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Summary Analytical solutions are presented for solute transport in rivers including the effects
of transient storage and first order decay. The solute transport model considers an advection–
dispersion equation for transport in the main channel linked to a first order mass exchange
between the main channel and the transient storage zones. In case of a conservative tracer,
it is shown that different analytical solutions presented in the literature are mathematically
identical. For non-conservative solutes, first order decay reactions are considered with differ-
ent reaction rate coefficients in the main river channel and in the dead zones. New analytical
solutions are presented for different boundary conditions, i.e. instantaneous injection in an
infinite river reach, and variable concentration time series input in a semi-infinite river reach.
The correctness and accuracy of the analytical solutions is verified by comparison with the OTIS
numerical model. The results of analytical and numerical approaches compare favourably and
small differences can be attributed to the influence of boundary conditions. It is concluded that
the presented analytical solutions for solute transport in rivers with transient storage and solute
decay are accurate and correct, and can be usefully applied for analyses of tracer experiments
and transport characteristics in rivers with mass exchange in dead zones.
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Introduction

Several models have been formulated for describing solute
transport in rivers with stagnant water zones, as pools,
dead-end side channels, gravel beds, and adjacent wetland
areas. Exchange of solutes between the main river channel
and the transient storage zones can have important effects
on the transport characteristics and the interpretation of
tracer studies (Day, 1975; Chatwin, 1980; Nordin and Trout-
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man, 1980; Bencala and Walters, 1983; Bencala, 1984; Har-
vey et al., 1996; Morrice et al., 1997; Harvey and Fuller,
1998; Czernuszenko et al., 1998; Fernald et al., 2001; see
also the references cited by Runkel et al., 2003). The most
widespread modelling concept to describe solute transport
in such conditions considers one dimensional advective
and dispersive transport in the main river channel linked
to first-order mass exchange with the stagnant water zones,
assumed to be proportional to the difference in solute con-
centration between the main channel and the storage zone
(Hays et al., 1966; Nordin and Troutman, 1980; Bencala and
Walters, 1983; Bencala et al., 1990; Czernuszenko and
d.
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Nomenclature

Notation
A cross-sectional area of the main stream [L2]
As cross-sectional area of the dead zone [L2]
C concentration in the main stream [M L�3]
Cs concentration in the dead zone [M L�3]
D longitudinal dispersion coefficient in the main

stream [L2 T�1]
I0 modified Bessel function of first kind and order

zero [–]
I1 modified Bessel function of first kind and order

one [–]
J Goldstein J-function [–]
M tracer mass injected in the main stream [M]
p = as dummy variable [–]
Q = Av river discharge [L3 T�1]

q = a(t � s)/b dummy variable [–]
t time [T]
t1 = s dummy time variable [T]
t2 = t � s dummy time variable [T]
v mean flow velocity in the main stream [L T�1]
x longitudinal co-ordinate in the main stream [L]
a mass transfer coefficient between main stream

and dead zone [T�1]
b = As/A ratio of dead zone and main stream cross-sec-

tional areas [–]
k first order decay coefficient in the main stream

[T�1]
ks first order decay coefficient in the dead zone

[T�1]
s dummy time variable [T]
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Rowinski, 1997). The transport equations can be written as
follows (Nordin and Troutman, 1980; Bencala and Walters,
1983; Czernuszenko and Rowinski, 1997; Lees et al., 2000):

oC

ot
¼ D

o2C

ox2
� v

oC

ox
� aðC� CSÞ ð1aÞ

b
oCS

ot
¼ aðC� CSÞ; ð1bÞ

where C(x,t) and CS(x,t) are the cross-sectional averaged
solute concentrations respectively in the main channel
and the storage zones, D is the cross-sectional averaged lon-
gitudinal dispersion coefficient in the main channel, v the
cross-sectional averaged velocity in the main channel, a
the mass exchange coefficient between the main channel
and the storage zone, b the ratio between the storage zone
and the main channel cross-sectional area, x the longitudi-
nal distance in the main stream channel, and t the time.
For a recent overview of the state of the art and application
of this so called transient storage model (TDS) see, e.g.,
Schmid (2004), Bencala (2005), and Ramaswami et al.
(2005).

Runkel and Chapra (1993) presented a numerical solution
for Eq. (1), which formed the basis for the One-dimensional
Transport with Inflow and Storage (OTIS; http://co.water.-
usgs.gov/otis) model of Runkel and Chapra (1993), later ex-
tended by Runkel (1998) with a parameter optimisation
technique. This model has been used extensively for analy-
sing tracer experiments to estimate transient storage char-
acteristics in rivers (e.g., Choi et al., 2000; Fernald et al.,
2001).

Other approaches are based on the analysis of temporal
moments of concentration profiles in the main channel,
for which mathematical expressions can be obtained using
the Laplace transformation of Eq. (1) (Hays et al., 1966;
Nordin and Troutman, 1980; Schmid, 1995; Runkel, 1996;
Czernuszenko and Rowinski, 1997; Schmid, 2003). Some
investigators proposed approximate solutions using similar-
ity functions that have the same temporal moments as the
observed concentrations (Liu and Cheng, 1980; Chatwin,
1980; Schmid, 1995). Hart (1995) derived a semi analytical
solution by considering the solute transport and exchange
with stagnant storage zone as stochastic processes. This
solution was later extended by Schmid (1997) to account
for solute decay.

An analytical solution for instantaneous injection of a
tracer in a infinite river reach was presented by Davis
et al. (2000), but these investigators did not compare their
result with other approaches. Unaware of this solution, De
Smedt et al. (2005) also presented an analytical solution
for the same problem that is mathematically different from
Davis et al. (2000). De Smedt et al. (2005) compared their
solution with the OTIS-model, and also noted some similar-
ity with the statistically based solution of Hart (1995), which
was, however, not investigated in detail.

The purpose of this study is (1) to compare the different
solutions and show their equivalence, (2) extend the analyt-
ical solution to include solute decay, and (3) present analyt-
ical solutions for different boundary conditions that are
useful for analysing tracer experiments.

Theory

Analytical solutions for a conservative solute

For a typical tracer experiment, a mass M of tracer is in-
jected at time zero and location x = 0, well mixed over
the cross-sectional area A of the main stream channel, so
that the initial conditions are given by

Cðx; 0Þ ¼ ðM=AÞdðxÞ; ð2Þ

where d is the Dirac function. The storage zone is consid-
ered to be initially free of solute

CSðx; 0Þ ¼ 0: ð3Þ

In addition, it is assumed that there can be no tracer at
infinity in the main channel

Cðx ! �1; tÞ ¼ 0: ð4Þ

Unaware of the solution of Davis et al. (2000), De Smedt
et al. (2005), using the Laplace transformation technique,
presented a solution of Eq. (1), subjected to the conditions
given by Eqs. (2)–(4), as

http://co.water.usgs.gov/otis
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Cðx;tÞ¼ ðM=AÞdðxÞ

þ
Z t

0

C0ðx;sÞ aþ x2�v2s2

4Ds2
� 1

2s
�a

� �
Jðp;qÞ�aJðq;pÞ

� �
ds;

ð5Þ
with p = as, and q = a(t � s)/b, where C0(x,t) is the solution
of the classical advection–dispersion equation, subjected
to the same initial and boundary conditions

C0ðx; tÞ ¼
M=A

2
ffiffiffiffiffiffiffiffi
pDt
p exp �ðx � vtÞ2

4Dt

 !
; ð6Þ

and J(p,q) is defined by Goldstein (1953) as

Jðp; qÞ ¼ 1� e�q
Z p

0

e�kI0ð2
ffiffiffiffiffiffi
qk

p
Þdk; ð7Þ

with I0 the modified Bessel function of the first kind and
order zero. The J-function can more conveniently be
calculated with power series expansions given by De Smedt
and Wierenga (1979)

Jðp; qÞ ¼ e�p�q
X1
n¼0

qn

n!

Xn
m¼0

pm

m!
¼ 1� e�p�q

X1
n¼1

pn

n!

Xn�1
m¼0

qm

m!
:

ð8Þ

The first term on the right hand side of Eq. (5) was omitted
by the De Smedt et al. (2005), because it is zero for all
practical calculations of tracer breakthrough curves at
locations x > 0. De Smedt et al. (2005) compared their
solution with the OTIS model, which yielded a good fit,
and noted that the semi-analytical expression derived by
Hart (1995) bears some resemblance without going into
further details. They also showed that the solution, given
by Eq. (5), can be written as De Smedt et al. (2005, Eq.
(A8))

Cðx; tÞ ¼ ðM=AÞdðxÞ þ
Z t

0

o

ot1
½C0ðx; t1ÞJðat1; at2=bÞ�ds; ð9Þ

with t1 = s, and t2 = t � s. Using differential calculus this can
also be written as

Cðx; tÞ ¼ C0ðx; tÞJðat; 0Þ þ
Z t

0

o

ot2
½C0ðx; t1ÞJðat1; at2=bÞ�ds;

ð10Þ

and with the properties of the J-function (Goldstein, 1953),
this becomes

Cðx; tÞ ¼ C0ðx; tÞ expð�atÞ

þ ða=bÞ
Z t

0

C0ðx; sÞ expð�p� qÞ
ffiffiffiffiffiffiffiffi
p=q

p
I1ð2

ffiffiffiffiffiffi
pq
p
Þds;

ð11Þ

with I1 the modified Bessel function of the first kind and or-
der one. Eq. (11) is the solution derived by Davis et al.
(2000). The equivalence of Eqs. (5) and (11) was also proven
by Huang et al. (in press). The solution given by Eq. (11) has
also been obtained in case of so-called mobile-immobile
zone models, which are used to simulate solute transport
in groundwater (e.g., Carnahan and Remer, 1984; Goltz
and Roberts, 1986; van Kooten, 1995). Moreover, if the Bes-
sel function I1 is expanded in series form Eq. (11) can be
written as
Cðx; tÞ ¼ C0ðx; tÞ expð�atÞ þ ða=bÞ
Z t

0

C0ðx; sÞ

� expð�p� qÞ
X1
n¼0

pnþ1

ðnþ 1Þ!
qn

n!

 !
ds: ð12Þ

Eq. (12) is the solution derived by Hart (1995), which was
obtained by stochastic interpretation of the transport pro-
cesses rather than by solving the transport equations
analytically.

Hence, we have demonstrated that the solutions of Hart
(1995), Davis et al. (2000), and De Smedt et al. (2005) are
equivalent. There is no criterion that enables to decide
which solution is best or most useful in practical
applications.

Analytical solutions including decay

The solutions presented above are only valid for transport of
a conservative tracer, while often in practice decay of the
tracer can occur due to various chemical and biochemical
processes (Jobson, 1997; Laenen and Bencala, 2001; Keefe
et al., 2004). Generally first order decay processes are con-
sidered, so that the transport equations become as follows
(adapted in our notation from Schmid, 1995)

oC

ot
¼ D

o2C

ox2
� v

oC

ox
� aðC� CSÞ � kC; ð13aÞ

b
oCS

ot
¼ aðC� CSÞ � bkSCS; ð13bÞ

where k and kS denote the first order decay coefficients in
respectively the main stream and the dead zones. The initial
and boundary conditions remain as before. The solution of
Eq. (13), subjected to conditions Eqs. (2)–(4), is derived
in Appendix A and is given by

Cðx; tÞ ¼ C1ðx; tÞ expð�atÞ þ ða=bÞ
Z t

0

C1ðx; sÞ

� exp �p� q � kSðt� sÞð Þ
ffiffiffiffiffiffiffiffi
p=q

p
I1ð2

ffiffiffiffiffiffi
pq
p
Þds; ð14Þ

where p and q are as defined before for Eq. (5), and C1(x,t)
is the solution of the classical advection–dispersion equa-
tion including decay in the main channel, subjected to the
same initial and boundary conditions

C1ðx; tÞ ¼ C0ðx; tÞ expð�ktÞ ¼ M=A

2
ffiffiffiffiffiffiffiffi
pDt
p exp �ðx � vtÞ2

4Dt
� kt

" #
:

ð15Þ

When k equals kS, Eq. (14) reduces to the solution derived by
Carnahan and Remer (1984) for mobile-immobile solute
transport in porous media. Moreover, if the Bessel function
I1 is expanded in series form Eq. (14) becomes

Cðx; tÞ ¼ C1ðx; tÞ expð�atÞ þ a
b

Z t

0

C1ðx; sÞ

� expð�p� q � kSðt� sÞÞ
X1
n¼0

pnþ1

ðnþ 1Þ!
qn

n!

 !
ds:

ð16Þ

Eq. (16) is the solution derived by Schmid (1997), which
was obtained following Hart (1995) by stochastic interpre-
tation of the transport processes rather than by solving the
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transport equations analytically. Hence, we have demon-
strated that the present solution given by Eq. (14) is iden-
tical to Eq. (16), originally derived by Schmid (1997).

Also, a solution similar in form as Eq. (5) using the J-func-
tion, can be obtained as shown in Appendix A

Cðx; tÞ ¼ ðM=AÞdðxÞ expð�kStÞ

þ
Z t

0

C1ðx; sÞ expð�kSðt� sÞÞ

� aþ x2 � v2s2

4Ds2
� 1

2s
� a� kþ kS

� ��

� Jðp; qÞ � aJðq; pÞ
�
ds: ð17Þ

Again, there is no criterion that enables to decide which
solution is best or most useful in practical applications.

Analytical solutions for alternative boundary
conditions

Often in tracer studies, breakthrough curves are measured
at different locations downstream of the injection point.
Subsequently, one can analyse the different reaches sepa-
rately, by using a measured upstream concentration profile
as input to the following reach and the next downstream
measured concentration profile as the output. In this way,
different parameter values can be fitted for each of the
reaches and possibly longitudinal trends be detected (e.g.,
Gooseff et al., 2005). Such an approach can be simulated
with the transport equations by adapting the boundary con-
ditions as follows. The measured upstream or input concen-
tration profile Ci(t) serves as upper boundary condition

Cð0; tÞ ¼ CiðtÞ; ð18Þ

while initially the main river channel and dead zones are
tracer free

Cðx; 0Þ ¼ CSðx; 0Þ ¼ 0: ð19Þ
In addition, it is assumed that there will never be tracer at
infinity in the main channel

Cðx ! þ1; tÞ ¼ 0: ð20Þ

The solution of this transport problem is given by

Cðx; tÞ ¼
Z t

0

CiðsÞGðx; t� sÞds; ð21Þ

where G(x,t) is the solution for a Dirac function input as
upper boundary condition

Cð0; tÞ ¼ dðtÞ: ð22Þ
The solution of Eqs. (13), subjected to conditions (19), (20),
and (22), is derived in Appendix B and is given by

Gðx; tÞ ¼ C2ðx; tÞ expð�atÞ þ ða=bÞ
Z t

0

C2ðx; sÞ

� exp �p� q � kSðt� sÞð Þ
ffiffiffiffiffiffiffiffi
p=q

p
I1ð2

ffiffiffiffiffiffi
pq
p
Þds; ð23Þ

where C2(x,t) is the solution of the classical advection–dis-
persion equation including decay in the main channel, sub-
jected to the same initial and boundary conditions, i.e.

C2ðx; tÞ ¼
x

2t
ffiffiffiffiffiffiffiffi
pDt
p exp �ðx � vtÞ2

4Dt
� kt

" #
: ð24Þ
Notice that Eq. (23) is very similar to Eq. (14), and when I1 is
expanded in series form will also yield a similar expression
as Eq. (16). In addition, an alternative solution can be ob-
tained using the J-function, by just replacing C1 by C2 in
Eq. (17).

Theoretically the solution given by Eq. (21) requires the
evaluation of two convolution integrals, one in Eq. (21)
and a second one in Eq. (23). However, in practice the input
concentration profile Ci(t) will usually be given as a set of
concentrations values Ci(tj) measured at discrete times tj
for j = 1,. . . ,n, so that Eq. (21) can be approximated as

Cðx; tÞ ¼
X
j

CiðtjÞGðx; t� tjÞðDtÞj; ð25Þ

where the summation is over all j values for which tj < t, and
(Dt)j is the time interval corresponding to measurement
Ci(tj).

Results and discussion

In order to illustrate and verify the analytical solutions, re-
sults calculated with the analytical solutions are compared
to numerical results obtained with OTIS. First the solution
for instantaneous injection of a tracer in an infinite river
reach is investigated. Values of the different transport
have been given in the literature, e.g., Bencala and Walt-
ers (1983), Bencala (1984), Harvey et al. (1996), Morrice
et al. (1997), Harvey and Fuller (1998), and Fernald
et al. (2001). For the present comparison, an artificial sit-
uation is assumed where 1 kg of solute is injected in the
main channel of a stream with a cross-section of 10 m2,
an average flow velocity of 1 m/s, and a dispersion coeffi-
cient of 5 m2/s. The cross-sectional area of the storage
zone is taken as 2 m2, the mass transfer coefficient be-
tween the main stream and the dead zones as 0.001 s�1,
and different values are considered for the first order de-
cay coefficients to verify the performance of the analytical
solution. Four cases are considered: (1) conservative tra-
cer, i.e. no decay, (2) only decay in the main stream with
a first order decay coefficient of 2 h�1, (3) only decay in
the dead zones with a first order decay coefficient of
10 h�1, and (4) decay in the main stream and in the dead
zones by combining cases (2) and (3). Different values for
the decay coefficients are used in the main stream and
dead zones to clearly illustrate their effect. In particular,
a larger value for the decay coefficient in the dead zones
is needed, because otherwise there would be little impact,
as the tracer resides only partially and temporarily in the
dead zone, which is also significantly smaller in size than
the main stream.

The concentrations in the main channel are calculated at
a distance of 1000 m downstream from the injection loca-
tion. The analytical solution given by Eq. (14) is used, where
the convolution integral is calculated with the trapezium
rule using 10,000 intervals, and the Bessel I1 function is
approximated by polynomial expressions given by Abramo-
witz and Stegun (1970, page 379). The resulting break-
through curves are presented in Fig. 1.

To compare these results with OTIS, the boundary condi-
tions have to be approximated, because the analytical solu-
tion is obtained for an infinite river reach whereas the OTIS
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model only considers a finite river reach. In order to reduce
the effect of a finite length, the river reach in the OTIS-
model is assumed to extend from zero to 1400 m; the latter
being sufficiently far away from the point, x = 1000 m,
where the concentrations are evaluated. In addition, small
computational time steps of Dt = 4 s are used to approxi-
mate the instantaneous injection as close as possible, and
it is assumed that all solute mass is introduced as a triangu-
lar distribution, with a peak at 4 s and a concentration equal
to M/QDt, where Q = vA is the river discharge. Subsequently
to compensate for the 4 s delay in the input peak, 4 s are
subtracted from the time of the appearance of the break-
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through. The results are compared to the analytical solution
in Fig. 1, where for convenience the numerical results ob-
tained with the OTIS model are only shown for time inter-
vals of 16 s.

One can notice a good agreement between the numerical
calculations obtained with OTIS and the results of the ana-
lytical solution. The small differences can be attributed to
numerical approximation of the boundary conditions, as will
be shown further on. In particular, the somewhat higher val-
ues of the peak concentrations of the breakthrough curves
are due to fact that in a finite reach no tracer can disperse
upstream of the injection point.
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Hence, the good correspondence with the results of
OTIS demonstrates the accuracy of the numerical approx-
imation of the convolution integral in Eq. (14). The con-
servative case 1 shown in Fig. 1 was also evaluated by
De Smedt et al. (2005) using the analytical solution given
by Eq. (5), and is indistinguishable from the present ana-
lytical results. In addition, similar results for all cases are
obtained with Eq. (16) as shown in Fig. 1 (Schmid, 2005;
personal communication).

In order to verify the analytical solution for semi-infinite
river reach boundary conditions, previous cases are re-
peated but using the analytical solution given by Eqs. (21)
and (23). In this case the instantaneous injection is approx-
imated as a slug input, where the input concentration Ci(t)
is a Dirac peak (M/Q)d(t), so that Eq. (21) becomes
C(x,t) = (M/Q)G(x,t). The convolution integral in the ana-
lytical solution is again calculated with the trapezium rule
using 10,000 intervals and the Bessel I1 function is approxi-
mated by polynomial expressions as before. The OTIS calcu-
lations also remain as before. The results are shown in
Fig. 2. The correspondence between OTIS and analytical re-
sults is excellent now, because the upper boundary condi-
tions are identical.

To prove the accuracy of the analytical solution for a
semi-infinite reach in case the input is given as a discrete
concentration time series, we will test Eq. (21) by consider-
ing as input to the reach the concentration profiles obtained
in the first series of tests as given in Fig. 1. For the OTIS
model, the input series is given by the corresponding OTIS
results of the first test case (Fig. 1), in the form of a time
series of concentration values with 16 s time intervals. How-
ever, the computational time step remains 4 s; hence, inter-
mediate values of the input series are linearly interpolated,
as provided in the OTIS model. For the analytical solution,
the approximation given by Eq. (25) is used, were the con-
centration values of the input time series are taken from
the analytical solution results for the first test case pre-
sented in Fig. 1, with 5 s time intervals because linear inter-
polation is not foreseen in Eq. (25). The results of the
calculations are presented in Fig. 3. The correspondence
between OTIS and analytical results is quite good. The small
differences mostly at the peak of the concentration profiles
are only due to the initial differences in input concentration
time series. In particular, one can notice that the differ-
ences are smaller than in case of Fig. 1, because the con-
centration breakthrough curves are calculated further
away from the location of the initial instantaneous solute
injection, i.e. (M/A)d(x) in case of the analytical solution
and approximated as a slug input (M/Q)d(t) in case of the
OTIS model. The concentrations shown in Fig. 3 are actually
evaluated at a distance of 2000 m from the injection point,
while this was only 1000 m in case of Fig. 1. Hence, the fur-
ther away from the injection location the less impact the
type of boundary condition will have. Anyway, we have
shown that the analytical solution for a semi-infinite reach,
Eqs. (21) and (23), and the approximation given by Eq. (21)
are accurate and can be usefully applied in practice.
Conclusions

Analytical solutions are derived for one-dimensional trans-
port of solutes in a river including effects of transient stor-
age, described by first order mass exchange, and first order
solute decay, with different reaction rate coefficients in the
main river channel and in the dead zone. The solution is
firstly derived for the case of an instant injection of a con-
servative chemical in an infinite uniform river reach. It is
shown that in this case the solution is identical with previ-
ous analytical expressions given by Hart (1995), Davis
et al. (2000), and De Smedt et al. (2005).

Secondly, analytical solutions are presented for the case
of instant injection in an infinite uniform river reach of a
solute subjected to first order decay. It is shown that the
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obtained solution is mathematically equivalent to an
expression proposed by Schmid (1997), which was derived
via a stochastic interpretation of the transport processes
following Hart (1995). The accuracy and correctness of
the analytical solution is tested by comparison with results
obtained from the numerical OTIS model. The agreement
is good, as small differences are primarily due to the differ-
ent type of upper boundary conditions.

Thirdly, an analytical solution is presented for a solute
subjected to first order decay in case of a semi-infinite uni-
form river reach, with an arbitrary concentration time ser-
ies input. Again, the accuracy and correctness of this
solution is tested by comparison with results obtained using
the OTIS numerical model. For a slug input the agreement is
perfect as the upper boundary conditions are now identical.
It is also shown how this solution can be used in practice to
predict the transport in a river reach with an arbitrary con-
centration time series input. Again, the results compare
favourably with the OTIS model calculations.

It can be concluded that the presented analytical solu-
tions for solute transport in rivers with transient storage
and solute decay are accurate and correct, and can be use-
fully applied for future studies, especially for analyses of
tracer experiments and transport characteristics in rivers
with mass exchange in dead zones. The solutions can also
be used for the verification of other models that are devel-
oped for more complicated cases.
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Appendix A. Derivation of the analytical
solution for instantaneous injection in an
infinite river reach

The solution is obtained by means of the Laplace transform.
We denote the Laplace transform of a function f(t) as

fðsÞ ¼ L½fðtÞ; t! s� ¼
Z 1

0

fðtÞe�st dt: ðA:1Þ

Applying the Laplace transform to Eqs. (13) gives

D
o2C

ox2
� v

oC

ox
� ðsþ aþ kÞCþ aCS ¼ ðM=AÞdðxÞ ðA:2aÞ

CS ¼
aC

aþ bðsþ kSÞ
: ðA:2bÞ

Substitution of Eq. (A.2b) in (A.2a) results in

D
o2C

ox2
� v

oC

ox
� sþ kþ a� a2

aþ bðsþ kSÞ

� �
C ¼ ðM=AÞdðxÞ:

ðA:3Þ

When a or b are zero, Eq. (A.3) reduces to the classical
advection–dispersion equation including decay, with solu-
tion C1(x,t). Hence, from Eq. (A.3) it follows that

Cðx; sÞ ¼ C1 x; sþ a� a2

aþ bðsþ kSÞ

� �
: ðA:4Þ
To obtain the inverse Laplace transform of Eq. (A.4), we
make use of the convolution theorem of the Laplace trans-
form (Sneddon, 1972, p. 228)

L

Z t

0

fðs; t� sÞds; t! s

� �
¼ LfL½fðt1; t2Þ; t2 ! s�; t1 ! sg:

ðA:5Þ
Eq. (A.4) is now written as

Cðx; s1; s2Þ ¼ C1 x; s1 þ a� a2

aþ bðs2 þ kSÞ

� �
; ðA:6Þ

where s1 = s2 = s, but different indexes are used to indicate
that the inverse transformation is performed in two steps.
The first inverse with respect to s1 gives

L½Cðx; t1; t2Þ; t2 ! s2� ¼ C1ðx; t1Þ expð�at1Þ

� exp
a2t1

aþ bðs2 þ kSÞ

� �
: ðA:7Þ

The second inverse with respect to s2, yields

Cðx; t1; t2Þ ¼ C1ðx; t1Þ expð�at1Þ

� expð�ða=bþ ksÞt2ÞL�1 exp
a2t1
bs2

� �� �
; ðA:8Þ

or

Cðx; t1; t2Þ ¼ C1ðx; t1Þ expð�at1 � ða=bþ ksÞt2Þ

� a
b

ffiffiffiffiffiffiffi
bt1
t2

s
I1ð2a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t1t2=b

p
Þ þ dðt2Þ

" #
: ðA:9Þ

In view of Eqs. (A.5), (A.9) yields the solution

Cðx; tÞ ¼
Z t

0

C1ðx; sÞexpð�as� ða=bþ kSÞðt� sÞÞ

� a
b

ffiffiffiffiffiffiffiffiffiffi
bs
t� s

r
I1 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðt� sÞ

b

s !
þ dðt� sÞ

" #
ds; ðA:10Þ

which after some further small modifications leads to the
solution given by Eq. (14) in the main text.

If instead Eq. (A.6) is written as

Cðx; s1; s2Þ ¼
s1 þ kS

s2 þ kS
C1 x; s1 þ

bðs2 þ kSÞ
aþ bðs2 þ kSÞ

� �
: ðA:11Þ

The first inverse with respect to s1 becomes

L½Cðx; t1; t2Þ; t2 ! s2� ¼
1

s2 þ kS
C1ðx; 0Þdðt1Þ þ

o

ot1
þ kS

� �

� C1ðx; t1Þ
s2 þ kS

exp
bðs2 þ kSÞt1

aþ bðs2 þ kSÞ

� �� �
;

ðA:12Þ

and the second inverse with respect to s2, making use of the
inverse Laplace transform of the J-function (Goldstein,
1953), yields

Cðx; t1; t2Þ ¼ ½C1ðx; 0Þdðt1Þ þ ðo=ot1 þ kSÞ
� ðC1ðx; t1ÞJðat1; at2=bÞÞ� expð�kSt2Þ: ðA:13Þ

Next, the partial derivative versus t1 is worked out with the
chain rule of differentiation, using following relationships

o

ot1
½C1ðx; t1Þ� ¼

x2 � v2t21
4Dt21

� 1

2t1
� k

 !
C1ðx; t1Þ; ðA:14Þ
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and

o

ot1
½Jðat1; at2=bÞ� ¼ a½1� Jðat1; at2=bÞ � Jðat2=b; at1Þ�;

ðA:15Þ

which is based on properties of the J-function given by Gold-
stein (1953). When terms are combined, the following
expression is obtained

Cðx; t1; t2Þ ¼ C1ðx; 0Þdðt1Þ expð�kSt2Þ þ C1ðx; t1Þ expð�kSt2Þ

� aþ x2 � v2t21
4Dt21

� 1

2t1
� kþ kS � a

 !"

� J at1;
at2
b

� �
� aJ

at2
b
; at1

� �#
: ðA:16Þ

In view of Eq. (A.5), (A.16) yields the solution

Cðx; tÞ ¼ C1ðx; 0Þ expð�kStÞ þ
Z t

0

C1ðx; sÞ exp �kSðt� sÞð Þ

� aþ x2 � v2s2

4Ds2
� 1

2s
� kþ kS � a

� ��

� J as;
aðt� sÞ

b

� �
� aJ

aðt� sÞ
b

; as

� ��
ds;

ðA:17Þ

as given by Eq. (17) in the main text.

Appendix B. Derivation of the analytical
solution for a slug input in a semi-infinite reach

Applying the Laplace transform to Eqs. (13) gives

D
o2C

ox2
� v

oC

ox
� ðsþ aþ kÞCþ aCS ¼ 0 ðB:1aÞ

CS ¼
aC

aþ bðsþ kSÞ
: ðB:1bÞ

Substitution of Eq. (B.1b) in (B.1a) results in

D
o2C

ox2
� v

oC

ox
� sþ kþ a� a2

aþ bðsþ kSÞ

� �
C ¼ 0: ðB:2Þ

When a or b are zero, Eq. (B.2) reduces to the classical
advection–dispersion equation, with solution C2(x,t).
Hence, it follows that

Cðx; sÞ ¼ C2 x; sþ a� a2

aþ bðsþ kSÞ

� �
: ðB:3Þ

The inverse Laplace transform of Eq. (B.3) can be ob-
tained in a similar way as in Appendix A, yielding

Cðx; t1; t2Þ ¼ C2ðx; t1Þ exp �at1 � ða=bþ ksÞt2ð Þ

� a
b

ffiffiffiffiffiffiffi
bt1
t2

s
I1 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t1t2=b

p� �
þ dðt2Þ

" #
; ðB:4Þ

which in view of Eq. (A.5), gives the solution

Cðx; tÞ ¼
Z t

0

C2ðx; sÞ exp �as� ða=bþ kSÞðt� sÞð Þ

� a
b

ffiffiffiffiffiffiffiffiffiffi
bs

t� s

r
I1 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðt� sÞ

b

s !
þ dðt� sÞ

" #
ds; ðB:5Þ
which after some further small modifications leads to Eq.
(23) in the main text. Also as in Appendix A, a solution
can be obtained making use of the J-function, which yields
a solution similar as Eq. (A.17), by replacing C1 by C2.
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