.60. ........................... 41

148 LIST OF FIGURES



LIST OF FIGURES

2-4 Images obtained from narrow angle stacks produced from synthetic data,

illustrating the resolution of the GRT. (A) The recovery of the input model

with a contrast at 150 km above the CMB. (B) The recovery of the input

model with contrasts at 150 km, 200 km, and 250 km above the CMB. The

amplitudes above the dashed line are multiplied by a factor of 35 to make

them comparable to those of the CMB. . ................... 42

2-5 Illustration of the robustness of the GRT in the presence of random noise

in the data. Top left: same as Figure 2-2A. Red lines are theoretical travel

time curves for ScS (solid) and SdS (dashed). Top right: GRT image trace

(solid red line) constructed from the synthetic data shown on the left and the

wavespeed profile used to generate the synthetic waveforms (blue curve).

Bottom left: Data as in top panel after addition of (random) noise. The

arrival of ScS can still be discerned in the noisy data, but signal from the

top reflector has disappeared in the noise. Bottom right: GRT image trace

(solid red line) constructed from the noisy data shown on the left. The

image is practically identical to the noise-free image. . ............ 44
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2-6 (A) Geographic map of the region under study, depicting the epicenters of

the ~ 1,300 earthquakes (blue stars) and the locations of the ' 1,200 stations

(inverted red triangles) that yielded the data used in the construction of

the common image-point gathers. The 50o x 500 CMB bin is indicated

by the densely sampled rectangle: small black dots mark specular CMB

reflection points of the -65,000 ScS data displayed in the panel on the right.

The small yellow dots that delineate the NW-SE trending section line mark

the locations of the image gathers constituting the 2-D profile presented

in Figure 2-9; the large yellow dot represents the location of the IGs and

angle stacks shown in Figure 2-8. (B) Stack of the -65,000 ScS(SH) data

with reflection points in the CMB bin shown in (A). Processing details:

data source IRIS-DMC; bandpass filter: 1 - 10s; earthquakes: mb > 5.2,

origin time between 1988-2002. Inset, top left: generic ray geometry of

ScS. NB. of these data, - 35,000 were used for the construction of the 2-D

profile shown in Figure 2-8. (- 30, 000 data were rejected either because

the specular reflection point was too far from the image points or because

the number of seismograms for particular earthquake was inadequate for

PC A .) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2-7 Illustration of principal component analysis. (A) (Preprocessed) raw data

(see Section 2.4.1). (B) Deconvolution of the raw data using PCA estima-

tion of the derivative of the ScS time rise function (using a time window

of 100 s around ScS). (C) Raw data deconvolved with the ScS estimate

minus the field shown in (B). Traces as in (B) and (C) are used to image

the CMB and shallower structure, respectively, as shown in Figure 2-8A.

Similar such estimates based on teleseismic S as the direct wavefield were

used for Figures 2-8B and 2-9. ........................ 48
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2-8 Construction of image gathers and angle stacks with real data for an (arbi-

trary) image point marked by the yellow dot in Figure 2-6: (A) PCA with

ScS as the direct wavefield, (B) PCA with (teleseismic) S. Similar to Fig-

ure 2-3, in each panel we show to the right of the image gathers the stacks

over the scattering angles. (As before the theoretical prediction of the dila-

tion is given by the thin blue lines around the depth of the CMB.) Note that

for PCA with S we only considered wide angle data. . ............ 49

2-9 2-D image of the CMB and lowermost mantle beneath Central America.

Using a total of - 35,000 broad band records, this 2,500 km long profile is

produced by juxtaposition of and linear interpolation between angle stacks

of the image gathers for 41 image points, evenly spaced along the line of

section depicted in Figure 2-6A. As an example, the stack depicted in Fig-

ure 2-8B is plotted at the NW (that is, left) end of the profile (large yellow

dot in Figure 2-6A). The gray-scale part of the image depicts the CMB con-

trast whereas the part in color (amplified by a factor of five relative to the

CMB part) reveals structure (stratification?) in the lowermost mantle. The

dashed line marks the blue contrast (with side lobes in red) at -280-340

km above the CMB, which may represent the top of the so called D" re-

gion. The image is rich in structure at depths between the CMB and the top

of D" but we refrain from further interpretation until we have performed a

rigorous statistical analysis (Ma et al. [2006]). ............. . . . 50
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3-1 Left: The geometry of the GRT with ScS precursors and coda waves. For

illustration purposes, the ray geometry and associated imaging parameters

are shown for scattering at image point y. The objective of the work pre-

sented here - and in Wang et al. [2006] - is the high resolution imaging

of the structures in the lowermost mantle, also referred to as D" region,

that may arise from boundary layer processes (e.g., flow), lateral varia-

tions in composition, and pressure induced phase changes (as depicted in

the inset, after Garnero [2000]). Right: geographical map of study region.

Small black dots depict -80,000 (specular) CMB reflection points associ-

ated with the broad-band ScS wavefield used to construct the image profiles

presented in this paper. ............................ 63

3-2 Image volume generated in Paper I (Chapter II, Wang et al. [2006]). Right:

common image point gathers in (scatter, or opening) angle for a selected

geographic location at the CMB; for each scatter angle the best estimate of

the (azimuth-integrated) reflectivity as a function of depth is shown. To the

right of these gathers we show the GRT trace, which represents the optimal

estimate of the radial contrasts in reflectivity at that particular CMB loca-

tion. We note that the statistical inference described in this paper is used

to produce the best possible estimate of such an GRT trace for a specific

location; as such, it replaces direct (non-) stacking linear stacking over az-

imuth and scatter angle. Left: 2-D image profile that results from lateral

juxtaposition of 40 of such GRT images. Peaks in contrast as revealed by

the GRT produce blue 'events' in the seismic section to the left. We note

that except for interpolation between the GRT traces, no lateral smoothing

or other image processing (or statistical inference) is used to produce such

2-D image profiles. .............................. 65

3-3 Curve fitting with an arbitrary function showing a simple linear interpola-

tion (over-fitting), a least sauares fit, and a smoothing spline estimate . .
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3-4 An illustration of how the noise adds to an image trace in the random in-

tercept (left), depth-harmonic (right), and angle-dilation depth-harmonic

(center, indicated by dotted dilation curves) models. In the center we plot

actual image gathers for different opening (or scatter) angles 0. The ran-

dom intercept model estimates the best 'common component' in theses

traces (left panel surface, middle trace), which is allowed to move up-and-

down in order to find the best fit to the gathers. The depth-harmonic models

detect and correct for spurious oscillations in radial direction: at the right,

the middle trace depicts the best image estimate, and the adjacent traces

show this trace with a (randomly chosen) harmonic either added to or sub-

tracted from it. The third model, the angle-dilation depth-harmonic model,

is similar to the depth-harmonic model proper, but it also accounts for the

angle-dilation (depicted with dotted lines in the center panel) that results

from the geometry of the GRT image problem at hand (see Paper I). .... 71

3-5 Synthetic data and illustration of the robustness of the GRT in the presence

of random noise in the data. Left: synthetic (WKBJ) records of ScS and

SdS, that is the signal from a weak reflector at 150 km above the CMB.

The inset shows the weak precursory energy, for narrow angle reflections.

At wide angles this reflection becomes stronger and crosses over with, and

eventually arrives in the coda of direct ScS. Red lines are theoretical travel

time curves for ScS (solid) and SdS (dashed). Right: GRT image trace

(solid red line) constructed from the synthetic data shown on the left and the

wavespeed profile used to generate the synthetic waveforms (blue curve). . 76
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3-6 Effect of the acquisition imprint, that is, source-receiver distribution. The

left panel shows image gathers for a range of opening (scatter angles) and,

right next to them, the result of the GRT restricted to narrow (left) and wide

(right, with arrow) scattering angles. The narrow and wide angle data are

illustrated in Figure 3-5. The three panels on the right show estimates of

the reflectivity profiles using the random intercept (a), depth-harmonic (b),

and angle-dilation depth harmonic (c) statistical models. The bands around

the mean estimate (black line) correspond to 95% Bayesian confidence in-

tervals. For reference, the red line depicts the true signal. . .......... 77

3-7 Estimation in the presence of random noise in the image gathers. For this

purpose, we added random noise to the image gathers shown in Figure 3-6,

that is, for a realistic acquisition imprint. Both the narrow and wide angle

GRT stacks reveal significant jitter and neither suggests the presence of a

reflector at 150 km above CMB. In contrast, the top reflector is detected in

the statistical estimates, even though the images of it are slightly distorted

compared to the true model (red line). In the absence of a harmonic noise

component, all three models detect the contrast at the CMB. ......... 79

3-8 Same as Figure 3-7 but now for harmonic instead of random noise. While

performing better than the GRT without statistical estimation, the random-

intercept model begins to break down in the presence of a strong harmonic

component in the noise structure; indeed, trace (a) reveals much spurious

structure and the estimates of the contrasts at CMB and 150 km above

it deviate significantly from the actual model (red line). Both harmonic

models - traces (b) and (c) - retrieve the model well (that is, within 2 C

they are the same as the true model), but the angle-dilation depth harmonic

model (e) nerforms slightlv better than the standard denth harmonic (b). .
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3-9 Same as Figure 3-6 but for image estimation with an inaccurate wavespeed

model. As before, we use synthetic data generated from a model with a

simple step-wise increase in wavespeed at 150 km above the CMB (solid

gray line in inset, top left), but as back ground model for the GRT we

assumed a model with a slightly different D" structure (blue dashed line in

inset, top left). ................................ 81

3-10 A typical image gather associated with large scattering angles, and a GRT

stack versus an image estimation based on the depth-harmonic model. The

bands of two colors in the depth-harmonic estimate correspond to 95%

and 99% confidence error bars. The GRT stack suggests a scatterer -100

km above the CMB , but the statistical estimate only shows a weak, broad

structure (marked by X), which may suggest that it is not (statistically)

significant. .................................. 83

3-11 Top: 2-D image profile resulting from processing with angle-dilation) depth

harmonic model. A dual color scale is used to display structure above the

CMB (color) at an amplification by a factor of five compared to the struc-

ture around the CMB proper (grey tone). Superimposed are the statistical

estimates at six arbitrary positions. Below the image profiles, from left to

right we show the boxplots used in the validation (see Section 3.3.3) and

the statistical estimates for six locations along the 2D image profiles. Top

row: random-intercept model; Middle row: depth harmonic model; Bottom

row: angle-dilation depth harmonic model. . ................. 86

3-12 Comparison of original 2-D image profile (presented in Chapter II), at the

top, through application of the (angle-dilation) depth harmonic model, at

the bottom. There is no exaggeration in the vertical scale. . ......... 87

3-13 Panels (A) and (B) show, respectively, the structure in Figure 3-12B that is

significant at the 68% and 95% confidence levels. This display is obtained

by keeping only the features at each depth that are significantly different

from zero at the chosen confidence level and muting the rest .........
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4-1 The K-wave incidence angle at the CMB vs the epicentral distance for

SKKS phase. The inset is the K - K reflection and K - S conversion co-

efficients vs the incidence angle at the CMB. For an epicentral distance

A < 184', the K-wave incidence angle a > 36'. a = 36' is the critical

angle where the K-wave completely reflects, thus no energy of P-wave in

the mantle for an epicentral distance smaller than 184 . . ......... . 100

4-2 Global distribution of number of ScS (top) and SKKS (bottom) middle

points in a 100 x 10' bin. Data source is IRIS-DMC; earthquakes have

mb > 5.2, with origin time between 1988 and 2002. . ............. 101

4-3 Stack of the 100,000 global SKKS(SV) data. Processing details data source

is IRIS-DMC; band-pass filter is 10-50 s; earthquakes have mb > 5.2, with

origin time between 1990-2002. ....................... 102

4-4 Schematic illustration of the path geometry of SKKS (bottom) and SKSdSKS

(top) considered in the generalized Radon transform (GRT) of SKKS data.

Bottom: The source and receiver are separated by epicentral distance A.

The image point at the CMB is denoted y. The summation of the slowness

vectors of the two legs of SKKS are given by v. The scattering angle is 9

and scattering azimuth is y/. The image is, essentially, created by integra-

tionover v. ................................... 104

4-5 A. Record section of synthetic data for model with two contrasts (one in-

crease and one decrease) above the CMB, calculated with WKBJ. The red

solid lines are the travel time curves of SKKS phase and the red dotted lines

are the travel time curves of SKSdSKS phases. B: Record section of syn-

thetic data: after deconvolved by the PCA estimated SKKS phase. The top

black boxes in A and B is the blow-up of the bottom black boxes in A and

B respectively ............................... 116
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4-6 Illustration of the construction of GRT stacks (images) from image gathers

at different scatter angles. The traces on the left of panels (A) and (C) are

image gathers at scattering angles produced from the synthetic data as in

Figure 4-5. The traces on the right are stacks over scattering angles. The

gathers and stacks in (A) are produced from an artificial (regular) source-

receiver distribution; the results in (C) were computed using the data cov-

erage depicted in Figure 4-8. ......................... 117

4-7 The amplitude above the dashed line are multiplied by a factor of 5 to

make it comparable to that at the CMB. This figure shows the recovery of

the input model with a wavespeed decrease at 150 km above the CMB and

a wavespeed increase 250 km above the CMB. . ............... 118

4-8 Geographic map of the region under study, depicting the epicenters of the

-2,200 earthquakes (blue stars) and the locations of the -1,200 stations

(inverted red triangles) that yielded the data used in the construction of the

common image-point gathers. The 500 x 50' CMB bin is indicated by the

densely sampled rectangle: small black dots mark specular CMB reflection

points of the -18,000 ScS data. The inset in the left is the blowup of

the black block in the right. The red arrow is profile B-B' in Figure 5-1.

The image gathers of the three yellow dots from left to right are shown in

Figure 4-9A, C, and B. ... .... ..... ...... ........ .. 121

4-9 Illustration of angle gathers and angle stacks with real data for three image

points marked in the blowup in Figure 4-8. Li and L2 follow the meaning

in Van der Hilst et al. [2007]. The right two traces are the angle stacks of

SKKS data and ScS data (from Figure 3.B in Van der Hilst et al. [2007] ). . 122
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5-1 A: The upper part is the tomographic P-wavespeed variations (Kdrason

and van der Hilst [2001]). Deep subduction is observed beneath Central

America. The lower 400 km is obtained with our GRT method. Superim-

posed on the tomography/scattering image are schematic ray paths of ScS

waves reflecting at and above the CMB: a depicts specular CMB reflec-

tions, which contribute to the main ScS arrival in the seismogram shown,

b depicts scattering above the CMB, which produces precursors, and c de-

picts non-specular reflection (at CMB or above it), which arrive mainly in

the coda of ScS . B: Geographic map of the study region with bounce-

points of the 80,000 ScS data used in our inverse scattering study (black

dots), along with the lines of cross section for the 2-D images shown in

Figures 5-2 and 5-4. At each yellow dot, the generalized Radon transform

produces radial profiles of contrasts in elastic properties (inset lower left).

Only structure outside the 75% confidence level (thin lines) is discussed

here. The green line depicts the profile in Hutko et al. [2006]. The two

large yellow dots are where the steep D" topography are observed by this

study and Hutko et al. [2006]. The thick blue line delineates the possible

boundary between the cold mantle (right) and the hot mantle (left). ..... 131
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5-2 Three-dimensional exploration seismology of the lowermost mantle. Seis-

mic images of the lowermost mantle (CMB to 400 km above it) are pro-

duced by lateral juxtaposition of radial general Radon transform profiles

(Figure 3-2) calculated at image points along the section lines shown in

Figure 5-1. Structure outside 75% confidence bands (Ma et al. [2006]) in-

cludes the CMB (at 0 km) and several scatter interfaces above it. Thinly

dashed lines indicate scatter interfaces (L1, L2) highlighted in Figure 5-4.

This 3-D rendition illustrates the large spatial scales over which inverse

scattering with the ScS wavefield can be used to explore the lowermost

mantle. The intersection points of sections are labeled X1 and X2. The

background color is the D" elevation above the CMB predicted by Sidorin

et al. [1999].The correlation between Ll and the predicted values is very

good. ..................................... 134

5-3 After Thomas et al. [2004]: Shaded regions and numbers correspond to the

specific studies listed in Table 1 in Thomas et al. [2004]. ........... 135
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5-4 Reflectivity from inverse scattering, at more than 75% confidence (Ma et al.

[2006]) (top) and S-speed (dlnVS) from tomography (Grand [2002]) (bot-

tom). Scatter images are obtained by interpolation between GRT profiles

(Figure 5-1B, inset) calculated every 1 o ( 60 km at CMB) along sections

A-A', B-B', and C-C' in Figure 5-1. For the frequencies and incidence

angles used, the radial resolution is 10 km. The color scale for tomogra-

phy is given between B-B' and C-C'. In the top panels, Li, L2, L3 label

the scatter interfaces (thinly dashed) discussed in the text: in the bottom

panels, the associated scatterers (visually enhanced) are superimposed on

the tomography profiles, with dark grey depicting positive reflections and

pink/red negative contrasts. Interface L1 aligns increases of wavespeed

with increasing depth; L2 delineates a decrease; L3 is more ambiguous

but generally coincides with a wavespeed increase. Whereas L1 and L2

are piecewise continuous, L3 has an intermittent, "en echelon" appearance.

The solid (dashed) blue lines in the bottom panels depict the phase tran-

sition location predicted by (Sidorin et al. [1999]) ((Sun et al. [2006])).

Points A1-2 and B 1-4 on LI and L2 are used for temperature calculations

(Figure 5-5). The grey scale below B-B' depicts the lateral variation in

temperature gradient along the CMB (for ypp, = 10 MPa/K). In the cen-

tral portion of the section dT/dz cannot be determined directly because the

occurrence of the double crossing cannot be resolved. ......... . . 137
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5-5 (A) Temperature (abscissa) versus distance above CMB (ordinate). As a

point of reference for producing absolute temperature and depth (pressure),

we assume Pppv=124 GPa and Tppv=2,500K, and we consider Clapeyron

slopes ypp,= 6 , 8, 10, and 12 MPa/K. If L1 in Figure 5-4 represents the ppv

transition, the temperature at points B1,2 can be estimated: for y"pp,=10

MPa/K, Tppv,B2=2,000 K and Tppv,B 1=2,900 K. Dotted lines depict es-

timated geotherms through B and B2: the shallow part is adiabatic but

toward the CMB the conductive geotherm is described as an error function

(the change of adiabat to conductive is not known, however). (B) Cold, in-

termediate, and hot geotherms. If the mantle temperature decreases a ppv

transition occurs at increasing distances above CMB and a second crossing

would occur at decreasing height above CMB. The geotherm through the

ppv transition (B3) and the back-transformation (B4) is calculated using a

thickness of the hypothetical boundary layer, H, of 150 km. (C) Mantle

temperature, Tcmb, at the CMB (dashed lines) and the temperature change,

TTBL, across the thermal boundary layer (solid lines) as a function of TBL

thickness, H, and for ypp,=8, 10, and 12 MPa/K. Stable estimates are ob-

tained for H=100-200 km (grey shading). . .................. 139

6-1 Schematic ray geometry of a variety of phases that can be used in mantle

discontinuity studies (here shown for P-waves). ........... . . . . 145

161



162 LIST OF FIGURES



Bibliography

Aki, K., and P. G. Richards (1980), Quantitative seismology: Theory and methods, vol. 1,

Freeman, San Francisco.

Alfe, D., M. J. Gillan, and G. D. Price (2002), Composition and temperature of the Earth's

core constrained by combining ab initio calculations and seismic data, Earth Planet. Sci.

Lett., 195, 91-98.

Avants, M., T. Lay, and E. J. Garnero (2006a), A new probe of ULVZ S-wave ve-

locity structure: Array stacking of ScS waveforms, Geophys. Res. Lett., 33, L073145,

doi: 10. 1029/2005GL024,989.

Avants, M., T. Lay, S. A. Russell, and E. J. Garnero (2006b), Shear velocity varia-

tion within the D" region beneath the central Pacific, J. Geophys. Res., 111, B05305,

doi: 10. 1029/2004JB003,270.

Beylkin, G. (1985), Imaging of discontinuities in the inverse scattering problem by inver-

sion of a causal generalized Radon transform, J. of Math. Phys., 26, 99-108.

Beylkin, G., and R. Burridge (1990), Linearized inverse scattering problems in acoustics

and elasticity, Wave Motion, 12, 15-52.

Beylkin, K. (1984), The inversion problem and applications of the generalized Radon

transform, Comm. Pure Appl. Math., 37, 579-599.

Bleistein, N. (1987), On imaging of reflectors in the Earth, Geophysics, 52(6), 931-942.



Boehler, R. (1993), Temperatures in the Earth's core from melting-point measurements of

iron at high static pressures, Nature, 363, 534-536.

Boehler, R., A. Chopelas, and A. Zerr (1995), Temperature and chemistry of the core-

mantle boundary, Chem. Geol., 120, 199-205.

Bostock, M. G., S. Rondenay, and J. Shragge (2001), Multiparameter two-dimensional

inversion of scattered teleseismic body waves, J. Geophys. Res., 106, 30,771-30,782.

Brandsberg-Dahl, S., M. V. de Hoop, and B. Ursin (2003), Focusing in dip and ava com-

pensation on scattering-angle/azimuth common image gathers, Geophysics, 68, 232-254.

Buffett, B. A., E. J. Garnero, and R. Jeanloz (2000), Sediments at the top of the Earth's

core, Science, 290, 1338-1342.

Bullen, K. E. (1949), Compressibility-pressure hypothesis and the Earth's interior, Month.

Not. R. Astr. Soc., Geophys. Suppl., 5, 5355-5368.

Burridge, R., M. V. de Hoop, D. Miller, and C. Spencer (1998), Multiparameter inversion

in anisotropic media, Geophys. J. Int., 134, 757-777.

Castle, J. C., and R. D. Van der Hilst (2000), The core-mantle boundary under the gulf of

alaska: No ULVZ for shear waves, Earth Planet. Sci. Lett., 176, 311-321.

Castle, J. C., and R. D. van der Hilst (2003), Searching for seismic scattering off

deep mantle interfaces between 800 and 2000 km depth, J. Geophys. Res., 108,

doi: 10. 1029/2001 JB000,286.

Cervený, V. (2001), Seismic ray theory, Cambridge University Press, Cambridge.

Chambers, K., J. H. Woodhouse, and A. Deuss (2005), Topography of the 410-km dis-

continuity from PP and SS precursors, Earth Planet. Sci. Lett., 235, 610-622.

Chapman, C. H. (1978), New method for computing synthetic seismograms, Geophys. J.

Int., 54, 481-518.

164 BIBLIOGRAPHY



BIBLIOGRAPHY 165

Choy, G. L. (1977), Theoretical seismograms of core phases calculated by frequency-

dependent full wave theory and their interpretation, Geophys. J. Roy. Astron. Soc., 51,

275-311.

Clayton, R. W., and R. H. Stolt (1981), A Born-WKBJ inversion method for acoustic

reflection data, Geophysics, 46, 1559-1567.

De Hoop, M. V., and N. Bleistein (1997), Generalized Radon transform inversions for

reflectivity in anisotropic elastic media, Inverse Problems, 13, 669-690.

De Hoop, M. V., and S. Brandsberg-Dahl (2000), Maslov asymptotic extension of gener-

alized radon transform inversion in anisotropic elastic media: A least-squares approach,

Inverse Problems, 16, 519-562.

De Hoop, M. V., and C. Spencer (1996), Quasi Monte-Carlo integration over S2 x S2 for

migration x inversion, Inverse Problems, 12, 219-239.

De Hoop, M. V., R. Burridge, C. Spencer, and D. Miller (1994), Generalized Radon

transform amplitude versus angle (GRT/AVA) migration/inversion in anisotropic media,

in Proc SPIE 2301, pp. 15-27, SPIE.

De Hoop, M. V., C. Spencer, and R. Burridge (1999), The resolving power of seismic

amplitude data: An anisotropic inversion/migration approach, Geophysics, 64, 852-873.

Deuss, A., and J. H. Woodhouse (2002), A systematic search for upper mantle disconti-

nuities using SS precursors, Geophys. Res. Lett., 29, doi:10.1029/2002GL0 14,768.

Ding, X. M., and D. V. Helmberger (1997), Modeling D" structure beneath Central Amer-

ica with broadband seismic data, Phys. Earth Planet. Inter, 101, 245-270.

Douma, H., and M. V. de Hoop (2006), Explicit expressions for pre-stack map time-

migration in isotropic and VTI media and the applicability of map depth-migration in

heterogeneous media, Geophysics, p. in print.



Dziewonski, A. M. (1984), Mapping the lower mantle - determination of lateral hetero-

geneity in P-velocity up to degree and order-6, J. Geophys. Res., 89 (NB7), 5929.

Engdahl, E. R., R. D. van der Hilst, and R. P. Buland (1998), Global teleseismic earth-

quake relocation from improved travel times and procedures for depth determination, Bull.

Seis. Soc. Am., 88 (3), 722-743.

Flores, C., and T. Lay (2005), The trouble with seeing double, Geophys. Res. Lett, 24,

L24,305.

Garnero, E. J. (2000), Heterogeneity of the lowermost mantle, Ann. Rev. Earth Planet.

Sci., 28, 509-537.

Golub, G., and C. Van Loan (1989), Matrix Computations, 2nd ed., The Johns Hopkins

University Press, Baltimore, MD.

Grand, S. P. (2002), Mantle shear-wave tomography and the fate of subducted slabs, Phil.

Trans. Roy. Soc., A 360, 2475-2491.

Gu, C. (2002), Smoothing Spline ANOVA Models, Springer-Verlag, New York.

Gu, C., and P. Ma (2005), Optimal smoothing in nonparametric mixed-effect models, Ann.

Statist., 33, 1357-1379.

Gu, Y. J., and A. M. Dziewonski (2002), Global variability of transition zone thickness, J.

Geophys. Res., 107.

Guillemin, V. (1985), Pseudodifferential operators and applications (Notre Dame, Ind.,

1984), chap. On some results of Gel'fand in integral geometry, pp. 149-155, Amer. Math.

Soc., Providence, RI.

Guo, W. (2002), Functional mixed effects models, Biometrics, 58(1), 121-128.

Hagedoorn, J. G. (1954), A process of seismic reflection interpretation, Geophysical

Prospecting, 2, 85-127.

166 BIBLIOGRAPHY



BIBLIOGRAPHY

Hedlin, M. A., J. B. Minster, and J. Orcutt (1991), Beam-stack imaging using a small

aperture array, Geophys. Res. Lett., 18, 1771-1774.

Hedlin, M. A. H., P. M. Shearer, and P. S. Earle (1997), Seismic evidence for small-scale

heterogeneity throughout the Earth's mantle, Nature, 387, 145-150.

Helmberger, D. V., and S. Ni (2005), Seismic modeling constraints on the South African

superplume, Geophys. Monograph. Ser., Am. Geophys. Uni., 160, 63-82.

Hernlund, J. W., and S. Labrosse (2007), Geophysically consistent values of the per-

ovskite to post-perovskite transition Clapeyron slope, Geophys. Res. Lett., 34, L05,309,

doi: 10. 1029/2006GL028,961.

Hernlund, J. W., C. Thomas, and P. J. Tackley (2005), A doubling of the post-perovskite

phase boundary and structure of the Earth's lowermost mantle, Nature, 434, 882-886.

Hirose, K., R. Sinmyo, N. Sata, and Y. Ohishi (2006), Determination of post-perovskite

phase transition boundary in MgSiO 3 using Au and MgO pressure standards, Geophys.

Res. Lett., 33, L01,310.

Hofmeister, A. M. (1999), Mantle values of thermal conductivity and the geotherm from

phonon lifetimes, Science, 283, 1699-1706.

Hutko, A. R., T. Lay, E. J. Garnero, and J. Revenaugh (2006), Seismic detection

of folded, subducted lithosphere at the core-mantle boundary, Nature, 441, 333-336,

doi: 10. 1038/nature04,757.

litaka, T., K. Hirose, K. Kawamura, and M. Murakami (2004), The elasticity of the

MgSiO3 post-perovskite phase in the lowermost mantle, Nature, 430, 442-445.

Kdirason, H., and R. D. van der Hilst (2001), Tomographic imaging of the lowermost

mantle with differential times of refracted and diffracted core phases (PKP, Pdiff), J.

Geophys. Res., 106, 6569-6588.

167



BIBLIOGRAPHY

Kawakatsu, H., and E L. Niu (1994), Seismic evidence for a 920-km discontinuity in the

mantle, Nature, 371, 301-305.

Kendall, J.-M., and C. Nangini (1996), Lateral variations in D" below the Caribbean,

Geophys. Res. Lett., 23, 399-402.

Kendall, J.-M., and P. M. Shearer (1994), Lateral variations in D" thickness from long

period shear wave data, J. Geophys. Res., 99, 1575-1590.

Kennett, B. L. N., and O. Gudmundsson (1996), Ellipticity corrections for seismic phases,

Geophys. J. Int., 127, 40-48.

Kennett, B. L. N., E. R. Engdahl, and R. P. Buland (1995), Constraints on seismic veloci-

ties in the Earth from travel times, Geophys. J. Int., 122, 108-124.

Kim, Y.-J., and C. Gu (2004), Smoothing spline Gaussian regression: More scalable com-

putation via efficient approximation, J. Roy. Statist. Soc. Ser. B, 66, 337-356.

Kleyn, A. (1977), On the migration of reflection time contour maps, Geophys. Prosp., 25,

125-140.

Knittle, E., and R. Jeanloz (1991), The high-pressure phase diagram of Fe0.940: A possi-

ble constituent of the Earth's core, J. Geophys. Res., 96, 16,169-16,180.

Kobayashi, Y., T. Kondo, E. Ohtani, N. Hirao, N. Miyajima, T. Yagi, T. Nagase, and

T. Kikegawa (2005), Fe-Mg partitioning between (Mg, Fe)SiO 3 post-perovskite, per-

ovskite, and magnesiowiiestite in the Earth's lower mantle, Geophys. Res. Lett., 32,

L19,301.

Lay, T., and E. J. Garnero (2004), The state of the planet, Geophys. Monogr. Ser., AGU,

Washington, D.C.

Lay, T., and D. V. Helmberger (1983a), A shear velocity discontinuity in the lower mantle,

Geophys. Res. Lett., 10, 63-66.

168



Lay, T., and D. V. Helmberger (1983b), A lower mantle S-wave triplication and the shear

velocity structure of D", Geophys. J. R. Astron. Soc., 75, 799-837.

Lay, T., and C. J. Young (1996), Imaging scattering structures in the lower mantle by

migration of long-period S waves, J. Geophys. Res., 101 (B9), 20,023-20,040.

Lay, T., J. Hernlund, E. J. Garnero, and M. S. Thorne (2006), A post-perovskite lens and

D" heat flux beneath the Central Pacific, Science, 314, 1272-1276.

Lumley, D. E., J. F Claerbout, and D. Bevc (2001), Anti-aliased Kirchhoff 3-D migration,

SEP, 80.

Ma, P. (2003), Nonparametric mixed-effects models, Ph.D. thesis, Purdue University,

West Lafayette, IN.

Ma, P., P. Wang, M. V. de Hoop, L. Tenorio, and R. D. van der Hilst (2006), Imaging of

structure at and near the core mantle boundary using a generalized Radon transform: II-

Statistical inference of singularities, J. Geophys. Res., p. in press.

Margerin, L., and G. Nolet (2003), Multiple scattering of high-frequency seismic waves in

the deep Earth: PKP precursor analysis and inversion for mantle granularity, J. Geophys.

Res., 108 (Bll), Art. No. 2514.

Merkel, S., A. Kubo, L. Miyagi, S. Speziale, T. S. Duffy, H.-K. Mao, and H.-R. Wenk

(2006), Plastic deformation of MgGeO 3 post-perovskite at lower mantle pressures, Sci-

ence, 311, 644-646.

Miller, D., M. Oristaglio, and G. Beylkin (1987), A new slant on seismic imaging: Migra-

tion and integral geometry, Geophysics, 52, 943-964.

Morelli, A., and A. M. Dziewonski (1987), Seismic tomography, D. Reidel, Norwell,

Mass.

Murakami, M., K. Hirose, K. Kawamura, N. Sata, and 0. Y. (2004), Post-perovskite phase

transition in MgSiO 3, Science, 304, 855-858.

BIBLIOGRAPHY 169



BIBLIOGRAPHY

Nimmo, F., G. D. Price, J. Brodholt, and D. Gubbins (2004), The influence of potassium

on core and geodynamo evolution, Geophys. J. Int., 156, 363-376, doi: 10.111 1/j.1365-

246X.2003.02,157.x.

Norton, S. G., and M. Linzer (1981), Ultrasonic scattering potential imaging in three

dimensions: Exact inverse scattering solutions for plane, cylindrical, and spherical aper-

tures, IEEE Trans. on Biomedical Engineering, BME-28, 202-220.

Nychka, D. (1988), Bayesian confidence intervals for smoothing splines, J. Amer. Statist.

Assoc., 83, 1134-1143.

Oganov, A. R., and S. Ono (2004), Theoretical and experimental evidence for a post-

perovskite phase of MgSiO 3 in Earth's D" layer, Nature, 430, 445-448.

Paulssen, H. (1988), Evidence for a sharp 670-km discontinuity as inferred from P-to-S

converted waves, J. Geophys. Res., 93, 10,489-10,500.

Pinheiro, J. C., and D. M. Bates (2000), Mixed-Effects Models in S and S-PLUS, Springer-

Verlag, New York.

Poppeliers, C., and G. L. Pavlis (2003), Three-dimensional, prestack, planewave migra-

tion of teleseismic P-to-S converted phases I: Theory, J. Geophys. Res., 108, 2112.

Quinn, B. G., and J. M. Fernandes (1991), A fast efficient technique for the estimation of

frequency, Biometrika, 78, 489-497.

Reasoner, C., and J. Revenaugh (1999), Short-period P wave constrains on D" reflectivity,

J. Geophys. Res., 104, 955-961.

Revenaugh, J. (1995), A scattered-wave image of subduction beneath the transverse

ranges, Science, 268, 1888-1892.

Revenaugh, J., and T. H. Jordan (1991), Mantle layering from ScS reverberations .2. the

transition zone, J. Geophys. Res., 96, 19,763-19,780.

170



Ribe, N., E. Stutzmann, Y. Ren, and R. D. van der Hilst (2007), Buckling instabilities of

subducted lithosphere beneath the transition zone, Earth Planet. Sci. Lett., 254, 173-179.

Robinson, G. K. (1991), That BLUP is a good thing: The estimation of the random effects,

Statist. Sci., 6, 15-51 (with discussions).

Romanowicz, B. (2003), Global mantle tomography: Progress status in the past 10 years,

Ann. Rev. Earth Planet. Sci., 31, 303-328.

Rondenay, S., and K. M. Fischer (2003), Constraints on localized CMB struc-

ture from multichannel, broadband SKS-coda analysis, J. Geophys. Res., 108,

doi: 10. 1029/2003JB002,5 18.

Rost, C., and C. Thomas (2002), Array seismology: Methods and applications, Rev. Geo-

phys., 40, in print.

Rost, S., and J. Revenaugh (2004), Small-scale changes of core-mantle boundary reflec-

tivity studied using core reflected PcP, Phys. Earth Planet. Inter., 145, 19-36.

Rydberg, T., and M. Weber (2000), Receiver function array: A reflection seismology

approach, Geophys. J. Int., 141, 1-11.

Scherbaum, E, F. Kriiger, and M. Weber (1997), Double beam imaging: Mapping lower

mantle heterogeneities using combinations of source and receiver arrays, J. Geophys. Res.,

102 (B]), 507-522.

Schimmel, M., and H. Paulssen (1997), Noise reduction and detection of weak, coherent

signals through phase-weighted stacks, Geophys. J. Int., 130, 497-505.

Schleicher, J., M. Tygel, and P. Hubral (1993), 3-D true-amplitude finite-offset migration,

Geophysics, 58, 1112-1126.

Schneider, W. A. (1978), Integral formulation for migration in two and three dimensions,

Geophysics, 43, 49-76.

BIBLIOGRAPHY 171



BIBLIOGRAPHY

Shearer, P. M., and M. P. Flanagan (1999), Seismic velocity and density jumps across the

410- and 660-kilometer discontinuities, Science, 285, 1545-1548.

Shearer, P. M., M. P. Flanagan, and M. A. H. Hedlin (1999), Experiments in migration

processing of SS precursor data to image upper mantle discontinuity structure, J. Geophys.

Res., 104, 7229-7242.

Shim, S.-H. (2005), Stability of MgSiO 3 perovskite in the lower mantle, Geophys. Mono-

graph., Am. Geophys. Un., 160, 261-282.

Shim, S.-H., T. S. Duffy, R. Jeanloz, and G. Shen (2004), Stability and chrystal

structure of MgSiO 3 perovskite to the core-mantle boundary, Geophys. Res. Lett., p.

doi: 10. 1029/2004GL019639.

Sidorin, I., M. Gurnis, and D. V. Helmberger (1999), Evidence for a ubiquitous seismic

discontinuity at the base of the mantle, Science, 286, 1326-1331.

Simon, M., H. Gebrande, and M. Bopp (1996), Pre-stack migration and true-amplitude

processing of DEKORP near-normal incidence and wide-angle reflection measurements,

Tectonophysics, 264, 381-393.

Stacey, F. D. (1992), Physics of the Earth, 3rd ed., Brookfield, Kenmore, Brisbane 4069,

Australia.

Stolk, C. C., and M. V. de Hoop (2002), Microlocal analysis of seismic inverse scattering

in anisotropic, elastic media, Comm. Pure Appl. Math., 55, 261-301.

Stolk, C. C., and M. V. de Hoop (2004), Seismic inverse scattering in the downward

continuation approach, SIAM J. Appl. Math., submitted.

Stolt, R. H., and A. B. Weglein (1985), Migration and inversion of seismic data, Geo-

physics, 50, 2456-2472.

172



BIBLIOGRAPHY

Sun, D., T.-R. Song, and D. V. Helmberger (2006), Complexity of D" in the

presence of slab-debris and phase changes, Geophys. Res. Lett., 33, L12S07,

doi: 10. 1029/2005GL025,384.

Sze, E., and R. D. van der Hilst (2003), Core mantle boundary topography from short

period PcP, PKP, and PKKP data, Phys. Earth Planet. Inter, 135, 27-46.

Tan, E., M. Gurnis, and L. Han (2002), Slabs in the lower mantle and their modulation of

plume formation, Geochem. Geophys. Geosyst., 3, 1067, doi: 10.1029/2001 GC000,238.

Thomas, C., E. J. Garnero, and T. Lay (2004), High-resolution imaging of lowermost

mantle structure under the Cocos plate, J. Geophys. Res., 109, B08,307.

Tromp, J., and A. M. Dziewonski (1998), Geoscience - Two views of the deep mantle,

Science, 281, 655-656.

Tsuchiya, T., J. Tsuchiya, K. Umemoto, and R. M. Wentzcovitch (2004), Phase transition

in MgSiO3-perovskite in the Earth's lower mantle, Earth Planet. Sci. Lett., 224, 241.

Ulrych, T. J., M. D. Sacchi, and S. L. M. Freire (1998), Eigenimage processing of seismic

sections: In Covariance Analysis of Seismic Signal Processing, edited by R.L. Kirlin, and

W.J. Done, SEG Monograph, p. Tulsa.

Van den Berg, A. P., E. S. G. Rainey, and D. A. Yuen (2005), The combined influences

of variable thermal conductivity, temperature- and pressure-dependent viscosity and core-

mantle coupling on thermal evolution, Phys. Earth Planet. Inter, 149, 259-278.

Van der Hilst, R. D., and H. K~irason (1999), Compositional heterogeneity in the bottom

1000 km of Earth's mantle: Towards a hybrid convection model, Science, 283, 1885-

1888.

Van der Hilst, R. D., S. Widyantoro, and E. R. Engdahl (1997), Evidence for deep mantle

circulation from global tomography, Nature, 386, 578-584.

173



BIBLIOGRAPHY

Van der Hilst, R. D., M. V. de Hoop, P. Wang, S.-H. Shim, P. Ma, and L. Tenorio (2007),

Seismo-stratigraphy and thermal structure of Earth's core-mantle boundary region, Sci-

ence, 315, 1813-1817.

Van der Lee, S., H. Paulssen, and G. Nolet (1996), Variability of P660S phases as a conse-

quence of topography of the 660 km discontinuity, Phys. Earth Planet. Inter., 86, 147-164.

VanDecar, J. C., and R. S. Crosson (1990), Determination of teleseismic relative phase

arrival times using multi-channel cross-correlation and least squares, Bull. Seismol. Soc.

Am., 80, 150-159.

Vinnik, L., M. Kato, and H. Kawakatsu (2001), Search for seismic discontinuities in the

lower mantle, Geophys. J. Int., 147, 41-56.

Vonesh, E. F, and V. M. Chinchilli (1997), Linear and Nonlinear Models for the Analysis

of Repeated Measurements, Marcel Dekker, New York.

Wahba, G. (1983), Bayesian "confidence intervals" for the cross-validated smoothing

spline, J. Roy. Statist. Soc. Ser B, 45, 133-150.

Wahba, G. (1990), Spline Models for Observational Data, CBMS-NSF Regional Confer-

ence Series in Applied Mathematics, vol. 59, SIAM, Philadelphia.

Wang, P., M. V. de Hoop, R. D. van der Hilst, P. Ma, and L. Tenorio (2006),

Imaging of structure at and near the core mantle boundary using a generalized

Radon transform: I- construction of image gathers, J. Geophys. Res., 111, B1230,

doi: 10. 1029/2005JB004,241.

Wang, Y. (1998), Mixed-effects smoothing spline ANOVA, J. Roy. Statist. Soc. Ser B, 60,

159-174.

Wentzcovitch, R. M., T. Tsuchiya, and J. Tsuchiya (2006), MgSiO 3 post-perovskite at D"

conditions, PNAS, 103, 543-546.

174



BIBLIOGRAPHY 175

Williams, Q., R. Jeanloz, J. Bass, B. Svendsen, and T. J. Ahrens (1987), The melting

curve of iron to 250 GPa: A constraint on the temperature at Earth's center, Science, 236,

181-182.

Wysession, M. E., T. Lay, J. Revenaugh, Q. Williams, E. J. Garnero, R. Jeanloz, and

L. H. Kellogg (1998), The D" discontinuity and its implications, In: "The core mantle

boundary region, geodynamics series, Gurnis et al. (Editors) ", 28, 273-298.


