УДК 552.233:550.42

ГЕОХИМИЯ И ГЕОХРОНОЛОГИЯ ПРОТЕРОЗОЙСКИХ МАГМАТИЧЕСКИХ ПОРОД УЛКАНСКОГО ПРОГИБА (НОВЫЕ ДАННЫЕ)

А.Н. Диденко^{1,3}, В.А. Гурьянов¹, А.Ю. Песков¹, А.Н. Пересторонин¹, Д.В. Авдеев¹ Е.В. Бибикова², Т.И. Кирнозова², М.М. Фугзан²

¹ Институт тектоники и геофизики им. Ю.А. Косыгина ДВОРАН, ул. Ким Ю. Чена 65, г. Хабаровск, 680000, e-mail: itig@itig.as.khb.ru

² Институт геохимии и аналитической химии им. В.И. Вернадского РАН, ул.Косыгина 19, г. Москва, 119991, e-mail: galstrel@mail.ru

³ Геологический институт РАН, Пыжевский пер 7, г. Москва, 119017, e-mail: gin@ginras.ru Поступила в редакцию 18 февраля 2010 г.

В работе представлены новые геохимические и геохронологические данные, на основе которых предлагается уточненная модель формирования Улканского прогиба. Вулканиты улканской серии имеют геохимические признаки, присущие породам двух современных геодинамических обстановок: надсубдукционной и внутриплитной. Соединение в магматических камерах компонентов разноглубинных источников является причиной образования вулканитов, имеющих различные геохимические "метки". Возраст гранитоидов трех фаз Улканского массива определен в интервале 1730–1725 млн лет. Для гранитов 1-й и 3-й фаз установлены положительные значения $\epsilon Nd(T) = +3.5 u + 0.7$. Вероятно, источником, из которого выплавлялись граниты 1-й фазы улканского комплекса, были палеопротерозойские породы ювенильной коры с возрастом 1.84–1.95 млрд лет. Формирование эффузивных пород улканской серии может быть связано с геодинамической обстановкой трансформной континентальной окраины кордильерского типа. Время действия этих геодинамических условий, судя по модельному $T_{Nd}(DM)$ возрастуу, > 1.8 млрд лет.

Ключевые слова: геохимия, геохронология, пелеопротерозой геодинамическая обстановка, Улканский прогиб, Дальний Восток.

введение

Восстановление эволюции любой крупной геологической структуры, какой является Сибирский кратон, - задача сложная и не всегда однозначно решаемая, так как за время своего существования такие структуры могут претерпевать неоднократную переработку. Поэтому особое значение приобретает изучение комплексов-индикаторов, особенности состава и изотопные системы которых в ряде случаев помогают оценить геодинамическую обстановку и время их формирования. Для юго-восточной окраины Сибирского кратона (рис. 1а) такими индикаторами являются слагающие Улканский прогиб (рис. 1б) одноименные осадочно-вулканогенная серия (рис. 2) стратотип для верхнего карелия Восточной Сибири и Дальнего Востока (улканий в региональной шкале) и связанный с ней гранитоидный комплекс.

Образования, сходные с улканскими серией и комплексом, известны в южном обрамлении Сибирского кратона (с востока на запад): в Билякчанском грабене, Витимо-Олекминском блоке, Акитканском вулкано-плутоническом поясе, Восточное Присаянье, и на Енисейском кряже. Месту и роли структур подобного типа в докембрийской истории развития отдельных регионов и Сибирского кратона в целом посвящен целый ряд работ, где проблемы решались по-разному, на основе различных идей, господствующих в то или иное время [5, 8–11, 12, 16, 17, 19–23, 26, 27–29, 32, 34].

Существующие мнения об истории развития Улканского прогиба представлены 4-мя моделями.

1. В работе Л.П. Зоненшайна с соавторами [16] проводится аналогия – надсубдукционная, хотя и неполная, – между образованием Улканского и Акит-

канского вулканических поясов. Образование Акитканского пояса авторы, вслед за Ч.Б. Борукаевым [8], связывают с активной континентальной окраиной Ангаро-Анабарского континентального блока. Идя дальше, они предположили, что наличие Акитканского вулканического пояса в структуре Сибирского кратона указывает на наличие океанического бассейна между Ангаро-Анабарской глыбой и Алданским щитом вплоть до начала рифея. Образование Джугжурско-Улканской зоны (пояса) Л.П. Зоненшайн с соавторами связывают с формированием окраинноконтинентальной вулканической дуги, имевшим место 2200–1800 млн лет назад.

2. В фундаментальной сводке В.Е. Хаина [34] Улканский прогиб так же, как Билякчанский и Удоканский, отнесен к рифтогенным. По мнению В.Е. Хаина, рифтогенез начался ~ 2.2 млрд лет назад с образования Удоканской впадины, выполненной мощной толщей континентально-обломочных красноцветов и гранитоидами кодаро-кеменского комплекса, и мигрировал на восток (современные координаты) в Улканский и Билякчанский прогибы.

3. По мнению О.М. Розена [26, 27], Улканский орогенный пояс возник примерно 1.7 млрд лет назад в конце эпохи палеопротерозойской коллизии, а специфический набор пород позволяет отнести его к структуре локального коллапса коллизионной системы, когда в условиях общего сжатия мощность коры превысила некоторую критическую величину и произошло нарушение термальной границы кора-мантия. Эта магматическая ассоциация сопоставима с А-гранитами и возникла при плавлении нижней коры при поступлении в коллизионную систему дополнительного тепла и вещества из мантии при коллапсе горного сооружения за счет расползания нижней коры. Улканский пояс сформировался на последней стадии развития коллизионного орогена Алданской тектонической провинции.

4. Последнее по времени крупное геологогеохимическое исследование пород Улканского массива и обобщение принадлежит А.М. Ларину [20]. Согласно его данным и их интерпретации, породы Улканского массива входят в состав анортозит-мангерит-рапакивигранит-щелочногранитной ассоциации Билякчан-Улканского вулкано-плутонического пояса, а "длительность формирования улкан-джугджурского комплекса составляет как минимум 30 млн лет": 1) анортозиты джугджурского комплекса – 1736 млн лет; 2) граниты рапакиви Южно-Учурского массива – 1727 млн лет; 3) вулканиты улканской серии – 1720 млн лет; 4) субщелочные граниты Северо-Учурского массива – 1721–1716 млн лет; 5) габбродолериты гекунданского комплекса – 1718 млн лет; 6) щелочные граниты Северо-Учурского массива – 1705 млн лет [20, стр. 18]. В модели А.М. Ларина формирование Улканской структуры происходило в условиях куполообразования и активного рифтинга, вероятнее всего, под действием мантийного плюма.

Как видно из вышеизложенного, во-первых, нет единой точки зрения на процессы и, соответственно, на геодинамические условия образования Улканского прогиба. Во-вторых, интерпретация полученных первых палеомагнитных данных по породам комплекса [14, 15] в рамках определенных моделей сталкивается с трудностями. В-третьих, современная методика палеомагнитных исследований нижнепротерозойских комплексов [13] предусматривает их совместное - "образец в образец" - изучение палеомагнитными, геолого-структурными и изотопно-геохимическими методами, что и было предпринято нами в 2008-2009 гг. В настоящей работе мы представляем новые геохимические и геохронологические данные и уточненную модель формирования Улканского прогиба, лучше всего согласующуюся, по нашему мнению, с этими данными.

ОСНОВНЫЕ ЧЕРТЫ ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ

Улканский осадочно-вулканогенный прогиб, расположенный на юго-восточной окраине Сибирского кратона (рис. 1а), принадлежит к числу тех территорий Евразии, где хорошо обнажены палеопротерозойские неметаморфизованные образования. Прогиб размещается в верховьях рек Учур, Улкан, Маймакан (рис. 1б), ширина его около 75 км, а протяженность более 200 км. Он ограничен Джугджурским поднятием на юге и перекрыт мезопротерозойскими вулканогенно-терригенными образованиями Учурской впадины платформенного чехла на северо-западе и севере, меловыми эффузивами – на востоке. Прогиб асимметричен – ось наибольших погружений смещена к его южному борту, совпадающему с Южно-Учурским разломом, и приурочен к мощной субширотной зоне разломов, секущей структуры архейского кристаллического фундамента. Осадочновулканогенные образования улканской серии, выполняющие Улканский прогиб, залегают с резким угловым несогласием на метаморфических породах Алдано-Станового щита и коре их выветривания, маркируя время консолидации кристаллического фундамента Сибирской платформы (рис. 2).

Улканская серия (рис. 2) объединяет три свиты красноцветных образований: топориканскую, улка-

чанскую и элгэтэйскую, общей мощностью более 3 км. Серия впервые была выделена в 1962 г. В.Р. Алексеевым в объеме топориканской и элгэтэйской свит [11]. Позже ее состав и объем неоднократно изменялись. Значительный объем среди вулканических накоплений занимают субвулканические интрузии и экструзивно-жерловые образования, которые совместно с покровными фациями рассматриваются в качестве вулканических комплексов: улкачанского трахибазальтового и элгэтэйского базальт-трахириолитового.

Базальная кварцево-песчаниковая топориканская свита мощностью до 200 м (рис. 2) залегает с видимым угловым несогласием на разнородных породах кристаллического фундамента, часто с литифицированными корами выветривания в подошве мощностью от 1 до 35 м [11]. Для нее характерно пологое моноклинальное падение к центру прогиба. Свита сложена кварцевыми, в меньшей мере полевошпаткварцевыми песчаниками с редкими линзами и прослоями гравелитов и конгломератов.

Вышележащая улкачанская свита (рис. 2) мощностью ~ 750 м представлена трахибазальтами, базальтами, андезибазальтами и их лавобрекчиями с прослоями песчаников, конгломератов, туффитов, туфоалевролитов и туфов смешанного состава. Свита залегает с угловым несогласием на архейских метаморфитах, участками на коре выветривания пород фундамента. На топориканские песчаники она ложится с небольшим угловым несогласием, иногда с размывом. Слои улкачанской свиты погружаются к центру прогиба: нижние – под углом 20–30°, верхние – более полого. По данным Ю.Н. Гамалея [10], К-Аг возраст биотита из трахибазальтов свиты в стратотипическом разрезе составляет 1915 млн лет. Комагматичные эффузивам покровной фации субвулканические и экструзивно-жерловые образования представлены редкими дайками и некками. На завершающем этапе улкачанского вулканизма произошло внедрение интрузий лейкогаббродолеритовой формации гекунданского комплекса. Сходство составов улкачанских базальтов и гекунданских габброидов, а также их пространственная приуроченность друг к другу указывает на связь тех и других с едиными магматическими очагами [11].

Вышележащая элгэтэйская свита мощностью более 2 км, разделенная на три подсвиты, венчает разрез улканской серии (рис. 2). В ее составе доминируют красноцветные трахириолиты, трахириодациты, трахидациты; встречаются их туфы, игнимбриты и лавобрекчии, пантеллериты и комендиты; меньшую роль играют лавы основного состава. Осадочные и туфогенно-осадочные породы отмечаются среди лавовых потоков в виде редких прослоев и слоев. Элгэтэйская свита, как правило, несогласно залегает на улкачанской либо топориканской свитах, а за их пределами – на породах кристаллического фундамента. Базальные горизонты нижнеэлгэтэйской подсвиты – лавобрекчии трахидацитов – содержат валуны и гальки хорошей окатанности подстилающих их

Рис. 1. Структурно-тектоническая схема Сибирского кратона (а), по [26, 27], и геологическая карта района верхнего течения рек Улкан, Учур и Маймакан (б), по [11].

a) *I*-2 – архейские и раннепалеопротерозойские гранит-зеленокаменные (*I*) и гранулит-гнейсовые (*2*) террейны (пояса); *3* – позднепалеопротерозойские орогенные пояса; *4* – коллизионные гранитоиды Южно-Сибирской зоны; *5* – палеопротерозойские орогенные пояса, ремобилизованные в мезо- и неопротерозое. Залитым кружком с отходящей от него стрелкой обозначено местоположение Улканского прогиба, карта фрагмента которого приведена на рис. 16.

б) *I* – кристаллический фундамент Алдано-Станового щита. 2-4 – улканская серия верхнего протерозоя: 2 – топориканская, 3 – улкачанская, 4 - элгэтэйская свиты. 5 - 7 - серии нижнего мезопротерозоя: <math>5 - 6 - уянская серия (5 - бириндинская, 6 - конкулинская свиты); 7 – учурская серия (гонамская свита). 8 – венд-нижний кембрий (усть-юдомская и пестроцветная свиты). 9 – меловые вулканиты. 10 – архейские анортозиты древнеджугджурского комплекса. 11–19 – позднепротерозойские интрузии: 11 – дайки габброидов в кристаллическом фундаменте щита, 12 – дуниты и клинопироксениты кондерского комплекса; 13 – экструзии (а) и дайки (б) трахибазальтов улкачанского комплекса; 14 - габбродолериты гекунданского комплекса; 15 - субвулканические (а) и экструзивно-жерловые (б) образования элгэтэйского базальт-трахириолитового комплекса; 16–18 – гранитоиды улканского комплекса: 16 – субщелочные лейкограниты и граниты, кварцевые сиениты, монцониты и сиениты первой фазы, 17 – субщелочные лейкограниты второй фазы, 18 – щелочные граниты и кварцевые сиениты третьей фазы; 19 – дайки габбродолеритов маймаканского комплекса. 20 - меловые гранитоиды. 21 - коры выветривания. 22 - разрывные нарушения: главные (а), второстепенные (б). 23 – геологические границы. 24 – участки отбора проб 2008–2009 гг. (1 – Конус, 2 – Озерный-Нимар, 3 – Ныгваганский массив, 4 – Перевальный). Главные разломы (цифры в кружках): 1 – Южно-Учурский, 2 – Северо-Учурский, 3 – Гарындинский, 4 – Чадский, 5 – Улкачанский, 6 – Топориканский, 7 – Учур-Элгэтэйский, 8 – Ныгваганский, 9 – Бириндинский, 10 – Маймаканский, 11 – Улкано-Бириндинский, 12 – Нимарский. Интрузивные массивы: Д – архейский Древнеджугджурский; раннепротерозойские: Б – Бырайынский, Г – Гекунданский, НО – Нимаро-Олдоньдонский, Н – Ныгваганский, У – Улканский, ЮУ – Южно-Учурский, Ч – Чадский; С – меловой Секталийский.

Общи подразде шкал	іе пения ы	Колонка	Мощность (м) и мес- та отбора проб	Литологическая характеристика (вскобках – номера проб)
	Б	···· <u></u> ··· <u></u> ··	110-360	Эннинская свита – песчаники, алевролиты, аргиллиты, доломиты.
	PCKA PUR		30-350	<i>Омахтинская свита</i> – доломиты, алевролиты, аргиллиты.
о Й	ΥΥ Υ		140–360	<i>Гонамская свита</i> – песчаники, алевролиты, доломиты, аргиллиты, конгломераты.
ž 0	ч		70–180	Адаргайская свита – песчаники, алевролиты, доломиты.
НИЖНИ	A CEPN		200–950	<i>Конкулинская свита</i> – песчаники, алевропесчаники, конгломераты, гравелиты.
ME30	H C K A	<u>⊾</u> р <u></u> р_⊾ ⊾р_	280–350	남 Верхнебириндинская подсвита – субщелочные базальты и 면 연 лейкобазальты оливиновые, песчаники.
	∠ Я	0_0_0_0	130–280	Нижнебириндинская подсвита – песчаники, конгломераты, Базальты.
Й ПАЛЕОПРОТЕРОЗОЙ Н И Й К А Р Е Л И Й	АНСКАЯ СЕРИЯ		до 740 ▲ D-09/1,2 ▲ H-1 ▲ D-09/3,4 ▲ D-09/7 750 ▲ D-09/6 ▲ D-09/6 ▲ D-09/5 ▲ D-08/5–7 ▲ D-08/1–3 640	 Верхнеэлгэтэйская подсвита – трахириолиты, трахириодациты (D-09/1,2), щелочные трахидациты (H-1) и их игнимбриты и туфы, трахибазальты. Среднеэлгэтэйская подсвита – трахириодациты (D-09/3,4,6), трахириолиты пятнистые и их туфы и игнимбриты, трахибаза- льты (D-09/8), базальты, прослои песчаников(D-09/5), конгло- мератов (D-09/7) и алевролитов. Нижнеэлгэтэйская подсвита – трахириодациты, трахидациты (D-08/1–3), дациты, трахибазальты, андезибазальты (D-08/5–7), прослои песчаников, туффитов, туфоалевролитов, туфопесчани- ков.
BEPXHU BEPX	УПК		▲D-09/15,16 750 100-200	Улкачанская свита – трахибазальты, андезибазальты (D-09/15,16), прослои песчаников, туфоалевролитов, туффитов, туфопесчани- ков и конгломератов. Топориканская свита – песчаники с линзами гравелитов и конгломератов.
APXE	і ЕЙ	+4-	D-09/13,14 D-09/10−12 > 1000	Архейские образования нерасчлененные – гнейсы, кристаллослан- цы, гранитогнейсы и метагабброиды с интрузиями анортозитов (D-09/10–14).
		1	~~~~	2 \swarrow 3 4 \times 5 $\stackrel{\frown}{}$ 6 $\stackrel{D-09/15}{}$ 7

Рис. 2. Строение улканской серии и её положение в разрезе докембрия юго-востока Сибирской платформы. 1-2 – стратиграфическое (1) и угловое (2) несогласия; 3 – коры выветривания – литифицированные обломочные образования;
 4 – разрывные нарушения; 5 – гранито-гнейсы; 6 – анортозиты; 7 – пробы и их номера.

улкачанских базальтов, реже габброидов гекунданского комплекса [11, 20]. Эти данные указывают на перерыв в вулканизме в предэлгэтэйское время, сопровождавшийся эрозией магматических образований позднего палеопротерозоя. В работе [11] для вулканитов элгэтэйской свиты приведена сводка геохронологических данных разных лет и разных авторов (в млн лет): 1721, 1840, 1721 (U-Pb, циркон); 1740, 1620 (K-Ar, глауконит); 1721, 1687 (Sm-Nd, циркон).

Гранитоиды улканского щелочно-лейкогранитового комплекса слагают два крупных и несколько средних и мелких по размерам массивов, обнажающихся в разных частях Улканского прогиба и его обрамления (рис. 1б). Наиболее крупные массивы – Улканский и Южно-Учурский; первый является петротипическим. Улканский массив гранитоидов формировался в три последовательные фазы внедрения: 1 фаза - субщелочные граниты и лейкограниты биотитовые крупно- и среднезернистые, кварцевые сиениты, кварцевые монцониты, кварцевые сиенит-порфиры и субщелочные лейкогранит-порфиры, сиениты и монцониты; 2 фаза – субщелочные лейкограниты биотитовые мелкозернистые; 3 фаза – щелочные граниты и кварцевые сиениты рибекитовые, эгиринрибекитовые с астрофиллитом; гидротермалиты, дайки и пегматитовые жилы. Для гранитов Улканского массива в последние годы разными методами получены следующие данные по изотопному возрасту [11, 20, 50] (в млн лет): 1 фаза – 1721 (U-Pb, Sm-Nd, Rb-Sr); 2 фаза – 1715, 1716 (U-Pb, Sm-Nd, Rb-Sr); 3 фаза – 1690, 1676 (U-Pb) и 1703 (Sm-Nd).

Завершает позднепалеопротерозойский магматизм в Улканском прогибе габбродолеритовый маймаканский комплекс, представленный дайками, редко штоками габбро, габбродолеритов, долеритов. На дайки наложена молибден-урановая минерализация (1544–1540 млн лет), возраст которой определен по гидрослюдам K-Ar и Rb-Sr методами [11]. Ареал тел маймаканского комплекса ограничивается территорией Улканского прогиба.

На породы элгэтэйской свиты и гранитоиды улканского комплекса с размывом ложатся раннемезопротерозойские конгломераты бириндинской свиты (базальные горизонты в разрезе чехла Сибирской платформы), которые содержат многочисленные гальки и валуны залегающих ниже пород (рис. 2). В подошве нижнемезопротерозойских отложений вдоль южного борта Учурской впадины прослеживается зона (предбириндинская) структурно-стратиграфического несогласия. Значение этого перерыва подчеркивается распространением железисто-глинисто-гидрослюдистой коры выветривания, подстилающей бириндинскую свиту, с изохронным Rb-Sr возрастом 1670±40 млн лет [11].

ПЕТРОГРАФИЧЕСКОЕ ОПИСАНИЕ ПОРОД

Для решения поставленных задач детально изучены вулканиты улканской серии и гранитоиды улканского комплекса на четырех участках центральной части Улканского прогиба: Конус, Озерный-Нимар, Ныгваган и Перевальный (рис. 1б).

На участке Конус (56.24° с.ш., 134.42° в.д.) эффузивы элгэтэйской свиты обнажаются в скальных выходах у подножья склона конусообразной сопки на протяжении 600 м. Кроме трахириодацитов, в низах разреза эффузивной толщи обнажены и трахибазальты, ороговикованные порфировидными гранитами. Опробованы и изучены трахириодациты (D-08/2) элгэтэйской свиты, субщелочные гранитпорфиры (D-08/4) улканского комплекса и базальты, трахибазальты (D-08/5, D-09/15).

Трахириодациты – массивные порфировые (20 %) породы коричневато-красного, розовато-серого цвета. Вкрапленники в них представлены идиоморфными зернами (1-3 мм) кварца (до 5 %), продолговато-таблитчатыми кристаллами (до 5-7 мм) пелитизированного буроватого калишпата (до 15 %) и единичными зернами темноцветных минералов, замещенных нацело хлоритом и рудным. Тонкозернистый перекристаллизованный кварц-полевошпатовый агрегат связующей массы породы содержит мелкую рудную сыпь и гидроксиды железа (до 10 %), редкие ксеноморфные чешуйки вторичных биотита, хлорита, эпидота и лейкоксена. Структура основной массы – переходного типа: от микрофельзитовой до микрогранофировой, участками роговиковой. Акцессории – редкие мелкие зерна и кристаллы апатита, монацита и циркона - отмечаются в ассоциации с темноцветными минералами.

Субщелочные гранит-порфиры – красновато-розовые массивные порфировидные мелкозернистые породы с гранофировой, сферолитовой, участками пойкилитовой структурой основной массы. Порфировые образования (60 %) представлены крупными вкрапленниками (до 1 см) калишпата (50 %), более мелкими (до 3 мм) зернами кварца (10 %) и редкими псевдоморфозами хлорита и эпидота по темноцветным минералам. Основная масса породы более мелкозернистая (до 1 мм) кварц-полевошпатовая с редкими мелкими чешуйками биотита, хлорита, ксеноморфными обособлениями эпидота и лейкоксена, единичными зернами рудных минералов. Кварц и калишпат находятся в основном в тесном срастании в виде мирмекитов, сферолитов и микрографических структур.

Базальты и трахибазальты – черные, темно-серые, реже темно-красные массивные породы, часто постепенно переходящие в верхних и нижних частях потоков в миндалекаменные разновидности. Вкрапленники в порфировых базальтах представлены, за редким исключением, плагиоклазом (лабрадор № 50-68). Плагиоклаз основной массы (№ 42-56), представленный лейстами и табличками, реже микролитами, часто раскислен. Моноклинные пироксены во вкрапленниках весьма редки, в связующей массе преобладает авгит, реже пижонит. Оливин редок и наблюдается в виде мелких порфировых обособлений, замещен иддингситом и боулингитом. Структура основной массы интерсертальная, апоинтерсертальная, микролитовая, апомикролитовая, пойкилоофитовая, офитовая. Минеральный состав основной массы: плагиоклаз – 50–65 %, клинопироксен – 5–30 %, ортопироксен – 0–5 %, роговая обманка – 0–5 %, замещенное хлоритом девитрифицированное стекло – 5–20 %, титаномагнетит – 3 %, ильменит – 3–5 %.

Участок Озерный – Нимар (56.21° с.ш., 134.69° в.д.) расположен в центральной части Верхнеулканской вулкано-купольной структуры, находящейся на пересечении дизьюнктивов субширотного и северовосточного направления (рис. 1б). Западная часть структуры осложнена и частично уничтожена внедрившимися в более позднее время гранитоидами Улканского массива, выходы которых постоянно отмечаются в эрозионных окнах (в урезах водотоков). На юго-востоке участка рельефно выделяется экструзивный купол автомагматических брекчий трахириолитов диаметром 1 км. Наличие здесь эруптивного центра подчеркивается также периклинальным падением (от 10 до 25°) потоков лав и прослоев песчаников.

Трахириодациты – это в основном темно-коричневые, темно-красные массивные породы с крупными от 1-3 до 7-8 мм порфировыми вкрапленниками темно-розового полевого шпата. Структура основной кварц-полевошпатовой массы (75-80 %) микрогранофировая, микрофельзитовая (размер зерен – 0.01– 0.1 мм). Вкрапленники (15-20 %) представлены сростками альбитизированного плагиоклаза, идиоморфными кристаллами калишпата и субокруглыми зернами кварца. Состав связующей массы (в %): калишпат - 35-40, альбит ~10, кварц - 25-30, мелкие (до 0.1 мм) зерна рудных минералов и единичные кристаллы монацита, циркона. Вторичные минералы (5%) представлены альбитом по калишпату, гидроксидами железа и мелкими листочками и скоплениями чешуек серицита.

Ныгваганский массив (56.28° с.ш., 134.41° в.д.) щелочных гранитоидов, расположенный в восточной

части Улканского гранитоидного плутона, сложен преимущественно щелочными гранитами и щелочными кварцевыми сиенитами. В плане массив имеет причудливо вытянутую в субширотном направлении форму со сложно-волнистыми контурами (рис. 1б). Щелочные граниты массива имеют в основном резкие секущие контакты с вмещающими породами, измененными на значительных площадях до полнопроявленных фенитов. В них сохранились структурнотекстурные признаки первичных пород, но по минеральному составу и химизму они близки к щелочным гранитам. В краевых частях массива и вокруг него среди вмещающих пород широко проявлены гидротермально-метасоматические преобразования, представленные щелочногранитными пегматитами, щелочными гидротермалитами, альбититами, калишпатитами и шелочными метасоматитами с редкоземельно-редкометалльной и радиоактивной минерализацией.

В пределах изученного участка развиты среднеи мелкозернистые щелочные эгирин-рибекитовые граниты серого, зеленовато-серого, реже светло-серого цвета (рис. 2; D-08/9, D-08/21). Структура их аллотриоморфнозернистая, гипидиоморфнозернистая, призматически-зернистая, пойкилитовая. Минеральный состав гранитов (в %): калинатровый полевой шпат – 40–50, плагиоклаз (альбит, альбит-олигоклаз) – 20, кварц - 20-30, рибекит - 3-10, эгирин - 3-5; акцессории – единичные зерна и кристаллы (0.1-0.3 мм) циркона, апатита, пирохлора, монацита и рудного (магнетит, ильменит). Вторичные минералы в них представлены альбитом, кварцем, микроклином, крокидолитом, гематитом, лимонитом и серицитом. Калинатровый полевой шпат слагает изометрично-таблитчатые кристаллы размером 1-3 мм, реже более крупные вкрапленники таблитчатой формы. Темно-зеленовато-синий амфибол представлен рибекит-арфведсонитом с каймой лейкоксена и волокнистого крокидолита, а пироксен – буровато-коричневатой разновидностью эгирина – акмитом, и появляется сфен. В целом для гранитов характерны травянозеленые эгирины волокнистой и лучистой формы и всегда в срастании с рибекитом.

На участке Перевальный (56.27° с.ш., 134.37° в.д.) развиты в основном крупнозернистые субщелочные граниты и лейкограниты первой фазы улканского комплекса. Мелкозернистые субщелочные лейкограниты второй фазы слагают среди них небольшие массивы и мелкие тела с причудливо волнистыми в плане контурами, реже маломощные средней протяженности дайки с ареалами грейзенизации и грейзенизированных пород. На востоке участка встречаются жилы щелочногранитных пегма-

титов и щелочных гидротермалитов, а также маломощные непротяженные дайки меловых андезибазальтов, прорывающие все отмеченные выше породы. В пределах участка Перевальный детально изучены мелкозернистые субщелочные лейкограниты второй фазы улканского комплекса.

Субщелочные лейкограниты (проба D-08/24) это массивные равномерно-мелкозернистые (0.5-1 мм) породы светло-серого, розовато-белого цвета. Они имеют следующий состав (в %): калинатровый полевой шпат – 55, кварц – 30, биотит – 5; акцессорные – ортит (0.1 мм), циркон, рудные минералы; вторичные – микроклин (до 10), альбит, кварц, серицит, гематит. Структура – гранитовая, пойкилитовая, участками мирмекитовая. Кварц представлен двумя генерациями; наиболее ранняя – мелкие изометричные зерна чистого кварца с мозаичным и волнистым погасанием; вторая, более поздняя генерация встречается вместе с альбитом в виде мирмекитов. Калинатровый полевой шпат нерешетчатый, с пертитами замещения, представлен идиоморфными кристаллами, часто с коррозионными оторочками тонкосдвойникованного альбита. В центре замещаемого микроклина отмечаются редкие мирмекитовые вростки кварца. Биотит слагает мелкие чешуйки темно-коричневого цвета. В целом порода несет следы катаклаза, тонкие трещинки-просечки залечены вторичными минералами: гематит, серицит, кварц, микроклин.

МЕТОДИКИ ГЕОХИМИЧЕСКИХ И ГЕОХРОНОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ

Методика геохимических исследований. Образцы анализировались в ИТиГ ДВО РАН методом масс-спектрометрии с индуктивно связанной плазмой после кислотного разложения с использованием методических приемов, подробно изложенных в [7, 64].

Навеска образца 0.05 г, истертого до 200 меш, помещалась в стеклоуглеродный тигель и обрабатывалась 5 мл смеси азотной и фтористоводородной кислот с соотношением HNO₃:HF = 1:1. После этого смесь упаривалась на плитке до влажных солей, после добавления 1 мл концентрированной азотной кислоты и 0,5 мл перекиси водорода выпаривалась досуха. Затем осадок растворяли в 10 мл 10 % азотной кислоты и прогревали до растворения солей. При наличии неразложившегося осадка пробу упаривали и повторяли весь процесс. После полного растворения пробы помещались в мерные пробирки объемом 50 мл, которые заполнялись до метки деионизованной водой. Полученный раствор анализировался на ISP масс-спектрометре ELAN DRC II (Перкин Элмер, США). Перед измерениями проводили настройку прибора и оптимизацию инструментальных параметров для получения максимального сигнала и его воспроизводимости при минимальном вкладе оксидных ионов и низком фоновом уровне. Для уменьшения эффекта "памяти" прибора после съемки каждого раствора проводилась промывка системы 2 % раствором HNO, в течение 2 минут.

Для градуировки прибора использовались многоэлементные растворы производства Перкин Элмер, в качестве внутреннего стандарта – изотоп ксенона ¹²⁹Хе, содержащийся в аргоне. Концентрация ксенона в баллоне с газом была постоянной на протяжении всего времени анализа. Преимущества использования ксенона в качестве внутреннего стандарта – это его отсутствие в растворах с образцами, а также исключение ошибок, связанных с добавлением раствора внутреннего стандарта к образцам. Основные операционные параметры и условия съемки составляли: 1) мощность ВЧ генератора – 1350 W; 2) скорость распыляющего газа – 0.82–0.85 л/мин; 3) чувствительность по индию (1 мкг/л) – $7 \cdot 10^4$ импульс/сек; 4) режим сканирования масс - "peak hopping"; 5) уровень оксидов – <2 %; 6) уровень двузарядных ионов – <2 %. Для расчета и графического анализа геохимических данных использовалась программа В. Янусека с соавторами [47].

Методика геохронологических исследований. U-Pb изотопное исследование цирконов было проведено классическим методом в изотопной лаборатории ГЕОХИ РАН по общепринятой методике. Химическое разложение цирконов и выделение U и Pb выполнялось по методу Т. Кроу [49]. Концентрации урана и свинца определены методом изотопного разбавления с применением смешанного ²⁰⁸Pb+²³⁵U трассера. Холостое загрязнение составило 0.05 нг Pb и 0.005 нг U. Изотопный состав измерен на многоколлекторном твердофазном масс-спектрометре TRITON. Обработка экспериментальных данных проводилась по программам ISOPLOT [52]. Поправка на обычный свинец введена на возраст 1800 млн лет по модели Стейсси и Крамерса [59], использованы современные величины констант распада [60]. Точность определения U-Pb изотопных отношений составила 0.5 %. Все ошибки приведены на уровне 25. Для повышения степени конкордантности изотопных возрастов некоторые наиболее нарушенные фазы цирконов были подвергнуты предварительному селективному кислотному растворению (СР) [53]. Согласно этой методике предварительная обработка цирконов проводилась в концентрированной HF в термостате при температуре 150° С.

Образцы подвергались такой обработке в течение 8 ч. После охлаждения раствор декантировался, а кристаллический остаток двукратно обрабатывали 3.1 N раствором соляной кислоты при температуре 180° и 200° С в течение 6–10 ч. Раствор HCl декантировался, остаток дважды промывался концентрированной HNO₃, после чего кристаллический остаток циркона разлагался по обычной методике.

Sm-Nd изотопное исследование проводилось по методике, принятой в лаборатории изотопной геохимии и геохронологии ГЕОХИ РАН. Навеска валовой пробы в 20-30 мг после добавления смешанного трассера ¹⁵⁰Nd + ¹⁴⁹Sm растворялась в смеси плавиковой и азотной кислот (5:1) в термостате при температуре 200° С. Полученный раствор выпаривался и осадок переводился в хлоридную форму. Выделение самария и неодима проводилось в две стадии методом ионнообменной хроматографии. На первой стадии выделялись сумма редкоземельных элементов на катионите DOWEX 50W-X8, на второй стадии проводилось разделение неодима и самария с использованием реагента HDEHP. Величина холостого загрязнения в лаборатории составила 0.03 нг для Sm, и 0.1 нг для Nd. Изотопный состав неодима и самария измерен на многоколлекторном масс-спектрометре TRITON. Определение концентраций Sm и Nd проведено методом изотопного разбавления с использованием смешанного трассера ¹⁵⁰Nd + ¹⁴⁹Sm с точностью 0.1 % для ¹⁴⁷Sm/¹⁴⁴Nd и 0.005 % для ¹⁴³Nd/¹⁴⁴Nd. Измеренное отношение ¹⁴³Nd/¹⁴⁴Nd нормализовано к $^{148}Nd/^{144}Nd = 0.241572$, что соответствует ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219. Модельные возрасты пород (Т_{DM}) рассчитаны исходя из следующих значений для деплетированной мантии: ¹⁴³Nd/¹⁴⁴Nd= 0.513151, ¹⁴⁷Sm/¹⁴⁴Nd=0.212.

ПЕТРО- И ГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКИ ИССЛЕДОВАННЫХ ПОРОД

Для петрохимической характеристики вулканитов улканской серии и гранитоидов улканского комплекса мы привлекли результаты анализов предшествующих исследований (табл. 1), которые были систематизированы в работе [11]. Для геохимического анализа были использованы данные по 9 образцам базальтов-трахиандезибазальтов, 23 образцам трахидацитов-трахириолитов и 22 образцам гранитов трех фаз улканского комплекса (табл. 2).

Петрогенные элементы. Вулканиты улканской серии представлены широким спектром пород – от базальтов–трахибазальтов до риолитов. Их фигуративные точки на TAS-диаграмме [54] располагаются вдоль границы областей щелочных и субщелочных пород, от основных до кислых с образованием двух отчетливо выделяющихся групп в области основных и умеренно кислых-кислых вулканитов (рис. 3а). На диаграммах А. Харкера [44] также наблюдается группирование фигуративных точек (рис. 4), присущее бимодальной серии. На диаграмме K₂O-SiO₂ (рис. 4) согласно классификации А. Пессерилло и С.Р. Тейлора [57] фигуративные точки основных вулканитов попадают в поля известково-щелочной, высококалиевой известково-щелочной и шошонитовой серий, а точки кислых вулканитов – в поля последних двух (рис. 4). На диаграмме AFM распределение фигуративных точек вулканитов улканской серии несколько другое; основное их количество (3/4) как для основных, так и для кислых пород лежит в толеитовой и меньшая их часть (1/4) – в известково-щелочной областях.

В породах улкачанской свиты, попадающих на TAS-диаграмме в поля трахибазальтов, базальтов, трахиандезибазальтов и андезибазальтов (рис. 3а), содержание SiO₂ колеблется от 48 до 55%, составляя в среднем 50.81% (табл. 1). В целом для улкачанских базальтоидов характерны повышенные и высокие содержания титана (TiO₂ = 2-3.4 %), окисного железа (Fe₂O₃ = 2.81–13.66 %), щелочей (Na₂O + K₂O = 3.53– 7.23%, в среднем ~ 5%) и пониженные – глинозема (Al₂O₂ = 12.37-15.97 %), закисного железа (FeO = 1.24-10.26 %), магния (MgO среднее - 3.86%) и кальция (СаО среднее – 5.54%). На диаграмме АFM большая часть фигуративных точек улкачанских вулканитов лежит в области толеитовых базальтов, меньшая в известково-щелочной. Коэффициент железистости (фракционирования) имеет размах от 0.72 до 0.86.

Все кислые вулканиты элгэтэйской свиты пересыщены кремнеземом и богаты щелочами, относятся к высококалиевой серии и являются высокоглиноземистыми (табл. 1, рис. 4). В целом для них свойственны повышенные содержания титана (TiO_2 среднее – 0.42 %), щелочей ($Na_2O + K_2O = 6-10.1$ %), окисного железа и пониженные – закисного железа, магния и кальция; содержание глинозема – умеренное. На диаграмме AFM фигуративные точки элгэтэйских вулканитов лежат как в толеитовой, так и известково-щелочной областях. Коэффициент железистости (фракционирования) имеет размах от 0.72 до 0.97.

Химическими анализами охарактеризованы практически все виды пород, слагающих Улканский массив гранитоидов. На TAS-диаграмме [52] их фигуративные точки располагаются в полях щелочных гранитов и гранитов (рис. 3б). В целом для гранитов улканского комплекса характерно значительное пре-

Компо- ненты	трах	Базальты, т андези иандезибаза сп	рахибазал базальты, альты улк виты	њты, ачанской	тра	Трахидаці хириолиты	иты, риолі элгэтэйск	иты, ой свиты	Гран	итоиды улн	анского і	комплекса
	n	среднее	МИН.	макс.	n	среднее	МИН.	макс.	n	среднее	МИН.	макс.
SiO ₂	34	50.81	48.61	54.60	32	71.30	59.05	75.63	53	74.20	70.21	77.38
TiO ₂	34	2.47	2.00	3.42	32	0.42	0.09	1.36	53	0.22	0.03	0.45
Al_2O_3	34	13.94	12.37	15.97	32	12.74	11.43	15.96	53	12.25	10.78	14.09
Fe ₂ O ₃	34	7.57	2.81	13.66	32	2.95	0.70	7.14	53	1.68	0.57	4.62
FeO	34	6.10	1.24	10.26	32	1.17	0.20	3.22	53	0.89	0.15	2.33
MnO	34	0.16	0.09	0.26	30	0.04	0.01	0.17	45	0.03	0.01	0.25
MgO	34	3.86	2.04	5.22	32	0.43	0.10	1.78	53	0.16	0.01	0.94
CaO	34	5.54	2.61	7.41	32	0.89	0.01	3.58	53	0.44	0.01	1.46
Na ₂ O	34	3.21	1.93	5.09	32	3.47	2.01	5.98	53	3.67	2.79	4.81
K ₂ O	34	1.84	0.48	3.66	32	4.84	2.65	6.41	53	5.02	2.92	5.88
P_2O_5	34	0.49	0.01	1.01	31	0.07	0.01	0.33	46	0.03	0.01	0.15
SO ₃	12	0.19	0.05	0.45	11	0.06	0.05	0.10	9	0.07	0.05	0.18
CO_2	20	0.93	0.05	6.95	16	0.46	0.05	2.37	13	0.13	0.01	0.35
H_2O	34	2.58	1.34	3.90	32	0.86	0.30	1.65	53	0.65	0.25	1.42
Сумма	34	99.19	98.49	100.19	32	99.41	98.49	100.53	53	99.29	97.43	100.67
Na ₂ O+K ₂ O	34	5.05	3.53	7.23	32	8.31	6.00	10.11	53	8.69	7.70	9.70
K ₂ O/Na ₂ O	34	0.61	0.10	1.13	32	1.55	0.44	2.70	53	1.39	0.61	2.08
K _f	34	0.78	0.72	0.86	32	0.90	0.72	0.97	53	0.95	0.73	0.99

Таблица 1. Средний химический состав вулканитов улканской серии и гранитоидов улканского комплекса.

Примечание: n – количество образцов; мин. – минимальное, макс. – максимальное значения; K_f = (FeO + Fe₂O₃) / (FeO + Fe₂O₃ + MgO). Содержания оксидов даны в масс. %. Использованы литературные данные, собранные и обобщённые В.А. Гурьяновым [11].

обладание железа над магнием и высокое содержание калия (табл. 1), они пересыщены (за редким исключением) кремнеземом, железом, щелочами, фтором, а иногда и глиноземом при умеренных и низких содержаниях магния и кальция, агпаитность их колеблется от 0.53 до 0.99 при заметном преобладании калия над натрием [11]. Высокие значения суммы щелочей и отношения железа к магнию, с одной стороны, и низкие содержания Al₂O₃, MgO и CaO, с другой, в исследованных гранитах свидетельствуют об их принадлежности к A-типу [31].

На классификационных диаграммах [42]: а) FeOt/(FeOt+MgO)–SiO₂ гранитоиды практически всех проанализированных проб (94 из 96) относятся к железистым, FeOt/(FeOt+MgO) \geq 0.9); б) (Na₂O+ K₂O+CaO)–SiO₂ – попадают в поля щелочных, щелочно-известковых и известково-щелочных образований; в) A/NK–ASI – занимают все три возможных области – агпаитовую, плюмазитовую и метаглиноземистую.

Распределение фигуративных точек гранитоидов улканского комплекса на вариационных диаграммах А. Харкера [44] показано на рис. 5.

Микроэлементы. Данные о содержаниях редких и редкоземельных элементов (РЗЭ) в исследованных породах представлены в таблице 2 и на спайдер-диаграммах (рис. 6).

Содержания переходных когерентных элементов в базальтах-трахиандезибазальтах улканской серии существенно изменяются (табл. 2), но в целом для них характерны низкие концентрации (мкг/г): V = 34–161, Cr = 36–114, Co = 6–33, Ni = 2–104. Породы имеют дифференцированный спектр распределения редких и РЗЭ. На мультиэлементной диаграмме (рис. 6а) в области Cs–Pb концентрации этих элементов в улканских породах значительно выше, чем в нор-

6 (08:54) (08:55) (08:55) (08:55) (08:55) (08:57) (09:153) (09:153) (08:123) (08:123) (08:123) (08:123) (08:123) (08:133) (01:133)			Базаль	ты, андези(базальты, тра	хибазальты,	трахиандезі	ибазальты ((0=u)		Трахида	циты-трахи	и) илиты (п	=23)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	08-5	11	08-5-5	08-5-6	08-5-7	09-15-3	09-15-4	09-15-5	09-15-8	09-15-15	08/2	08/12-2	08/12-3	08/12-4	08/12-5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ξ.	69.	13.28	13.81	11.63	23.96	22.71	24.59	25.58	25.54	2.72	3.21	3.42	3.64	3.41
	34.	.46	40.13	43.25	37.70	161.40	147.42	157.85	146.58	153.27	3.51	2.91	3.31	3.65	5.11
6.20 9.00 10.6 0.24 2.96 2.83 2.93 3.15 3.264 1.27 0.15 0.72 7.97 1.27 0.15 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 3.83 0.57 3.844 5.33 3.264 5.37 3.27 3.844 5.336 3.2764 3.837 3.844 5.386 3.844 5.338 3.650 3.844 5.338 3.266 3.844 5.338 3.266 3.844 5.338 3.266 3.844 5.338 3.266 3.844 3.337 3.844 3.337 3.844 3.338 3.266 3.846 3.844 3.337 3.844 3.338 3.266 3.874 3.337 3.844 3.337 3.844 3.337 3.844 3.337 3.316 3.3166 3.3166 3.3166 3.3166 3.3166 3.3166 3.3166 <	114.	.43	42.22	36.02	67.43	45.36	40.65	48.78	49.93	77.36	82.11	60.16	45.84	41.61	63.25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.	.20	9.00	10.68	9.24	29.86	28.38	29.93	31.51	32.64	1.27	0.15	0.72	0.77	1.18
	ς.	.52	7.67	1.65	6.22	7.59	7.22	8.97	9.08	104.22	3.79	ı	ı	·	ı
	75.	.98	123.25	90.22	92.94	5.38	24.95	30.75	34.15	45.00	130.92	138.83	146.18	141.87	130.65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	135.	.61	232.51	285.21	212.23	408.28	425.48	383.60	268.74	340.83	60.57	44.80	45.27	49.46	46.83
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37.	.41	41.40	45.79	39.10	28.81	26.57	28.52	27.87	28.79	38.95	37.23	28.44	53.28	53.80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	293.	.60	286.13	296.46	291.79	142.21	125.92	133.04	155.56	161.64	193.71	244.30	259.76	286.30	262.43
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27.	.96	28.45	30.09	27.58	14.66	13.04	14.31	14.68	13.96	23.85	27.94	32.99	32.37	30.58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.	.14	1.21	1.29	1.20	0.81	0.71	0.79	0.80	0.77	1.53	1.68	1.96	1.88	1.73
	1753.	.62	1383.48	1002.99	1326.82	169.19	338.58	424.25	548.06	586.00	786.65	596.05	608.87	606.01	602.60
	61.	.31	64.19	70.86	60.64	33.83	29.83	32.15	31.60	31.20	64.65	77.05	18.59	106.41	138.30
	150.	.80	162.60	176.13	156.52	72.03	63.15	68.72	67.81	67.62	146.56	279.79	112.17	337.93	353.32
62.92 67.08 74.81 62.99 38.95 34.14 37.01 36.43 36.68 68.74 70.97 17.98 98.50 13. 11.40 12.32 13.47 11.30 7.69 6.63 7.27 7.04 7.29 12.57 12.15 12.37 16.99 22 11.44 1.59 1.73 1.43 12.08 1.08 0.21 1.121 1 1.23 24.6 0.21 1.21 1.23 24.6 0.21 1.21 1.23 24.6 1.31 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.21 1.13 27.9 25.7 2.61 7.39 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 2.16 1.73 1.23 2.16 1.33 2.35 9.51 10.7 1.93 3.65 3.45 1.69 9.53 9.51 10.1 1.33 1.69 9.53	15.	.95	17.07	18.84	16.04	9.19	8.03	8.81	8.56	8.65	18.14	18.63	4.75	25.62	34.62
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	62.	.92	67.08	74.81	62.99	38.95	34.14	37.01	36.43	36.68	68.74	70.97	17.98	98.50	133.80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11.	.40	12.32	13.47	11.30	7.69	6.63	7.27	7.04	7.29	12.57	12.15	3.45	16.99	22.24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ξ.	.54	1.82	1.97	1.58	1.82	1.68	2.15	1.74	1.72	1.18	0.86	0.21	1.21	1.63
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11.	.97	13.01	14.34	12.04	8.51	7.56	8.31	7.99	8.21	12.71	12.37	4.67	17.33	22.16
7.86 8.82 9.58 8.03 6.01 5.40 6.02 5.80 6.03 8.36 7.19 5.35 9.51 10 1.44 1.59 1.75 1.45 1.15 1.04 1.14 1.16 1.51 1.37 1.23 1.67 1 4.14 4.49 4.89 4.22 3.29 2.90 3.27 4.43 4.18 4.10 4.88 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.93 4.64 4.72 18.44 17 4.88 4.22	Ι.	44.	1.59	1.73	1.43	1.08	0.96	1.07	1.03	1.06	1.49	1.42	0.71	1.93	2.39
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.	.86	8.82	9.58	8.03	6.01	5.40	6.02	5.80	6.03	8.36	7.19	5.35	9.51	10.81
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Ξ.	44.	1.59	1.75	1.45	1.15	1.04	1.14	1.11	1.16	1.51	1.37	1.23	1.67	1.85
0.49 0.52 0.56 0.49 0.43 0.37 0.41 0.40 0.42 0.52 0.62 0.62 0.68 0 3.53 3.55 3.88 3.52 2.93 2.46 2.75 2.62 2.84 3.67 4.49 4.52 4.82 2. 0.45 0.46 0.48 0.44 0.41 0.34 0.37 0.36 0.40 0.47 0.68 0.673 0.68 0.45 0.46 0.48 0.44 0.34 0.37 0.36 0.40 0.47 0.68 0.673 0.73 0.73 0.73 0.73 0.71 1.71 2.94 3.13 2.97 7.71 0.73 2.07 11.88 12.34 11.63 7.80 8.20 7.91 8.16 7.42 11.90 11.61 2.78 14.92 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97	4	.14	4.49	4.89	4.22	3.29	2.90	3.22	3.09	3.27	4.43	4.18	4.10	4.88	5.08
3.53 3.65 3.88 3.52 2.93 2.46 2.75 2.62 2.84 3.67 4.49 4.52 4.82 2 0.45 0.46 0.48 0.44 0.41 0.34 0.37 0.36 0.40 0.47 0.68 0.68 0.73 0 0.45 0.46 0.48 0.44 0.41 0.34 0.37 0.36 0.40 0.47 0.68 0.673 0 7.71 0 8 0.73 0 7.71 0 8 0.73 0 7.41 8.02 7.71 0 9.32 9.30 11.92 18.89 18.52 18.44 17 9.32 9.30 10.30 9.20 3.89 3.44 3.82 4.03 3.99 11.92 18.89 18.52 18.44 17 2.07 11.88 12.34 11.63 7.80 8.20 7.71 2.93 3.97 3.14 3.12 2.97 3.13 2.97 3.14 3.13 2.97 3.14 17 2.14 14.92 2.1 14	0.	.49	0.52	0.56	0.49	0.43	0.37	0.41	0.40	0.42	0.52	0.62	0.62	0.68	0.65
0.45 0.46 0.48 0.44 0.41 0.34 0.37 0.36 0.40 0.47 0.68 0.73 0 6.89 6.71 6.92 6.88 4.23 3.70 4.06 4.32 4.42 5.64 7.48 8.02 7.71 6 9.32 9.30 10.30 9.20 3.89 3.44 3.82 4.03 3.99 11.92 18.89 18.52 18.44 17 2.07 1.85 0.73 0.79 0.73 0.73 0.71 1.71 2.94 3.13 2.97 3.13 2.97 3.13 2.97 3.13 2.97 3.13 2.97 3.13 2.97 3.13 2.97 3.13 2.97 3.13 2.97 3.13 2.97 3.13 2.97 3.13 2.97 3.13 2.97 3.13 2.97 3.13 2.97 3.13 2.97 3.13 2.97 3.94 3.13 3.94 3.93 3.94 3.36	ω.	.53	3.65	3.88	3.52	2.93	2.46	2.75	2.62	2.84	3.67	4.49	4.52	4.82	4.52
6.89 6.71 6.92 6.88 4.23 3.70 4.06 4.32 4.42 5.64 7.48 8.02 7.71 6 9.32 9.30 10.30 9.20 3.89 3.44 3.82 4.03 3.99 11.92 18.89 18.52 18.44 17 2.07 1.85 2.03 1.85 0.73 0.73 0.71 1.71 2.94 3.13 2.97 2.97 2 11.75 11.88 12.34 11.63 7.80 8.20 7.91 8.16 7.42 11.90 11.61 2.78 14.92 2 3.38 3.2.8 3.31 3.38 2.77 2.83 2.78 2.45 2.48 2.34 3.99 3.94 3 2.75 2.89 3.00 2.77 2.83 2.45 2.48 2.34 3.99 3.94 3 2.75 2.89 3.00 2.77 2.83 2.45 2.48 2.34 <td< td=""><td>0.</td><td>.45</td><td>0.46</td><td>0.48</td><td>0.44</td><td>0.41</td><td>0.34</td><td>0.37</td><td>0.36</td><td>0.40</td><td>0.47</td><td>0.68</td><td>0.68</td><td>0.73</td><td>0.65</td></td<>	0.	.45	0.46	0.48	0.44	0.41	0.34	0.37	0.36	0.40	0.47	0.68	0.68	0.73	0.65
9.32 9.30 10.30 9.20 3.89 3.44 3.82 4.03 3.99 11.92 18.89 18.52 18.44 17 2.07 1.85 2.03 1.85 0.73 0.73 0.71 1.71 2.94 3.13 2.97 2 11.75 11.88 12.34 11.63 7.80 8.20 7.91 8.16 7.42 11.90 11.61 2.78 14.92 20 3.38 3.28 3.31 3.38 2.77 2.83 2.78 2.82 2.70 3.24 3.99 3.94 3 2.75 2.83 2.77 2.83 2.78 2.48 2.34 3.99 3.94 3 2.75 2.89 3.00 2.77 2.83 2.45 2.48 2.34 2.99 3.94 3 2.75 2.89 3.00 2.14 1.75.58 2.48 2.41 2.91 3.94 3 2.77 2.35 2.49 2.45 2.48 2.34 2.91 2.91 3.94 3	9.	89.	6.71	6.92	6.88	4.23	3.70	4.06	4.32	4.42	5.64	7.48	8.02	7.71	6.13
2.07 1.85 2.03 1.85 0.73 0.73 0.73 0.71 1.71 2.94 3.13 2.97 2 11.75 11.88 12.34 11.63 7.80 8.20 7.91 8.16 7.42 11.90 11.61 2.78 14.92 2 3.38 3.28 3.31 3.38 2.77 2.83 2.78 2.82 2.70 3.24 3.99 3.94 3 2.75 2.89 3.00 2.77 2.83 2.45 2.48 2.34 2.99 3.94 3 2.75 2.89 3.00 2.77 2.83 2.45 2.48 2.34 2.81 2.24 0.84 2.91 3 2.75 2.89 3.00 2.77 2.35 2.49 2.45 2.48 2.34 2.81 2.91 3 0.40 0.44 0.41 0.69 0.72 0.84 0.71 0.68 0.21 0.16 0.22 0 335.24 359.21 393.30 340.69 187.32 164.49 179.	9.	.32	9.30	10.30	9.20	3.89	3.44	3.82	4.03	3.99	11.92	18.89	18.52	18.44	17.49
11.75 11.88 12.34 11.63 7.80 8.20 7.91 8.16 7.42 11.90 11.61 2.78 14.92 26 3.38 3.28 3.31 3.38 2.77 2.83 2.78 2.82 2.70 3.24 3.99 3.94 3 2.75 2.89 3.00 2.77 2.83 2.78 2.49 2.45 2.48 2.34 3.99 3.94 3 0.40 0.44 0.43 0.41 0.69 0.72 0.84 0.71 0.68 0.21 0.16 0.22 0 335.24 359.21 393.30 340.69 187.32 164.49 179.41 175.58 176.54 345.01 491.76 179.02 628.21 73	6	.07	1.85	2.03	1.85	0.73	0.59	0.73	0.73	0.71	1.71	2.94	3.13	2.97	2.71
3.38 3.28 3.31 3.38 2.77 2.83 2.78 2.82 2.70 3.24 3.99 3.94 3 2.75 2.89 3.00 2.77 2.35 2.49 2.45 2.48 2.34 2.81 2.24 0.84 2.91 3 0.40 0.44 0.41 0.69 0.72 0.84 0.71 0.68 0.21 0.16 0.22 0 335.24 359.21 393.30 340.69 187.32 164.49 179.41 175.58 176.54 345.01 491.76 179.02 628.21 73	11.	.75	11.88	12.34	11.63	7.80	8.20	7.91	8.16	7.42	11.90	11.61	2.78	14.92	20.69
2.75 2.89 3.00 2.77 2.35 2.49 2.45 2.48 2.34 2.81 2.24 0.84 2.91 3 0.40 0.44 0.43 0.41 0.69 0.72 0.84 0.71 0.68 0.21 0.16 0.22 0 335.24 359.21 393.30 340.69 187.32 164.49 179.41 175.58 176.54 345.01 491.76 179.02 628.21 73	Э.	.38	3.28	3.31	3.38	2.77	2.83	2.78	2.82	2.70	3.24	3.99	3.39	3.94	3.91
0.40 0.44 0.43 0.41 0.69 0.72 0.84 0.71 0.68 0.28 0.21 0.16 0.22 (335.24 359.21 393.30 340.69 187.32 164.49 179.41 175.58 176.54 345.01 491.76 179.02 628.21 73	6	.75	2.89	3.00	2.77	2.35	2.49	2.45	2.48	2.34	2.81	2.24	0.84	2.91	3.97
335.24 359.21 393.30 340.69 187.32 164.49 179.41 175.58 176.54 345.01 491.76 179.02 628.21 73	0.	.40	0.44	0.43	0.41	0.69	0.72	0.84	0.71	0.68	0.28	0.21	0.16	0.22	0.22
	335.	.24	359.21	393.30	340.69	187.32	164.49	179.41	175.58	176.54	345.01	491.76	179.02	628.21	732.00

Примечание. Предшествующий номерам всех проб индекс D, используемый в тексте статьи и на рис.2, здесь опущен. La_N/Yb_N, La_N/Sm_N, Gd_N/Yb_N и Еu/Eu* нормированы по хондриту согласно [62]. Анализы выполнены Д.В. Авдеевым на ISP масс-спектрометре ELAN DRC II (Перкин Элмер, CIIIA) в лаборатории физико-химических методов исследования ИТиГ ДВО РАН. Прочерк – не определялось.

Таблица 2. Содержания микроэлементов (мкг/г) в вулканитах улканской серии и гранитах улканского комплекса.

Диденко, Гурьянов, Песков и др.

-
· •
e
H
e
¥
Ξ.
3
¥.
2
Ĕ.
_
\sim
-:
2
5
Цâ
аца
іица
блица
аблица
Габлица
Таблица

00/3_15	CI-CICO	2.02	68.19	0.80	2.21	92.91	39.83	36.65	301.07	25.00	1.12	866.99	48.48	119.94	12.16	47.75	8.54	0.92	9.30	1.16	7.11	1.41	4.36	0.58	4.23	0.58	7.98	9.70	1.68	7.75	3.57	1.78	0.32	266.53
C_2/00	2-C/CD	112	63.30	0.60	ı	177.36	19.77	41.37	317.55	28.01	1.33	336.77	29.18	92.09	5.62	19.91	3.50	0.09	4.90	0.85	7.01	1.56	4.85	0.66	4.76	0.65	9.01	15.99	2.80	4.14	5.24	0.83	0.07	175.64
00/1_13	CI-1/CO	2.28	71.95	0.73	ı	103.75	30.98	31.23	304.20	25.21	1.11	957.62	13.98	67.13	3.83	15.29	3.00	0.23	3.81	0.60	5.37	1.23	4.06	0.57	4.17	0.57	8.13	10.06	1.91	2.27	2.93	0.74	0.21	123.83
00/1_13	1 73	1 20	59.69	0.64	5.29	151.33	17.51	34.45	282.32	24.73	1.25	322.65	23.61	118.18	4.73	16.83	2.76	0.06	4.17	0.68	5.92	1.35	4.38	0.61	4.44	0.60	8.09	15.61	1.23	3.60	5.39	0.76	0.06	188.32
00/1-10	01-1/60	2.69	46.89	0.96	3.83	98.88	33.09	34.80	256.97	19.89	0.87	978.40	42.81	90.96	10.48	40.44	7.31	0.74	8.07	1.05	6.79	1.37	4.24	0.55	4.00	0.53	6.93	9.02	1.63	7.24	3.69	1.64	0.29	224.43
1TbI 08/15_1	1-01/00	17 03	32.83	4.93		117.47	67.29	55.80	432.74	30.40	1.86	961.76	64.57	86.43	14.68	57.94	10.31	1.07	12.24	1.71	10.26	2.07	5.94	0.83	5.52	0.82	10.09	15.37	2.73	7.91	3.94	1.80	0.29	274.39
-трахириоли 08/14-6	3 55	2 284	41.32	0.54	ı	161.87	56.63	50.92	331.77	32.25	1.88	737.69	97.60	193.00	24.55	95.14	16.50	1.21	17.20	1.94	9.54	1.72	4.97	0.68	4.89	0.72	7.46	19.23	3.07	13.50	3.72	2.85	0.22	469.64
ахидациты- 08/14_5	3 60	3.76	44.81	0.44	ı	154.75	58.40	46.22	247.01	31.44	1.86	722.64	99.76	188.46	24.78	95.30	16.64	1.19	17.19	1.95	9.89	1.76	5.15	0.71	5.07	0.75	7.40	19.02	2.96	13.30	3.77	2.75	0.22	468.61
TF 08/14-A	1 3 1 1 3 1	4 68	65.72	0.77	ı	154.15	52.70	44.68	381.47	32.82	1.86	720.70	90.80	186.56	22.55	86.79	15.16	1.10	15.79	1.87	9.74	1.81	5.36	0.76	5.28	0.80	7.66	19.42	3.56	11.63	3.77	2.43	0.22	444.38
08/14_2	3 71	3 19	48.67	0.46	ı	156.05	51.02	47.56	298.98	32.90	1.92	729.83	119.42	324.36	30.03	116.97	20.00	1.47	20.30	2.25	10.62	1.84	5.36	0.75	5.17	0.77	7.73	19.57	3.17	15.60	3.76	3.18	0.22	659.32
C-11/20	3 70	3.68	40.35	0.61		147.53	49.73	48.34	239.77	29.90	1.76	676.43	100.08	195.68	24.93	95.73	16.69	1.22	16.96	1.91	9.27	1.66	4.92	0.69	4.88	0.74	7.20	18.62	3.04	13.86	3.77	2.82	0.22	475.37
08/14_1	3 75	57.5 87.6	50.30	0.79	ı	148.22	48.41	48.44	328.45	30.96	1.79	712.61	128.97	392.82	32.10	124.46	21.48	1.60	21.66	2.40	10.94	1.90	5.45	0.74	5.27	0.78	7.57	18.55	3.11	16.53	3.78	3.33	0.23	750.57
08/13	01/00 25 C	2.52	45.89	1.03	1.69	110.74	31.90	19.14	161.25	17.43	1.18	475.67	31.70	100.94	8.19	30.51	5.24	0.37	5.45	0.66	3.72	0.82	2.63	0.43	2.94	0.48	4.92	14.28	2.11	7.29	3.81	1.50	0.21	194.07
9-012-6	3 18	4 47 7 4 47	46.33	1.40	ı	146.36	49.03	41.83	281.60	30.18	1.68	667.55	115.48	365.32	27.74	106.87	18.10	1.31	18.26	2.01	9.52	1.67	4.80	0.67	4.69	0.69	6.63	18.42	3.02	16.65	4.02	3.16	0.22	677.12
Породы Мо Мо троб		2 2 2	Cr	Co	Ni	Rb	Sr	Y	Zr	Nb	Та	Ba	La	Ce	\mathbf{Pr}	Nd	Sm	Eu	Gd	Πb	Dy	Но	Er	Tm	$\mathbf{Y}\mathbf{b}$	Lu	Ηf	Πh	N	La_N/Yb_N	La_N/Sm_N	Gd_N/Yb_N	Eu/Eu*	Σ P33

Геохимия и геохронология протерозойских магматических пород Улканского прогиба

55

്പ്
Ξ.

Ξ
- 63
- -
3
Ξ.
-
_
É.
\sim
3
E
=
5
0
<u> </u>

Породы		Трахидацить	ы-трахириолить				Гран	иты 1-й ф	азы (n=7)			Граниты 2.	-й фазы (n=7)
NeNe mpo6	09/3-19	9-9/60	8-9/60	09/6-11	08/4	08/7-2	08/7-5	08/7-10	08/7-13	08/7-16	08/7-18	08/24	08/25-4
Sc	1.43	3.10	2.81	3.04	0.09	1.41	0.69	0.83	0.50	1.72	1.18	0.81	1.95
>	1.22	3.96	3.37	4.24	0.32	0.53	0.99	0.76	0.68	0.98	1.45	0.30	1.12
Cr	58.20	40.98	47.94	99.56	59.30	78.78	194.04	116.80	103.05	211.26	116.26	59.80	139.57
Co	0.85	0.87	0.81	1.39	0.52	0.76	1.98	1.03	0.62	1.28	0.84	0.22	0.86
Ni	8.39			6.52	2.50	3.05	10.27	6.23	3.86	11.23	5.93	2.63	7.43
Rb	159.46	81.05	110.90	87.56	148.25	150.20	135.76	177.54	158.20	171.85	204.47	348.84	461.14
Sr	23.59	52.78	45.43	62.58	11.90	11.32	13.02	12.09	11.47	14.80	24.99	7.44	6.41
Υ	37.07	27.98	28.75	34.78	82.61	100.10	88.64	94.02	87.94	88.13	89.69	9.93	15.29
Zr	295.10	327.10	313.78	327.79	341.24	597.63	425.24	418.31	389.33	326.26	347.63	139.18	121.61
ЧN	24.94	21.29	18.83	20.34	91.40	134.94	94.31	95.12	82.16	77.43	81.73	84.55	106.67
Та	1.20	0.97	0.69	0.94	4.65	8.36	5.30	5.36	4.51	4.39	4.46	10.11	15.77
Ba	301.74	719.77	964.16	597.16	101.35	166.50	152.83	147.74	150.99	120.67	170.05	55.06	53.98
La	10.88	22.08	11.41	53.96	68.54	68.25	79.37	97.88	92.34	102.06	109.05	29.00	41.08
Ce	124.74	59.86	76.69	136.07	151.08	148.36	227.92	240.20	186.91	228.13	214.78	55.52	79.85
Pr	2.55	5.59	2.76	13.51	17.85	15.33	17.63	23.72	21.46	23.83	24.93	5.60	7.81
Nd	9.13	21.85	10.47	51.56	62.39	50.75	62.18	82.45	75.58	84.31	86.12	16.14	23.95
Sm	2.03	4.13	2.09	9.27	14.29	12.32	13.13	17.59	15.90	17.25	17.12	2.21	3.39
Eu	0.04	0.31	0.11	0.73	0.26	0.17	0.34	0.45	0.49	0.45	0.55	0.08	0.06
Gd	3.67	4.72	3.10	9.67	16.17	14.72	15.82	19.90	18.37	19.67	18.99	2.14	3.33
Tb	0.68	0.65	0.49	1.18	2.55	2.82	2.57	3.14	2.94	3.00	3.00	0.27	0.36
Dy	6.12	4.85	4.54	6.80	16.80	20.05	16.88	19.65	18.52	18.38	18.54	1.68	2.39
Но	1.41	1.10	1.08	1.31	3.59	4.38	3.62	3.96	3.73	3.68	3.74	0.39	0.47
Er	4.48	3.62	3.66	4.19	11.07	14.29	10.96	11.94	11.14	10.85	10.87	1.44	1.75
Tm	0.63	0.51	0.52	0.56	1.63	2.35	1.67	1.73	1.62	1.56	1.59	0.27	0.25
Yb	4.52	3.84	3.92	4.14	11.52	16.46	11.06	11.51	10.87	10.34	10.42	2.12	2.29
Lu	0.61	0.52	0.54	0.58	1.52	2.43	1.60	1.63	1.55	1.48	1.51	0.36	0.30
Ηf	8.20	8.77	8.18	8.52	14.78	24.57	15.78	15.88	14.27	13.28	13.92	8.21	7.53
Th	15.53	13.05	10.01	12.96	25.58	33.95	25.30	25.36	24.23	21.85	21.83	18.26	19.55
Ŋ	1.87	2.41	2.32	2.51	5.47	10.58	4.98	5.17	5.23	4.45	4.86	4.78	3.61
La_N/Yb_N	1.63	3.89	1.97	8.81	4.02	2.80	4.85	5.75	5.74	6.67	7.07	9.25	12.14
La_N/Sm_N	3.37	3.36	3.43	3.66	3.02	3.49	3.81	3.50	3.66	3.72	4.01	8.25	7.62
Gd _N /Yb _N	0.66	1.00	0.64	1.89	1.14	0.73	1.16	1.40	1.37	1.54	1.48	0.82	1.18
Eu/Eu*	0.05	0.21	0.14	0.24	0.05	0.04	0.07	0.07	0.09	0.08	0.09	0.11	0.05
5. p33	171.50	133.62	121 39	293 54	379.73	377 68	464 75	535 75	461 41	524 97	52121	117.22	167.28

56

Диденко, Гурьянов, Песков и др.

-
تە
Ĩ.
H
3
Б
Ē
2
¥.
$\mathbf{\Sigma}$
Ξ
E S
2. ((
1 2. ((
la 2. ((
ца 2. ((
ица 2. ((
пица 2. ((
5лица 2. (С
16лица 2. (С
аблица 2. (С
Таблица 2. (С

		I																																	
	08/21	1.48	ı	22.14		2.75	170.70	1.60	41.23	639.68	113.39	9.46	11.83	221.62	415.33	46.29	167.38	20.59	0.71	18.70	1.75	8.89	1.97	7.23	1.16	9.38	1.58	14.79	18.77	6.96	15.96	6.77	1.62	0.11	922.58
	08/20-15	3.29	0.41	65.40	0.27	2.94	243.34	4.48	54.26	345.12	47.58	2.32	16.68	248.37	447.02	46.65	163.93	21.87	0.72	19.83	2.16	11.02	1.98	6.34	06.0	6.97	1.18	7.76	18.45	2.01	24.09	7.15	2.31	0.11	978.94
n = 8)	08/20-14	3.65	0.85	75.13	0.41	4.22	273.36	4.14	42.59	142.41	34.34	1.70	14.99	287.64	488.38	50.41	170.03	20.58	0.63	19.07	1.82	8.42	1.42	4.84	0.68	6.42	1.18	4.83	13.02	1.61	30.29	8.80	2.41	0.10	1061.52
и 3-й фазы (08/20-9	7.47	0.55	98.88	0.46	4.73	259.35	3.72	52.38	642.98	303.78	15.97	17.37	430.02	669.30	56.31	179.80	20.24	0.61	20.20	1.91	9.85	2.08	7.46	1.25	10.35	1.76	23.35	38.46	4.19	28.08	13.37	1.58	0.09	1411.14
ные гранить	08/20-7	4.20	1.00	92.87	0.85	15.64	207.24	2.29	20.29	315.61	148.59	10.74	13.89	220.70	368.48	36.47	125.46	14.98	0.45	13.08	1.13	4.98	0.89	3.17	0.50	4.81	0.98	8.71	15.56	8.27	31.01	9.27	2.20	0.10	796.07
Щелочі	08/20-5	3.77	0.84	88.99	0.42	7.17	269.12	4.34	46.20	666.89	273.86	12.25	23.16	311.02	526.01	51.15	171.24	20.65	0.65	19.43	1.89	9.41	1.82	6.26	0.98	8.61	1.45	21.90	32.47	11.16	24.42	9.48	1.83	0.10	1130.56
	08/20-2	4.14	1.48	60.78	0.72	9.11	245.95	3.33	27.45	280.77	45.07	1.61	17.18	438.10	759.33	75.23	248.68	27.99	0.86	24.22	1.90	7.42	1.22	4.53	0.62	5.93	1.09	7.76	19.41	3.54	49.96	9.85	3.31	0.10	1597.13
	08/9	0.14	0.11	50.31	0.39	3.57	223.78	0.51	13.15	141.69	111.15	7.25	12.41	8.29	42.47	2.10	6.98	1.40	0.03	1.95	0.31	2.72	0.64	2.45	0.43	4.48	0.85	4.94	10.71	4.60	1.25	3.73	0.35	0.05	75.11
	08/25-12	1.74	0.79	137.76	0.67	6.14	410.51	6.34	4.91	118.54	96.24	11.43	65.35	14.04	31.17	2.52	7.53	1.02	0.02	1.03	0.11	0.92	0.20	0.83	0.14	1.28	0.20	7.39	21.15	6.10	7.43	8.67	0.66	0.06	61.00
161	08/25-11	1.42	0.95	109.40	0.62	5.77	415.72	7.44	8.53	144.71	99.37	11.49	80.01	11.31	26.26	2.34	7.47	1.28	0.05	1.37	0.19	1.53	0.34	1.39	0.25	2.32	0.37	8.91	23.00	7.05	3.29	5.55	0.48	0.11	56.48
ниты 2-й фаз	08/25-10	1.05	1.06	110.19	0.98	9.13	397.62	7.17	10.40	132.27	94.05	10.28	76.21	19.66	41.58	3.97	12.91	1.92	0.05	1.99	0.25	1.83	0.41	1.53	0.27	2.29	0.35	8.18	21.73	6.34	5.80	6.44	0.71	0.08	89.01
Гран	08/25-9	1.82	1.05	78.05	0.41	3.11	381.73	7.61	5.00	122.65	99.75	12.51	59.75	20.33	38.58	3.65	11.22	1.39	0.02	1.24	0.10	0.87	0.15	0.69	0.10	1.24	0.16	7.06	21.87	4.89	11.10	9.21	0.81	0.04	79.75
	08/25-5	2.48	1.33	75.84	0.47	3.53	376.57	8.10	8.97	155.92	100.09	12.36	53.89	21.33	42.42	3.63	10.59	1.39	0.03	1.40	0.22	2.42	0.56	2.26	0.37	3.15	0.44	8.28	22.71	7.63	4.57	9.67	0.36	0.06	90.20
Породы	N⁰N⁰ πpo6	Sc	Λ	Cr	Co	Ni	Rb	Sr	Υ	Zr	Nb	Та	Ba	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Hf	Th	U	La_N/Yb_N	La_N/Sm_N	Gd_N/Yb_N	Eu/Eu*	Σ P33
		I .																																	

Рис. 3. Классификационные диаграммы (Na₂O+K₂O)–SiO₂ [54] для вулканических (а) и интрузивных (б) пород Улканского прогиба.

1 – базальты, трахибазальты, андезибазальты, трахиандезибазальты улкачанской и элгэтэйской свит; 2 – трахидациты, трахириодациты, трахириолиты элгэтэйской свиты, 3 – гранитоиды улканского комплекса.

мальных и обогащенных базальтах срединно-океанических хребтов, и близки к их содержаниям в базальтах океанических островов. После "свинцовой отметки" ломаная линия распределения элементов в улканских породах имеет в целом отрицательный наклон (от 100 до 10), приближаясь к составам нормальных и обогащенных базальтов срединно-океанических хребтов. Сумма РЗЭ в изученных образцах различается более чем в два раза – от 164 до 393 мкг/г (табл. 2), при среднем содержании 257 мкг/г. На этой же диаграмме (рис. 6а) отчетливо проявлены: Nb и небольшой Eu-Ti минимумы, свойственные продуктам островодужного магматизма, Рb максимум, типичный для базальтов континентальных рифтов, Sr минимум и небольшой Nd максимум. Отношение Zr/Nb (9.3-11.6) близко к таковому для внутриплитных базальтов. Величины индикаторных отношений La/Nb (2.15-2.35), Ba/Nb (11.5-62.7), Ba/Th (43-188), Rb/Nb (0.4-4.3), Th/Rb (0.08-0.72), Ba/La (5-28) в базальтах серии выше, чем в примитивной мантии.

Спектр распределения редких и РЗЭ для трахириодацитов элгэтэйской свиты более дифференцирован по сравнению с таковым для базальтов-трахиандезибазальтов. На спайдер-диаграмме (рис. 6б) отчетливо проявлены: Ва и Nb минимумы, Pb максимум, Sr минимум, Nd и Sm максимум и Eu-Ti минимум. Особенно четко выражены три последних экстремума, которые могут свидетельствовать о формировании изучаемых щелочных кислых пород при флюидно-магматической эволюции трахитовых расплавов, существенно насыщенных летучими компонентами. После "свинцовой отметки" распределение элементов в этих вулканитах аналогично их распределению в основных вулканитах серии, за исключением "глубокого" Еu-Ti минимума. При среднем содержании РЗЭ в элгэтэйских трахириодацитах 369 мкг/г их сумма изменяется весьма существенно – от 121 до 751 мкг/г (табл. 2). Величины индикаторных отношений Zr/Nb (7.9–17), La/Nb (0.44–4.52), Ba/Nb (12.03–51.21), Ba/Th (19.43–108.52), Rb/Nb (3.72–6.39), Th/Rb (0.09–0.16), Ba/La (4.36–84.51) в этих породах выше, чем в примитивной мантии.

Спектры сильно фракционированного распределения редких и РЗЭ в гранитах всех 3-х фаз улканского комплекса, за небольшим исключением, сходны как между собой (рис. 6в), так и со спектром трахириодацитов (рис. 6б). Граниты массива отличаются высокими содержаниями Rb, Th, U, Nb, Ta, P3Э, практическим отсутствием негативной Nb аномалии и деплетацией по Ва, Sr, P, Ti, что свойственно типичным анорогенным редкометалльным щелочным гранитам [18]. Содержания РЗЭ в гранитоидах улканского комплекса существенно различаются; их суммы в гранитах 1-й, 2-й и 3-й фаз равны 466±68, 94±38 и 997±455 мкг/г, соответственно. Наибольшей обогащенностью легкими РЗЭ отличаются граниты 3й фазы – среднее (La₂/Yb₂) = 25.6; оно снижается для гранитов 2-й фазы до 7.6, а 1-й – до 5.3. Средние значения отношения La_"/Sm_" в гранитах 1-й, 2-й и 3-й фаз

Рис. 4. Вариационные диаграммы А. Харкера [44] для вулканических пород улканской серии.

Условные обозначения см. на рис. 3. На диаграмме SiO₂–К₂O классификационные поля даны согласно [57].

составляют 3.6±0.3, 7.9±1.5 и 8.6±2.8 мкг/г, соответственно. Все гранитоиды характеризуются глубокой отрицательной Еu аномалией (Eu/Eu* = 0.04–0.11) (табл. 2, рис. 6в).

Распределение РЗЭ по отношению к хондриту [62] имеет вид, стандартный для пород, подобных улканским: 1) практически линейная зависимость для легких РЗЭ от La до Sm с небольшим отрицательным наклоном; 2) отчетливо выраженный Eu-минимум (основные вулканиты – до 20, кислые – от 20 до 1, граниты 1-й фазы – до 5, для 2-й – менее 1, 3-й – до 10); 3) практически горизонтальная линия для тяжелых РЗЭ от Gd до Lu.

ГЕОХРОНОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ

Как отмечалось выше, возраст магматических пород Улканского прогиба определялся и ранее. Согласно А.М. Ларину [20], возраст трахириолитов элгэтэйской свиты составляет 1720±2.5 млн лет, со-

гласно Ю.Н. Гамалея [10], – 1840 млн лет. Подчеркнем, что оба определения сделаны U-Pb методом по цирконам. Наши попытки определения возраста вулканитов элгэтэйской свиты пока не увенчались успехом – выделить из них однородные "чистые" зерна цирконов не удалось, практически все проанализированные зерна были с включениями; полученные оценки возраста цирконов классическим методом и методом лазерной абляции не совпадают. Необходимо отметить, что полученная нами классическим методом оценка возраста цирконов трахириолитов элгэтэйской свиты (1726±18 млн лет, неопубликованные данные) совпадает с данными А.М. Ларина [20, 24].

Возраст гранитов 1-й, 2-й и 3-й фаз улканского комплекса, согласно [24, 50], составляет 1720.8±1, 1715.8±2.5 и 1704.6±4.7 млн лет, соответственно. В.А. Гурьяновым [11] возраст гранитоидов трех фаз Улканского массива принимался в более широком

диапазоне, 1720–1670 млн лет, исходя из имевшихся геохронологических и геологических данных.

Для определения возраста изучаемых гранитоидов U-Pb методом по цирконам исследованы две пробы гранитов улканского комплекса (табл. 3, рис. 7).

Проба D-08/4 субщелочных гранит-порфиров главной (первой) фазы отобрана из коренного обнажения в правом борту р. Левый Ныгваган на участке Конус в основании одноименной горы (рис. 16; коорд. 56.24351° с.ш., 134.41921° в.д.). Из пробы D-08/4 проанализированы цирконы магматического генезиса трех размерных фракций, а также еще двух фракций после их селективного растворения (табл. 3). Цирконы представлены разноудлиненными кристаллами призматической формы. Преобладают кристаллы с удлинением 1:4. Окраска цирконов светло-коричневая, различной интенсивности. Преобладают замутненные, трещиноватые цирконы, часто с включениями породообразующих минералов. Для анализов выбраны только прозрачные удлиненные цирконы без включений. На диаграмме (рис. 7а) дискордия, рассчитанная для четырех фракций циркона, пересекает конкордию в точке с возрастом 1729.7± 1.9 млн лет (верхнее пересечение, СКВО= 0.5). Точка циркона фракции +100 была исключена из расчета, ее положение на графике заметно отклоняется от положения остальных точек и может предполагать наличие в цирконе некоторой примеси более древней компоненты. Оценки возраста по отношению 207 Pb/ 206 Pb в этих цирконах совпадают (табл. 3), что

Рис. 6. Мультиэлементные диаграммы для вулканитов улканской серии (а – основного и среднего составов; б – кислого состава) и гранитов улканского комплекса (в).

На диаграмме а приведены также составы базальтов срединно-океанических хребтов: деплетированных (Н-БСОХ) и обогащённых (О-БСОХ) – и океанических островов (БОО) [61], базальтов и андезибазальтов Андийского пояса [48]. Примитивная мантия по [57].

свидетельствует об отсутствии унаследованной компоненты и незначительной потере радиогенного свинца. Значение 1730±2 млн лет по верхнему пересечению дискордии с конкордией может быть принято за оценку возраста цирконов из данной пробы и времени кристаллизации гранитов 1-й фазы улканского комплекса.

Проба D-08/21 гранитов 3-й фазы отобрана в пределах Ныгваганского массива из коренного обнажения в верховьях р. Правый Ныгваган (рис. 16; коорд. 56.28334° с.ш., 134.40875° в.д.). Из нее проанализированы цирконы магматического генезиса двух

Рис. 7. U-Pb диаграммы с дискордиями и конкордией для цирков из гранитов 1-й (а) и 3-й (б) фаз улканского комплекса.

Залитые треугольники – точки составов, по которым определена дискордия; незалитый треугольник - точка состава, исключенная из определения дискордии.

размерных фракций, а также еще двух фракций после их абразивной обработки (табл. 3). Цирконы в пробе представлены призматическими зернами с четкими гранями и вершинами. Цирконы прозрачны, слабо окрашены в сиреневатые тона. Преобладают прозрачные цирконы, но есть и непрозрачные. Для анализа были выбраны только прозрачные, хорошо оформленные, короткопризматические цирконы. По 4 точкам составов всех проанализированных фракций цирконов рассчитана дискордия (рис. 76), ее верхнее пересечение соответствует 1724.7 ± 3.6 млн лет (СКВО=1.9). Значение 1725 ±4 млн лет по верх-

N5/-	Размер		Содержа	ание, ррт	Изотопні	ые отношения, из	меренные	Изотопны	с отношения	010	Возраст по
	фракции, µm	riabecka, MI	Ŋ	Pb	$^{206}Pb/^{204}Pb$	$^{206}Pb/^{207}Pb$	$^{206}Pb/^{208}Pb$	$^{207}\text{Pb}/^{235}\text{U}$	$^{206}Pb/^{238}U$	IVIIO	²⁰⁷ Pb/ ²⁰⁶ Pb, Ma
					$D-08/4, np_{0}$	оба гранитов 1-й	фазы				
1	-150 + 100	1.10	374.0	91.8	5150	9.5043 ± 2	5.6557±1	3.143 ± 5	0.2221 ± 4	0.96	1672 ± 1
0	+100	1.10	241.4	57.4	4666	9.3453±2	5.5728 ± 1	3.467±6	0.2414 ± 5	0.96	1700 ± 1
ς	-100 + 75	1.10	227.6	62.6	7178	9.4532±4	5.5173±2	3.561±7	0.2484 ± 5	0.96	1696 ± 1
4	-75 СР-8 часов	3.10			13922	9.3795±3	5.6924 ± 2	4.434±8	0.3041 ± 6	0.96	1727 ± 1
5	-100+75 СР-8 ч.	3.40			24329	9.4205±1	5.9641 ± 1	4.371 ± 8	0.3000 ± 3	0.99	1726 ± 1
					D-08/21, np	юба гранитов 3-й	й фазы				
1	-100+90	1.12	223.1	59.5	409	7. 2987±3	5.7428±1	3.259±2	0.2277 ± 11	0.92	1693 ± 2
0	-90+75	1.12	271.8	68.9	407	7.3322±3	5.5833±4	3.083±5	0.2161 ± 11	0.92	1678 ± 2
c	-90+75 СР-8 ч.				3314	9.1838 ± 9	16.487 ± 3	3.936±7	0.2722 ± 12	0.96	1712 ± 1
4	-75 СР-8 ч.				7855	9.3928±3	18.329±1	3.772±6	0.2610 ± 13	0.95	1711 ± 1
		Bosnace Ma	Sm,	,bN	147 C m/144 NIA	$^{143}Nd/^{144}Nd\pm 2\sigma$	¹⁴³ Nd/ ¹⁴⁴ Ndi,	(T)	$T_{Nd}(DM)^{1}$,	$T_{Nd}(DM-1)^2$,	$T_{Nd}(DM-2)^2$,
		Duspaut, INIA	$MK\Gamma/\Gamma$	MKL/F		измеренное	начальное	6Nd(1)	Ga	Ga	Ga
D-08/4	граниты 1 фазы	1730	14.3	62.4	0.10993	0.511829 ± 11	0.510578	3.5	1.95	1.84	1.85
D-08/21	граниты 3 фазы	1725	20.6	167.4	0.06087	0.511130 ± 5	0.510439	0.7	2.02	1.94	2.07
Примеча	чие. СР – селективн	ое кислотное р	астворени	ie; Rho – ĸc	эффициент ко	преляции изотоп	іных отношени	й ²⁰⁷ Pb/ ²³⁵ U ⁻²	⁰⁶ Pb/ ²³⁸ U; T _{Nd} ()	DM) ¹ – модель	С. Гольдшмита

однокомпонентной деплетированной мантии [43]; TNd(DM-1)² и TNd(DM-2)² – модели В. Хофмана однокомпонентной и двухкомпонентной деплетированной мантии [51],

соответственно. Расчеты выполнены по программе "Geochemical Data Toolkit in R" [47].

нему пересечению дискордии с конкордией может быть принято за оценку возраста цирконов из данной пробы и времени кристаллизации 3-й фазы гранитов улканского комплекса.

Sm-Nd изотопная система гранитов улканского комплекса изучена по валу из проб D-08/4 и D-08/21 (табл. 3). Для гранитов 1-й фазы установлены положительное значение $\epsilon Nd(T) = +3.5$ и позднепалеопротерозойский Nd-модельный возраст TNd(DM), равный 1.84 млрд лет согласно модели однокомпонентной деплетированной мантии В. Хофмана [51] или 1.95 млрд лет согласно модели С. Гольдшмита однокомпонентной деплетированной мантии [43]. Можно предположить, что источником, из которого выплавлялись граниты 1-й фазы улканского комплекса, были молодые, по отношению к возрасту образований кристаллического фундамента, породы. Sm-Nd данные свидетельствуют об образовании гранитов за счет парциального плавления пород ювенильной коры с возрастом 1.84-1.95 млрд лет, что несколько отличается от модельного возраста гранитов Северо-Учурского массива (2.08–2.33 млрд лет) [50]. Для гранитов 3-й фазы установлено близкое к нулю значение $\varepsilon Nd(T) = +0.7$ и близкий к гранитам 1 фазы Nd-модельный возраст TNd(DM) (табл. 3).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ДИСКУССИЯ

Во введении мы отмечали, что на протяжении всей истории изучения Улканского прогиба (Джугджуро-Улкан-Билякчанского пояса) не было единой точки зрения на его образование. Проанализируем полученные нами новые данные для проверки существующих гипотез.

На тройной диаграмме Дж. Пирса MgO-FeOt-Al₂O₂ [31] почти все фигуративные точки вулканитов улкачанской свиты ложатся в область континентальных платобазальтов, немногие попадают в поле надспрединговых островов. На диаграмме Е. Муллена 10MnO-TiO₂-10P₂O₅ [55] большинство фигуративных точек этих пород находится в области базальтов и андезитов океанических островов, несколько – в полях толеитов океанических островов и нормальных океанических базальтов. Все это говорит об ограниченных возможностях использования дискриминационных диаграмм, основанных на распределении петрогенных элементов. Вероятно, здесь могли сказаться несколько факторов. Например, неполный изохимизм вторичных процессов, приведших к выносу и привносу некоторых подвижных петрогенных элементов, и смешение источников. При геохимических исследованиях древних пород для осторожности обычно используются систематики наименее подвижных редкоземельных и высокозарядных некогерентных элементов. Картины их распределения и закономерности поведения в магматических процессах хорошо изучены (например, [36]. Поэтому предпочтительнее рассмотреть поведение фигуративных точек исследуемых пород на дискриминационных диаграммах соотношений менее мобильных редких и РЗЭ.

Для начала вновь обратимся к спайдер-диаграмме (рис. 6а) для трахибазальтов и трахиандезибазальтов улканской серии, на которой дано распределение микроэлементов в базальтах и андезибазальтах мезозойско-кайнозойского окраинно-континентального Андийского магматического пояса [48]. Можно видеть геометрическое подобие этих двух спектров – повторяется большинство характерных экстремумов.

При наличии в обрамлении Улканского прогиба геолого-структурных признаков палеопротерозойской субдукции в пользу надсубдукционной обстановки формирования улканских вулканитов (рис. 6а,б) могли бы также свидетельствовать [36]: 1) обогащенность крупно-ионными литофильными элементами и легкими редкими землями по сравнению с H-БСОХ, отражающая важнейшую роль водного флюида, хотя она не менее характерна и для внутриплитного магматизма; 2) "...повторяющаяся картина отрицательных аномалий Nb и Ta в островодужных вулканитах разного возраста стала рассматриваться как их важнейший диагностический признак (стр. 103 [36])". За исключением противоречащего субдукции поведения Sr, положение которого на спайдер-диаграммах улканских пород соответствует контрастному минимуму, все остальные характеристики, перечисленные выше, имеют место. Для островодужных вулканитов свойственен Sr максимум [30], а не минимум.

Второе свидетельство либо островодужной надсубдукционной, либо активной окраинно-континентальной трансформного типа, либо внутриплитной обстановки проявления улканского вулканизма можно видеть на рис. 8. Здесь на диаграммах Th-Hf/3-Ta (рис. 8a) и Th/Yb-Ta/Yb (рис. 8б) показаны фигуративные точки базальтов и андезибазальтов островных дуг, активных континентальных окраин [48] и внутриплитных присдвиговых рифтогенных впадин, а также точки проанализированных нами проб вулканитов улканской серии. Видно, что последние располагаются в поле распространения первых. В поле активных континентальных окраин на диаграммах Th/Yb-Ta/Yb и Th/Ta-Yb [58] лежат фигуративные точки трахириодацитов элгэтэйской свиты (рис. 8 б, в). При этом точки основных вулканитов улканской серии попадают в поля как активных континентальных окраин, так и внутриплитных вулканических зон.

Наличие бимодальной серии в разрезах современных активных континентальных окраин отмечалось неоднократно, например, для Андийского пояса в районе Чилийского тройного сочленения [40] и для Курильской дуги [3]. Вместе с тем, бимодальные ассоциации, аналогичные улканской, – характерная черта вулканических серий континентальных рифтов, так же, как и щелочной их уклон. Они считаются индикаторными для рифтовых структур. Отметим также, что типоморфным признаком островодужной обстановки является главенствующий андезитовый вулканизм с обилием туфов, составляющих обычно более половины объема вулканических накоплений. В разрезе же улканской серии андезиты составляют первые проценты [11].

Следует указать, что поведение ряда элементов не характерно для островодужных ситуаций: 1) на спайдер-диаграммах для вулканитов улканской серии отчетливо проявлен максимум по Pb (рис. 6a, б), типичный для базальтов рифтовых зон; 2) концентрация высокозарядных некогерентных элементов, таких как Zr, Hf, Y, в них выше, чем в островодужных базальтах (рис. 6а, б; табл. 2), и приближается к их содержаниям во внутриплитных вулканитах; 3) отношение Zr/Nb (9.3–11.6) близко к верхнему пределу для внутриплитных базальтов (до 12); 4) величины La/Nb (2.15-2.35), Ba/Nb (11.5-62.7), Ba/Th (43-188), Rb/Nb (0.4–4.3), Th/Rb (0.08–0.72), Ba/La (5–28) выше, чем в примитивной мантии и близки к значениям в континентальной коре. Детальное описание внутриплитных источников для магм, формировавших вулканиты улканской серии, дано А.М. Лариным [20].

Приведенные данные по геохимии вулканитов улканской серии показывают, что они имеют признаки, свойственные породам различных современных геодинамических обстановок: надсубдукционной и внутриплитной. Это не позволяет сделать однозначный вывод о геодинамической природе пород улканской серии на основе ее геохимических характеристик. Причина этого не только в несовершенстве диаграмм и ограниченности их применения, но и в сложности любого реального тектонического режима, приводящего к латеральному совмещению в пределах одной и той же геологической структуры образований с геохимическими признаками, характерными для разных геодинамических обстановок. Конвергенция химических особенностей пород активных континентальных окраин уже была наглядно показана на приме-

Рис. 8. Дискриминационные диаграммы для вулканитов улканской серии: а – диаграмма Th-Hf/3-Ta, по [63], б–в – диаграммы Th/Yb-Ta/Yb (б) и Th/Ta-Yb (в), по [58].

На "а" и "б" двойными буквенными индексами (прописная и строчная буквы) показано положение соотношений содержаний микроэлементов в надсубдукционных базальтах, андезибазальтах островных дуг (ОД) и активных континентальных окраин (АКО): Ал – Алеутской, Ан – Андийской, Ца – Центрально-Американской, Кс – Каскадных гор, Км – Камчатской, Кр – Кермадек, Ма – о-вов Малых Антил, Лз – о-ва Лузон, Мр – Марианской, Нг - Новогибридской, Ск - Скотия, То - Тонга, а также в базальтах срединно-океанических хребтов - Сб, по [48]. На диаграмме "а" заглавными буквами обозначены поля соотношений содержаний Th, Hf и Ta в породах различных геодинамических обстановок: ИЩБ - в известково-щелочных базальтах ОД, АКО трансформного типа (северо-запада Америки), внутриплитных присдвиговых рифтогенных впадин Кореи и Западного Приморья; ТОД – в толеитовых базальтах ОД и АКО; Н-БСОХ – в деплетированных базальтах срединно-океанических хребтов (СОХ); О-БСОХ + ВПТ - в обогащённых

толеитах COX + внутриплитных толеитах; ВПЩ – в щелочных внутриплитных базальтах. На диаграмме "6" заглавными буквами обозначены поля соотношений содержаний Th, Yb и Ta: во внутриплитных базальтах – ВПБ; в деплетированных базальтах срединно-океанических хребтов – БСОХ. Остальные условные обозначения см. на рис. 3.

ре Камчатки и Японии с учетом эволюции островных дуг, земной коры и мантии [4, 6, 25].

Тем не менее, петро- и геохимические черты пород бимодальной улканской серии, с учетом геологоструктурных особенностей Улканского прогиба и его обрамления, позволяют высказать предположение, что под прогибом располагались разноглубинные очаги контрастных по составу, но сходных по химизму магм. Он был областью латерального совмещения продуктов по меньшей мере двух источников – основного и кислого. Такая геодинамическая ситуация может реализовываться, как показано в работах [30, 35, 36, 38], в обстановках континентальных окраин трансформного типа на участках локального растяжения и в областях внутриплитного присдвигового континентального рифтогенеза [33]. Соединение глубинных компонентов недеплетированной мантии с расплавами разных по глубине и составу субстрата магматических очагов является причиной образования вулканитов с различающимися геохимическими "метками".

Характеризуя граниты улканского комплекса, обратимся еще раз к спайдер-диаграммам трахириодацитов элгэтэйской свиты и гранитоидов (рис. 6б, в). Можно видеть хорошее сходство их спектров – повторяются практически все характерные экстремумы. На этом основании можно предположить, что они имели единый источник, либо субстратом при выплавлении гранитов были породы, аналогичные по составу вулканитам элгэтэйской свиты. Как отмечалось выше, все граниты улканского комплекса относятся к А-типу – на это указывали П.Г. Недашковский и А.М. Ленников [23], В.А. Гурьянов [11], А.М. Ларин [20]. Гранитоиды улканского комплекса характеризуются высокими содержаниями Rb, Nb, Y (табл. 2; рис. 6в) и на диагностических диаграммах Дж. Пирса [56] попадают исключительно в поле внутриплитных А-гранитов; на рис. 9а приведена одна из них, Nb–Y. Можно предположить, что формирование родоначальных расплавов для гранитоидов осуществлялось при частичном плавлении в основном коровых источников, а дифференцированные разновидности гранитоидов были сформированы в результате фракционной кристаллизации первичных расплавов.

Более сложное распределение отмечается на дискриминационной диаграмме R₂-R₁ [37], на которой фигуративные точки улканских гранитов выстраиваются в полосу, вытянутую вдоль границы полей позднеорогенных и анорогенных гранитов до поля посторогенных с небольшим перекрытием поля синколлизионных гранитоидов (рис. 9б). Неоднозначность определения геодинамической обстановки формирования гранитоидов улканского комплекса хорошо демонстрируется на следующих двух взаимоисключающих дискриминационных диаграммах. На диаграмме Hf-Rb-Ta [45] фигуративные точки изученных пород занимают поля гранитов трех типов - внутриплитных, постколлизионных, вулканических дуг (рис. 9в). На диаграмме Yb-Ta-Hf [41] фигуративные точки изученных гранитов занимают два разных поля – А, и А, (рис. 9г). Первое соответствует анорогенным внутриплитным гранитоидам, источниками которых были породы, по своему составу подобные базальтам океанических островов, второе - постколлизионным гранитоидам, источниками которых являлись породы субконтинентальной литосферы и континентальной коры.

На основании этих построений можно предположить, что гранитоиды улканского комплекса имеют геохимические свойства, сходные с таковыми гранитов, размещенных в современных геодинамических обстановках двух типов – внутриплитной и коллизионной, когда в условиях общего сжатия мощность коры превышает критическую величину и происходит нарушение термальной границы кора-мантия, что физически представляется деламинацией нижней коры или отрывом субдукционного слэба [27, 36]. В пользу последней геодинамической ситуации при формировании улканских гранитов мог бы свидетельствовать и установленный позднепалеопротерозойский Nd-модельный возраст субстрата гранитов 1-й фазы TNd(DM) ~ 1.84–1.95 млрд лет (табл. 3).

Представленные данные и их сопоставление с геохимическими характеристиками пород из различных геодинамических обстановок позволяют предложить следующую модель становления структуры Улканского прогиба во второй половине палеопротерозоя: 1) Формирование вулканических пород улканской серии связано как минимум с двумя источниками - коровым и мантийным, совмещение продуктов которых в пространстве и времени произошло в геодинамической обстановке трансформной континентальной окраины типа трансформный сдвиг-раздвиг (рифт). Время действия этих геодинамических условий можно оценить, вероятно, как > 1.84 млрд лет назад. По мнению О.В. Авченко с соавторами [1], на изучаемой территории "в период "станового" вулканизма существовали геодинамические условия, подобные современным дугам, континентальным окраинам, океаническим островам и срединно-океаническим хребтам". Вполне вероятно, что современная зона Станового разлома могла быть заложена в начале второй половины палеопротерозоя как трансформная граница (разлом). 2) После рубежа ~1.8 млрд лет на изученной территории происходило столкновение крупного континентального блока (Сибирского кратона или его части) с позднепалеопротерозойским суперконтинентом Колумбия (Нена), а улканский комплекс-индикатор гранитоидов и весь Улканский пояс сформировались на последней стадии развития коллизионного орогена Алданской тектонической провинции, как предполагает О.М. Розен [27]. О гигантской коллизии Алданского щита и микроконтинентов пишет И.А. Александров [2], по его данным, она могла произойти на рубеже ~1.9 млрд лет.

Положение Улканского прогиба с его структурными и вещественными чертами, типичными для рифтогенных грабенов внутри- и окраинно-континентальных обстановок трансформного типа, объясняет сочетание в нем бимодальных пород.

ЗАКЛЮЧЕНИЕ

Анализ оригинальных геохимических и геохронологических данных позволяет сделать ряд новых выводов, раскрывающих некоторые детали истории становления Улканского прогиба.

1. Вулканиты улканской серии имеют геохимические признаки, присущие породам двух современных геодинамических обстановок: надсубдукционной и внутриплитной. Соединение в магматических камерах компонентов разноглубинных источников является причиной образования вулканитов, имеющих различающиеся геохимические "метки".

Рис. 9. Дискриминационные диаграммы для гранитоидов улканского комплекса: а – диаграмма Nb–Y по [56], б – диаграмма R₂–R₁ по [37, 39], в – диаграмма Hf–Rb–Ta по [45], г – диаграмма Yb–Ta–Hf по [41].

1–4 – точки соотношений содержаний микроэлементов (а, в, г) и петрохимических параметров (б) в гранитах: *1* – без разделения их на фазы; *2* – 1-й фазы; *3* – 2-й фазы; *4* – 3-й фазы.

На диаграммах "a" и "в" буквенными индексами обозначены поля гранитов: ВПГ – внутриплитных; ГВД – вулканических дуг; син-КГ – синколлизионных; ГОХ – океанических хребтов; пост-КГ – постколлизионных. Пунктирная линия на диаграмме "a" – граница ГОХ для аномальных рифтов. На диаграмме "6" названиями геотектонических обстановок обозначены поля характерных для них гранитоидов. На диаграмме "г" буквенно-цифровыми индексами обозначены поля гранитоидов: A₁ – анорогенных внутриплитных, A₂ – постколлизионных.

2. Возраст гранитоидов трех фаз Улканского массива определен в интервале 1725–1730 млн лет. Для гранитов 1-й фазы установлены положительные значения єNd(T) = +3.5 и позднепалеопротерозойский Nd-модельный возраст TNd(DM), равный 1.84 млрд лет согласно модели однокомпонентной деплетированной мантии В. Хофмана [51] или 1.95 млрд

лет согласно модели С. Гольдшмита однокомпонентной деплетированной мантии [43]. Можно предположить, что источником, из которого выплавлялись граниты 1-й фазы улканского комплекса, были молодые, по отношению к возрасту образований кристаллического фундамента, породы. Sm-Nd данные свидетельствуют об образовании гранитов за счет парциального плавления пород ювенильной коры с возрастом 1.84–1.95 млрд.

3. Вероятно, формирование вулканических пород улканской серии связано с геодинамической обстановкой трансформной континентальной окраины типа трансформный сдвиг–раздвиг (рифт). Время действия этих геодинамических условий > 1.84 млн лет. После этого времени на изученной территории, вероятно, происходило столкновение крупного континентального блока (Сибирского кратона или его части) с позднепалеопротерозойским суперконтинентом Колумбия.

БЛАГОДАРНОСТИ

Авторы благодарят А.И. Ханчука, А.А. Щипанского, И.П. Войнову за обсуждение и полезные замечания, учтенные при подготовке настоящей работы, Е.Б. Сальникову за ознакомление с геохронологическим разделом работы. Огромную признательность и благодарность авторы приносят рецензентам А.М. Ларину и В.Г. Сахно, чьи замечания и предложения существенно способствовали улучшению качества представляемого материала. Помощь в оформлении рисунков оказала О.М. Меньшикова, за что авторы ей благодарны. Исследования выполнены в рамках интеграционной программы ОНЗ РАН "Строение и формирование основных геологических структур подвижных поясов и платформ" (проект ДВО РАН 09-І-ОНЗ-10) и при финансовой поддержке РФФИ (проект № 09-05-00223а).

СПИСОК ЛИТЕРАТУРЫ

- Авченко О.В., Александров И.А., Худоложкин В.О., Мишкин М.А. Флюидный режим метаморфизма амфиболитовой фации Джугджуро-Становой складчатой области (Дальний Восток) // Тихоокеан. геология. 2009. Т. 28, № 4. С. 3–15.
- Александров И.А. Термобарометрия, флюидный режим и состав протолитов метаморфических пород амфиболитовой фации Джугджуро-Становой складчатой области: Автореф. дис.... канд. геол.-минер. наук. Владивосток: ДВГИ ДВО РАН, 2008. 24 с.
- Антонов А.Ю. Вещественная зональность четвертичного вулканизма Курильской островной дуги и новые петрогенетические следствия // Литосфера. 2006. № 1. С. 22–44.
- 4. Балашов Ю.А. Изотопно-геохимическая эволюция мантии и коры Земли. М.: Наука, 1985. 224 с.
- Башарин А.К. Деструктивный этап тектонической эпохи в полициклически развивающихся регионах // Структурные элементы земной коры и их эволюция. Новосибирск: Наука, 1983. С. 60–82.
- 6. Богатиков О.А., Цветков А.А. Магматическая эволюция островных дуг. М.: Наука, 1988. 248 с.
- Бок Р. Методы разложения в аналитической химии. М.: Химия. 1984. 427 с.

- Борукаев Ч.Б. Структуры докембрия и тектоника плит. Новосибирск: Наука, 1985. 190 с.
- Бухаров А.А. Этапы и факторы становления континентальной коры на территории Восточной Сибири // Тектоника Сибири. Т. XI. Новосибирск: Наука, 1983. С. 123– 132.
- Гамалея Ю.Н. Формационный анализ и история развития юго-восточной части Сибирской платформы в докембрии // Геотектоника. 1968. № 6. С. 35–45.
- Гурьянов В.А. Геология и металлогения Улканского района (Алдано-Становой щит). Владивосток: Дальнаука, 2007. 227 с.
- Диденко А.Н., Козаков И.К., Бибикова Е.В. и др. Палеомагнетизм нижнепротерозойских постколлизионных гранитоидов юга Сибирского кратона и геодинамические следствия // Докл. РАН. 2003. Т. 390, № 3. С. 368–373.
- 13. Диденко А.Н., Водовозов В.Ю., Козаков И.К., Бибикова Е.В. Палеомагнитное и геохронологическое изучение постколлизионных раннепротерозойских гранитоидов юга Сибирской платформы: методические и геодинамические аспекты // Физика Земли. 2005. № 2. С. 66–83.
- 14. Диденко А.Н., Гурьянов В.А., Песков А.Ю. и др. Геохимия, геохронология и палеомагнетизм палеопротерозойских образований Улканского прогиба (юго-восток Алдано-Становой провинции) // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного поясп (от океана к континенту): Материалы совещания. Вып. 7. Иркутск: ИЗК СО РАН, 2009. Т. 1. С. 90–91.
- 15. Диденко А.Н., Гурьянов В.А., Приходько В.С. и др. Палеопротерозойские граниты Улканского массива: положение в структуре, геохимия и геодинамика // Тектоника и глубинное строение востока Азии: VI Косыгинские чтения, 20–23 янв. 2009 г. Хабаровск. Хабаровск: ИТиГ ДВО РАН, 2009. С. 179–182
- 16. Зоненшайн Л.П., Кузьмин М.И., Натапов Л.М. Тектоника литосферных плит территории СССР. В 2 кн. М.: Недра, 1990. Кн. 1. 328 с.; Кн. 2. 334 с.
- Карсаков Л.П., Бибикова Е.В. и др. Региональная стратиграфическая схема нижнего докембрия Алдано-Станового региона (Состояние и проблемы) // Стратиграфия архея и нижнего протерозоя СССР. Уфа: УрО АН СССР, 1990. С. 17–21.
- Коваленко В.И., Ярмолюк В.В., Козловский А.М., Иванов В.Г. Источники магм щелочных гранитов и связанных с ними пород внутриплитных магматических ассоциаций Центральной Азии // Докл. РАН. 2001. Т. 377, № 5. С. 672–676.
- Константиновский А.А. Улканский и Билякчанский среднепротерозойские грабены юго-востока Сибирской платформы // Изв. АН СССР. Сер. геол. 1974. № 4. С. 72–84.
- 20. Ларин А.М. Рапакивигранитсодержащие магматические ассоциации: геологическое положение, возраст, источники: Автореф. дис.... д-ра геол.-минер. наук. М.: ИГЕМ РАН, 2008. 47 с.
- 21. Лейтес А.М., Федоровский В.С. Тектоника и важнейшие этапы становления континентальной коры юга Сибирской платформы в раннем докембрии // Тектоника фундамента Восточно-Европейской и Сибирской платформ. М.: Наука, 1978. С.109–170 (Тр. ГИН АН СССР. Вып. 321).
- 22. Мазукабзов А.М., Гладкочуб Д.П., Донская Т.В. и др. Эво-

люция южной части Сибирского кратона в докембрии / Науч. ред. Е.В. Скляров. Новосибирск: Изд-во СО РАН, 2006. 367 с.

- 23. Недашковский П.Г., Ленников А.М. Петрология и геохимия алданских рапакиви. М.: Наука, 1991. 134 с.
- 24. Неймарк Л.А., Ларин А.М., Яковлева С.З., Гороховский Б.М. U-Pb возраст магматических пород Улканского грабена (юго-восточная часть Алданского щита) // Докл. РАН. 1992. Т. 323, № 6. С. 1152–1156.
- 25. Пузанков Ю.М. Геохимические особенности проявления кайнозойского базальтового магматизма над "горячими точками" // Геохимия. 1999. № 9. С. 941–949.
- 26. Розен О.М. Сибирский кратон: тектоническое районирование, этапы эволюции // Геотектоника. 2003. № 3. С. 3–21.
- Розен О.М., Манаков А.В., Зинчук Н.Н. Сибирский кратон: формирование, алмазоносность. М.: Науч. мир, 2006. 212 с.
- 28. Салоп Л.И. Общая стратиграфическая шкала докембрия. Периодизация докембрия материков северного полушария и основные черты раннего этапа геологической эволюции. Л.: Недра, 1973. 310 с.
- 29. Семихатов М.А. Новая стратиграфическая шкала докембрия СССР: анализ и уроки // Изв. АН СССР. Сер. геол. 1979. № 11. С.5–22.
- 30. Симаненко В.П., Голозубов В.В., Сахно В.Г. Геохимия вулканитов трансформных окраин (на примере Алчанского бассейна, северо-западное Приморье) // Геохимия. 2006. № 12. С. 1251–1265.
- Скляров Е.В., Гладкочуб Д.П., Донская Т.В. и др. Интерпретация геохимических данных / Под ред. Е.В. Склярова. М.: Интермет Инжиниринг, 2001. 288 с.
- 32. Смелов А.П., Тимофеев В.Ф. Террейновый анализ и геодинамическая модель формирования Северо-Азиатского кратона в раннем докембрии // Тихоокеан. геология. 2003. Т. 22, № 6. С. 42–54
- Филатова Н.И., Федоров П.И. Кайнозойский магматизм Корейско-Японского региона и геодинамические обстановки его проявления // Геотектоника. 2003. № 1. С. 54–77.
- Хаин В.Е. Тектоника континентов и океанов (год 2000).
 М.: Науч. мир, 2001. 606 с.
- 35. Ханчук А.И. Палеогеодинамический анализ формирования рудных месторождений Дальнего Востока России // Рудные месторождения континентальных окраин. Владивосток: Дальнаука, 2000. С. 5–34.
- 36. Щипанский А.А. Субдукционные и мантийно-плюмовые процессы в геодинамике формирования архейских зеленокаменных поясов. М.: Изд-во ЛКИ, 2008. 560 с.
- Batchelor R.A., Bowden P. Petrogenetic interpretation of granitoid rock series using muticationic parameters // Chemical Geology. 1985. V. 48. P. 43–55.
- Brandon M.T., Roden-Tice M.R., Garver J.I. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State GSA // Bull. 1998. V. 100. P. 985–1009.
- 39. De La Roche H., Leterrier J., Grandclaude P., Marchal, M. A classification of volcanic and plutonic rocks using R1R2diagram and major element analyses – its relationships with current nomenclature // Chemical Geology. 1980. V. 29. P. 183–210.
- 40. Didenko A.N., Forsythe R. Petromagnetic study of igneous

rocks of the Taitao Ridge, Chile Triple Junction, Site 862 // Proc. ODP, Sci. Results, 141, College Station, TX, 1995. P. 51–57.

- Eby G.N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications // Geology. 1992. V. 20. P. 641–644.
- Frost B.R., Barnes C.G., Collins W.J. et al. A geochemical classification for granitic rocks // J. Petrology. 2001. V. 42. P. 2033–2048.
- Goldstein S.J., Jacobsen S.B. Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution // Earth Planet. Sci. Lett. 1988. V. 87. P. 249–265.
- 44. Harker A. The natural history of igneous rocks. London: Methuen, 1909. 139 p.
- Harris N.B.W., Pearce J.A., Tindle A.G. Geochemical characteristics of collision-zone magmatism / Coward M.P., Ries A.C. (Eds.) // Collisions tectonics. Geol. Soc. Spec. Pub. 1986. V. 19. P. 67–81.
- Jacobsen S.B., Wasserburg G.J. Sm-Nd evolution of chondrites and achondrites. II // Earth Planet. Sci. Lett. 1984. V. 67. P. 137–150.
- 47. Janousek V., Farrow C. M., Erban V.GCDkit: Geochemical Data Toolkit in R, version for Windows. Version 2.3 (May 11, 2008) (http://www.gla.ac.uk/gcdkit).
- Kelemen P.B., Hanghuj K., Greene A. R. One View of the Geochemistry of Subduction-related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust / The Crust. Ed. R.L. Rudnick. In: Treatise on Geochemistry / Eds H.D. Holland, Turekian K.K. Amsterdam: Elsevier Ltd. 2003. V. 3. P. 593–659P.
- Krogh T.E. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination // Geochimica et Cosmochimica Acta, 1973. V. 37. P. 485–494.
- 50. Larin A.M., Amelin Yu.V., Neymark L.A., Krymsky R.Sh. The Origin of the 1.73–1.70 Ga Anorogenic Ulkan volcanoplutonic complex, Siberian platform, Russia: inferences from Geochronological, Geochemical and Nd-Sr-Pb: Isotopic Data // An. Acad. Bras. Ci. 1997. V. 69, N 3. P. 295–312.
- 51. Liew, T. C., A. W. Hofmann. Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Inidications from a Nd and Sr isotopic study // Contrib. Mineral. Petrol. 1988. V. 98, P. 129–138.
- Ludwig K.R. User's Manual for ISOPLOT 3.00. A Geochronological Toolkit for Microsoft Excel / Berkeley Geochronology Center. Special Publication N 4. Revised May 30, 2003. 71 p.
- Mattinson J.M. A study of complex discordance in zircons using step-wise dissolution techniques // Contrib. Mineral. Petrol. 1994. V.116. P. 117–129.
- Middlemost E.A.K. Naming materials in magma/igneous rock system // Earth Sci. Rev. 1994. V. 37. P. 215–224.
- Mullen E D. MnO/TiO₂/P₂O₅: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis // Earth and Planetary Science Letters. 1983. V. 62. N 1. P. 53–62.
- Pearce J.A., Harris N.B.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks // J. Petrol. 1984. V. 25. P. 956–983.

- Peccerillo A., Taylor S.R. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, Northern Turkey // Contrib. Mineral. Petrol. 1976. V. 58. P. 63–81
- Schandl E.S., Gorton M.P. Application of high field strength elements to discriminate tectonic settings in VMS environments // Economic Geology. 2002. V. 97. P. 629–642.
- Stacey, J.S., Kramers, I.D. Approximation of terrestrial lead isotope evolution by a two-stage model // Earth and Planetary Science Letters. 1975. V. 26, N 2. P. 207–221.
- Steiger, Jaeger, 1976 Steiger, R. H., Jager, E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology // Earth Planet. Sci. Lett. 1977. V. 28. P. 359–362.
- Sun S. S., McDonough W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Saunders A D, NorryM(Eds)

Magmatism in Ocean Basins. Geological Society of London Special Publication, 1989. V. 42. P. 313–345.

- 62. Taylor, S.R., McLennan, S.M. The continental crust: its composition and evolution. Blackwell, Oxford Press, 1985. 312 p.
- 63. Wood D.A., The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province // Earth Planet. Sci. Lett., 1980. V. 50. P. 11–30.
- 64. Yu Z., Robinson Ph., McGoldrick P. An evaluation of methods for the chemical decomposition of geological materials for trace element determination using ICP-MS // Geostandards Newsletter. 2001. V. 25, N 2–3. P. 199–217.

Рекомендована к печати В.Г. Сахно

A.N. Didenko, V.A. Guryanov, A.Yu. Peskov, A.N. Perestoronin, D.V. Avdeev, Ye.V. Bibikova, T.I. Kirnozova, M.M. Fugzan

Geochemistry and geochronology of Proterozoic magmatic rocks of the Ulkan trough (new evidence)

The paper offers new geochemical and geochronological evidence, which is suggested as the basis for the specified model of formation of the Ulkan trough. Volcanics of the Ulkan Group exhibit geochemical features proper to rocks of two recent geodynamic settings: supersubduction and within-plate. The combination of components from different-depth sources in magmatic chambers is the reason for formation of volcanics with different geochemical "indicators".

The age of granitoids of the three phases of the Ulkan massif is determined in the interval 1730–1725 Ma. The positive value eNd(T) = +3.5 and +0.7 has been established for the granites of the first and third phase. The source of melting-out of the first phase granites of the Ulkan complex were probably Paleoproterozoic rocks of juvenile crust of 1.84–1.95 Ga. The formation of effusive rocks of the Ulkan Group may be related to the geodynamic setting of the Cordilleran-type transform continental margin. The time of the action of these geodynamic conditions, judging by the model $T_{Nd}(DM)$ age, is > 1.8 Ga.

Key words: geochemistry, geochronology, paleoproterozoic, geodynamic setting, Ulkan trough, Far East.