— ГЕОЛОГИЯ =

УДК 551.21+552.313(263.54)

ВУЛКАНИЧЕСКИЕ ПЕПЛЫ В ОСАДКАХ ОХОТСКОГО МОРЯ: ИДЕНТИФИКАЦИЯ ПО МИКРО- И РЕДКОЗЕМЕЛЬНЫМ ЭЛЕМЕНТАМ

© 2010 г. Член-корреспондент РАН В. Г. Сахно, А. Н. Деркачев, И. В. Мелекесцев, Н. Г. Разжигаева, Н. В. Зарубина

Поступило 11.03.2010 г.

Исследование глубоководных осадков Охотского моря с помощью донных колонок показало, что характер осадконакопления в плейстоцене и голоцене значительно менялся в зависимости от климатических изменений, связанных либо с похолоданием, либо с потеплением, которые могут быть следствием различных факторов. Одним из них может быть влияние эксплозивного вулканизма. Установлено, что катастрофические извержения, такие как Тамбора в 1815 г., Кракатау в 1883 г., при которых в стратосферу выносилось огромное количество тонкого пирокластического материала, привели к понижению температуры на всем Земном шаре [1, 2]. Не менее сильное влияние оказывают выбросы газов при извержениях, особенно таких, как галогены и сера, а также Н₂ и СО₂. Галогены и сера образуют мельчайшие аэрозоли, способствующие рассеиванию света, что приводит к уменьшению солнечного потока, понижению температуры атмосферы при одновременном нагревании стратосферного слоя за счет поглощения инфракрасного излучения. Создается эффект вулканической зимы [3]. В период извержения вулканов Эль-Чичон в 1982 г. и Пинатубо в 1991 г. наблюдались такие минимумы, которые наиболее устойчивы были в течение долгого периода времени в экваториальной части планеты.

Дальневосточный геологический институт Дальневосточного отделения

Российской Академии наук, Владивосток

Тихоокеанский океанологический институт

им. В.И. Ильичева

Дальневосточного отделения

- Российской Академии наук, Владивосток
- Институт вулканологии и сейсмологии

В результате изучения донных осадков окраинных морей, расположенных по периферии Азиатского континента, были установлены многочисленные прослои вулканического пепла (тефры) плейстоцен-голоценового возраста. Источниками пирокластики в осадках являются в основном островодужные вулканы Камчатки, Курильских и Японских островов, а также реже вулканы, расположенные на Азиатском континенте. Пеплы в осадках морских бассейнов несут определенную информацию об истории и характере извержений активных континентальных окраин и островных систем, влияющих на процессы седиментогенеза, экологию окружающей среды и климат [3, 4 и др.]. Для решения этих актуальных вопросов большое значение имеют: хронология извержений вулканических центров, объем пирокластического материала, его состав и состав сопровождавших его газов. В связи с этим возникает необходимость идентификации пеплов, особенно катастрофических извержений. Это позволит рассмотреть различные сценарии экологических последствий в прошлом и возможность прогноза в будущем.

Одним из объектов исследования являются пеплы в осадках Охотского моря, которое с востока и юго-востока окаймляется цепочкой активных вулканов Камчатки и Курильских островов, которые активно действовали на протяжении миллионов и сотен тысяч лет в прошлом и в настоящее время. Пеплы этих извержений покрывали всю акваторию моря. Они зафиксированы в донных осадках в виде прослоев различной мощности [5, 6 и др.]. Не всегда удается проследить горизонт пеплов одного и того же возраста по дну бассейна, так как разнос материала эксплозий вулканов зависит, прежде всего, от характера течений и морфологии дна, направлений перемещения воздушных масс во время извержений. Поэтому не все пеплы вулканических извержений встречаются в донных отложениях.

Одной из наиболее важных задач при анализе влияния эксплозивных извержений на изменение климата в определенные отрезки времени является идентификация пеплов в донных осадках

Дальневосточного отделения Российской Академии наук,

Петропавловск-Камчатский

Тихоокеанский институт географии

Дальневосточного отделения

Российской Академии наук, Владивосток

и определение их извержений. Если возраст прослоев установить можно достаточно точно по комплексу стратиграфических методов в подстилающих и перекрывающих морских осадках, то источники их поступления часто бывает определить затруднительно.

Наиболее уверенно диагностируются пеплы голоценовых извержений по составу минеральных ассоциаций тяжелой фракции (пироксены, роговая обманка, магнетит и др.), а в легкой, в удаленных фациях, диагностика проводилась в основном по морфологии пепловых частичек вулканических стекол и их показателям преломления. Представляется, что такая диагностика пепловых прослоев и их корреляция не всегда вполне надежны. Во-первых, по минералогическому признаку пирокластические породы островодужных вулканов имеют весьма близкий состав минеральных ассоциаций. мало различающихся по составу породообразующих минералов, так как основная их часть относится к производным известково-щелочных серий. Исключения составляют извержения вулканов щелочного типа с ассоциацией щелочных минералов (шелочные пироксены и роговые обманки, а также калиево-натровые полевые шпаты). Что касается определения по показателю преломления вулканического стекла, то их показатели колеблются в больших пределах, так как даже незначительная степень окисления стекла может резко изменить его отражательные свойства. При корреляции пепловых прослоев в морских и континентальных фациях одним из главных показателей является возраст, определяемый на суше радиоуглеродным методом или по микрофоссилиям в осадках морского дна. В подобном случае корреляция пеплов на суше и в колонках донных осадков является корректной, но в любом случае необходима идентификация с целью установления источника извержения.

Наиболее корректной является идентификация пеплов на основе микро- и редкоземельных элементов, особенно REE, с использованием базы данных известных извержений вулканов, расположенных в континентальном окружении Востока Азии: на Камчатке, Курильских и Японских островах и континенте. Это позволяет получить надежную корреляцию пепловых прослоев.

Установлено, что каждый вулканический центр, как источник эксплозий, имеет "свой" характерный спектр микро- и редкоземельных элементов, который устойчив на протяжении многих тысячелетий активной деятельности центра и сохраняется в породах различных фациальных обстановок. Особенно это свойственно REE, не подверженным каким-либо изменениям [7–10].

В настоящее время существует надежная инструментальная приборная база, с помощью которой можно получить экспрессную информа-

ДОКЛАДЫ АКАДЕМИИ НАУК том 434 Nº 2 2010

цию о характере распределения и концентрации микроэлементов в каждом отдельном образце с дальнейшей процедурой сопоставления на спайдердиаграммах микро- и редкоземельных элементов [7].

Корреляция пепловых прослоев в морских осадках и тефры извержений вулканов основана сопоставлении концентрации REE co значениями, нормированными по хондриту [11]. В качестве "реперной" использованы базы данных по тефре камчатских, курильских, японских и континентальных вулканов, для которых были определены возраст (K-Ar, ¹⁴C), химические составы и концентрации микро- и редкоземельных элементов [8, 9, 12, 13].

При анализе пеплов в донных осадках Охотского моря (рис. 1) хорошо диагностируется ряд пеплов голоцен-позднеплейстоценовых катастрофических извержений. Одним из таких является извержение 7.6 тыс. лет назад в южной части Камчатки, при котором была образована кальдера Курильского озера (тефра КО). Пеплы были вскрыты в различных частях Охотского моря, идентифицированы по минеральному и химическому составам [5, 6, 12]. Кроме того, было обнаружено несколько горизонтов пеплов, идентификация которых затруднена по ряду признаков изза недостаточного количества сравнительной информации о конкретных центрах вулканических извержений. С учетом лишь стратиграфического положения сделаны предварительные выводы об источниках извержения [5, 6].

Нами проведены исследования пепловых прослоев, для которых были высказаны предварительные заключения о центрах извержений (см. рис. 1, табл. 1). Как следует из анализа, в большей степени это свойственно пепловым прослоям с более древним возрастом.

На основе базы данных по пеплам, извергнутым камчатскими и другими вулканами на суше, для которых установлены центры и возраст (в большинстве радиоуглеродным методом ¹⁴С), а также определены концентрации микро- и редкоземельных элементов, проводились сопоставления с пеплами, обнаруженными в морских осадках. Построение нормализованных мультиэлементных диаграмм [14] дает возможность оценки степени схожести или различия концентрации элементов в породах, свойственных тем или другим очагам магмогенерации. Этот метод геохимической интерпретации широко используется в магматической геологии при решении вопросов генезиса расплавов и их производных [11].

Результаты таких исследований показали, что уверенно идентифицируются широко распространенные в донных осадках пеплы извержений кальдеры Курильского озера, с возрастом около 7.7 тыс. лет назад. Их ареал в морских отложениях в основном охватывает северо-восточные районы

Рис. 1. Места расположения изученных станций и контуры рассеяния пеплов и источники их извержений. 1-6 – контуры пеплопадов и их источники: 1 – вул. Тао-Русыр (о. Онекотан), 2 – вул. Немо (о. Онекотан), 3 – кальдера Курильского озера (KO), раннеголоценового возраста [6], 4 – извержения плейстоценового вулкана Срединного хребта Камчатки, 5 – плейстоценовые извержения вул. Чанбайшань (545–448 тыс. лет назад), 6 – центры катастрофических извержений; 7 – станции опробования Охотского моря; 8 – скважины Центральной Камчатской депрессии, вскрывшие пеплы ("синие глины"). 9 (на врезке а) – станции опробования Японского моря (возвышенность "Витязь"). 10-19 (на врезке б) – строение вулканов о. Онекотан [15]: 10 – конус с кратером и экструзивным куполом, 11 – пирокластические породы древней кальдеры вул. Тао-Русыр, 12 – игнимбриты кальдеры пика Немо, 13 – древние породы вул. Шестакова, 15 – остатки древнего вул. Медный, 16 – пирокластичеры пика Немо (a), очертания двеле б) поденового вулкана Тао-Русыр, 17 – предполагаемые контуры внутренней кальдеры пика Немо (b), 18 – древняя кальдеры пика Вело, 19 – конус с (b), 18 – древняя кальдеры вул. Крыжановского вулкана со b, 19 – конус с b, 10 – конус с b, 10 – конус с b, 10 – конус b, 10 – порокластические породы древней кальдеры вул. Тао-Русыр, 12 – игнимбриты кальдеры пика Немо, 13 – древние породы вул. Шестакова, 15 – остатки древней сонтуры внутренней кальдеры пика Немо (a), очертания древней кальдеры пика Немо (b), 18 – древняя кальдеры пика Вели согройка вул. Крыжановского b, 19 – кальдера вул. Тао-Русыр и конус пик Креницина (в центре).

ДОКЛАДЫ АКАДЕМИИ НАУК том 434 № 2 2010

ВУЛКАНИЧЕСКИЕ ПЕПЛЫ

Индекс прослоя	КО	KO	KO	KO	K ₂	K ₂	K ₂	K ₃	MR-2	MR-4
Возраст, тыс. лет назад	7.7	7.7	7.7	7.7	~26	~26	~26	40-45	~200	~300
№ трубки, интервал	Lv-28-43 (343–345)	Lv-29-106 (54-56)	Lv-29-108 (313–315)	Lv-29-112 (507–510)	Lv-28-43 (534–536)	Pc-7R III (0-2)	Pc-6R III (41–42)	9313 (125–127)	Pc-7R XI (93–95)	Pc-6R XVII (96–98)
SiO ₂	69.93	66.93	69.32	68.58	69.75	68.82	69.70	62.94	69.48	60.21
TiO	0.22	0.34	0.36	0.31	0.33	0.39	0.39	0.36	0.51	1.06
$Al_2 \dot{Q}_2$	13.80	15.77	15.04	14.99	13.73	13.54	13.75	19.40	13.13	16.46
Fe ₂ O ₂	1.49	1.57	0.90	1.67	1.11	1.27	1.22	1.62	2.22	1.78
FeO	1.03	1.32	1.38	1.36	1.83	2.16	2.15	1.63	1.60	3.86
MnO	0.07	0.09	0.08	0.08	0.10	0.10	0.10	0.09	0.11	0.16
MgO	0.25	0.85	0.72	0.79	0.57	0.79	0.65	0.88	0.58	1.85
CaO	3.53	3.75	3.38	3.36	2.48	2.52	2.22	6.02	2.67	4.53
Na ₂ O	4.34	4.31	4.19	4.11	4.19	4.03	3.93	4.22	3.87	4.86
KaO	1.86	1.56	1.64	1.56	2.31	2.30	2.29	1.25	1.88	2.00
P_2O_5	0.05	0.30	0.13	0.08	0.10	0.09	0.09	0.14	0.18	0.46
$H_{2}O^{-}$	сл.	0.80	0.31	0.36	сл.	0.32	0.47	Сл.	0.28	0.11
П.п.п.	3.09	2.39	2.35	2.37	3.32	3.34	2.60	1.36	3.62	2.46
Сумма	99.66	99.98	99.80	99.56	99.82	99.67	99.56	99.91	100.13	99.80
Li	20.86	18.62	17.41	18.16	15.99	19.10	17.47	19.98	15.64	16.06
Be	0.84	0.81	0.81	0.83	0.87	0.98	0.97	1.09	0.93	1.48
Sc	7.99	10.73	10.07	9.62	14.33	11.58	10.26	10.53	12.87	18.55
V	21.46	34.31	41.18	31.69	76.14	34.55	33.75	47.36	43.20	79.54
Cr	<5.0	5.0	40.0	<5.0	15.0	5.0	17.0	20.0	14.0	5.0
Co	2.65	3.90	4.40	4.62	8.91	5.69	6.47	7.39	7.54	8.73
Ni	2.05	2.24	2.13	1.58	5.38	5.13	6.70	8.52	16.30	17.57
Ga	13.75	15.62	14.77	13.70	14.20	14.21	13.74	14.50	13.86	18.98
Ge	1.50	1.57	1.56	1.46	1.46	1.52	1.51	1.33	1.51	1.50
Rb	33.68	27.79	30.45	32.92	33.14	41.66	43.21	46.55	42.84	35.30
Sr	177.16	192.39	213.61	204.77	165.61	154.31	134.55	204.00	183.37	390.10
Y	28.65	29.81	27.58	26.53	41.74	41.10	36.29	32.93	36.14	39.90
Zr	166.74	180.78	146.53	149.57	176.97	175.22	192.01	152.05	151.49	212.67
Nb	2.58	2.56	2.41	2.38	3.23	3.39	3.59	3.59	2.81	6.08
Cs	2.20	2.01	1.99	2.24	2.20	2.65	2.77	2.54	2.60	1.36
Ba	503.67	406.47	457.02	429.13	410.97	432.04	424.38	447.01	614.64	620.64
La	9.99	8.83	8.82	9.11	11.51	11.66	11.30	12.29	12.40	16.01
Ce	22.03	20.68	19.48	20.09	27.40	28.48	26.11	26.59	27.68	38.09
Pr	3.31	3.14	2.95	3.04	4.11	4.09	3.80	3.93	3.94	5.97
Nd	15.18	13.57	13.95	14.10	19.24	20.19	18.33	17.97	18.94	28.12
Sm	3.81	3.66	3.62	3.52	5.39	5.43	5.01	4.75	4.95	6.87
Eu	0.94	0.99	0.93	0.98	1.09	1.05	0.96	1.09	1.30	2.02
Gd	4.24	4.04	3.94	4.02	6.03	6.03	5.79	5.40	5.73	7.31
Tb	0.68	0.66	0.66	0.64	0.99	1.01	0.96	0.85	0.96	1.12
Dy	4.67	4.28	4.40	4.38	6.83	6.84	6.47	5.66	6.47	7.16
Но	1.05	0.99	0.99	0.98	1.50	1.54	1.45	1.19	1.42	1.48
Er	3.05	2.99	2.83	2.86	4.44	4.40	4.18	3.59	4.13	4.25
Tm	0.52	0.50	0.48	0.47	0.69	0.74	0.68	0.55	0.67	0.65
Yb	3.45	3.22	3.20	3.24	4.68	4.75	4.46	3.68	4.24	4.33
Lu	0.56	0.50	0.49	0.49	0.67	0.74	0.71	0.62	0.68	0.65
Hf	5.59	5.47	4.77	4.87	5.84	6.26	5.58	4.75	4.30	6.05
Та	0.20	0.31	0.19	0.18	0.24	0.24	0.24	0.24	0.22	0.51
Pb	9.75	8.70	9.05	8.70	13.17	17.47	14.62	12.86	15.45	17.02
Th	2.31	2.15	1.95	1.98	3.34	3.33	3.40	3.36	4.13	2.22
U	0.94	0.86	0.80	0.82	1.17	1.21	1.23	1.23	1.37	0.93

Таблица 1. Петрохимический (мас. %), микроэлементный и REE (ppm) составы пепловых прослоев дна Охотского моря и эталонных проб тефры курильских и камчатских вулканов

ДОКЛАДЫ АКАДЕМИИ НАУК том 434 № 2 2010

Таблица 1. Окончание

Индекс прослоя	TR	TR _o	Aco-4	GR _o	MR3	CX	CX	CX	B-og
Возраст, тыс. лет назад	7.7	3.5	85–90	>10	~309	(400-500)?	(400-500)?	(400-500)?	545-448
№ трубки, интервал	931 (453–459)	23/3208 склон вулкана	Lv-28-64 (1108– 1110)	склон вулкана	MD-2415 (1681– 1682)	N-9-1000 (скв)	N-11-2006 (скв)	N-12-2006 (скв)	Lv- 32-45 (715)
SiO ₂	68.07	56.87	67.14	54.85	68.93	62.88	70.90	70.81	63.90
TiO ₂	0.47	1.06	0.43	0.93	0.31	0.35	0.28	0.26	0.40
Al_2O_3	14.15	17.54	14.76	21.40	13.80	12.72	13.02	13.13	13.82
Fe_2O_3	1.51	1.13	0.75	4.60	0.97	0.68	1.37	1.20	5.53
FeO	3.07	6.42	1.44	1.30	1.92	3.60	0.81	0.85	0.00
MnO	0.15	0.19	0.10	0.12	0.06	0.07	0.07	0.07	0.13
MgO	1.02	3.00	0.77	1.47	0.90	0.58	0.65	0.64	0.16
CaO	3.84	6.28	1.61	3.11	2.74	2.22	2.01	2.03	1.21
Na ₂ O	4.33	3.24	4.34	3.24	3.66	3.33	3.72	3.83	5.54
K_2O	0.90	1.02	4.02	1.80	2.23	2.65	2.32	2.30	5.49
P_2O_5	0.17	0.16	0.20	0.25	0.07	0.10	0.06	0.06	0.05
H_2O	0.13	1.04	0.31	0.37	0.47	1.8/	0.27	0.17	0.00
<u> </u>	1.99	2.21	3.07	0.4/	3.04	8.54	4.14	4.21	3.27
Сумма	99.80	100.16	99.54	99.86	99.70	99.59	99.62	99.56	99.50
L1 Pa	13.54	12.36	32.18	—	14.89	11.86	13.1/	13.94	-
Be	0.69	0.59	2.12	_	1.07	0.80	0.80	0.83	5.00
SC V	17.70	30.3 45.05	4.09	116.2	0.02	3.82	3.03	4.11	2.05
v Cr	23.95	43.93	17.09	110.2	45.05	47.99	20.79	23.95	5.05
	5.80	28.0	2.07	11.15	8.00	9.01	3 25	3 27	
Ni	3.63	3.5	2.07	9.69	14 93	11 38	2 51	3.56	17.87
Ga	15.04	12.02	14 22	-	11.90	9.98	11 11	10.77	36.61
Ge	1.49	1.37	1.43	_	0.17	0.61	0.25	0.28	1.86
Rb	9.69	10.7	148.00	41.98	12.01	28.17	27.00	24.20	113.35
Sr	199.82	203.1	192.28	306.43	175.47	152.75	138.66	116.46	28.69
Y	37.95	35.3	26.37	46.48	17.66	17.70	21.76	20.19	53.90
Zr	111.87	103.9	264.09	498.68	93.44	119.67	128.08	121.26	793.14
Nb	1.45	1.37	12.35	14.36	4.90	4.71	3.40	3.22	100.86
Cs	1.15	1.37	8.19	2.88	1.35	1.80	2.16	2.11	3.47
Ba	203.74	207.3	819.45	1106.9	260.32	498.08	449.36	421.98	311.41
La	5.49	5.41	26.12	34.25	9.69	10.51	10.43	10.01	93.29
Ce	13.69	13.1	60.53	82.85	18.30	20.90	20.78	19.44	190.78
Pr	2.31	2.10	7.19	10.26	2.85	3.11	3.16	3.02	15.52
Nd	12.54	11.3	31.85	40.83	11.89	12.91	13.04	12.33	79.96
Sm	4.17	3.71	6.67	8.93	2.69	2.86	2.98	2.79	16.26
Eu	1.29	1.15	1.34	2.28	0.76	0.69	0.71	0.67	0.56
Gd	5.29	4.87	6.20	8.62	2.80	2.93	3.16	2.94	9.76
Tb	0.92	0.90	0.81	1.50	0.47	0.49	0.56	0.51	2.29
Dy	6.18	5.40	5.58	8.88	2.60	2.67	3.19	2.97	9.92
Ho	1.40	1.15	1.12	1.86	0.54	0.57	0.69	0.64	2.57
Er	4.06	3.74	3.30	5.42	1.72	1.79	2.23	2.08	5.53
Im Na	0.66	0.57	0.52	0.84	0.28	0.29	0.38	0.35	0.83
YD	4.28	5.8/	3.68	5./9	1.90	2.01	2.62	2.45	5.69
LU LIF	0.00	0.58	0.4/	0.80	0.31	0.33	0.45	0.42	0.67
	5.19 0.12	5.02 0.11	0.14	0.02	2.41	5.27	0.22	5.44 0.20	19.38
Ta Dh	0.12	0.11	0.95	0.92	0.34	0.44	0.32	0.29	10.43
Th	0.13	9.10 1 1 2	21.79 11.46	23.73	3.22	0.07 4.61	0.00 1 31	0.39 4 32	16.00
U	0.85	0.61	3 42	2 54	0.90	1 31	1 22	1 19	3 79
\sim	0.55	0.01	5.14	2.54	0.70	1.51	1.44	1.17	2.17

Примечание. Петрогенные элементы определялись в Аналитическом центре ДВГИ ДВО РАН, аналитики Л.И. Алексеева, В.Н. Каминская; микроэлементы и REE – в СибГЕОХИ (Иркутск), аналитики Г.П. Сандимирова, Е.В. Смирнова.

ДОКЛАДЫ АКАДЕМИИ НАУК том 434 № 2 2010

Охотского моря. Анализ мощностей пепловых прослоев этого возраста показывает, что наибольшая мощность отмечается вблизи западного берега Камчатки и Северных Курил (до 16 см). Данные по REE подтвердили, что тефра мощного прослоя, вскрытая трубкой (ст. Lv-29-112), соответствует пеплам извержений кальдеры Курильского озера (табл. 1, рис. 1).

К западу от о. Онекотан в ст. 931 (рис. 1) были вскрыты пеплы TR, стратиграфически и по возрасту близкие к кальдерным раннеголоценовым пеплам Курильского озера (КО) [5, 6], однако по составу микроэлементов и на спайдердиаграмме они отличаются от последних более низкими концентрациями REE, Nb и более высокими Th и HREE. Полученные данные позволяют отнести данный прослой пепла (TR) к другому источнику извержений – вулкану Тао-Русыр на о. Онекотан, извержение которого датировано 7.5 тыс. лет [12]. В качестве "репера" для сравнения была отобрана тефра с о. Онекотан (23/3208), относящаяся к извержению вулкана Тао-Русыр (табл. 1, рис. 2а).

Широким распространением в осадках Охотского моря пользуется тефра K_2 , которая является продуктом извержения вулкана Немо-III на о. Онекотан с возрастом (по ¹⁴C) около 26 тыс. лет.

Катастрофические извержения вулкана Немо, одного из активных вулканов Курильской дуги в плейстоцене и голоцене, с выбросом огромных объемов пирокластических потоков, происходили и ранее. Близкий микроэлементный состав тефры K_2 (ст. Lv-28-43, Pc-6R) с другими пепловыми прослоями центральной части Охотского моря – K_3 (ст. 9313) и MR₂ (ст. Pc-7R) (табл. 1) дает нам основание считать, что последние также являются продуктами более ранних экплозивных извержений вулкана Немо. По данным стратиграфического расчленения изученных колонок проявление этих эксплозий происходит в интервале времени около 40–45 и 199–200 тыс. лет соответственно.

Эти возрастные интервалы мощных эксплозивных взрывов соответствуют этапам формирования древних кальдер Немо-I, Немо-II и старому Немо. Характерно, что на острове эти этапы фиксируются руинами древних кальдер, а пирокластические образования отсутствуют (рис. 1б). Как полагают некоторые исследователи, они были выброшены в море, где и были вскрыты трубками в толще морских осадков (рис. 1).

Таким образом, вулкан Немо на о. Онекотан катастрофически взрывался на протяжении 300 тыс. лет. Объем выброшенных пеплов вулканов Немо и Тао-Русыр оценивается как минимум в 120– 130 км³. Пеплопадом охвачена, по данным опробованных трубок, юго-западная часть Охотского моря (рис. 1). В центральной части Охотского моря длинными трубками (Md-2415, Pc-6R, Pc-7R) подняты наиболее древние (известные на данный момент) прослои тефры, возрастом около 300 тыс. лет. Спектры микро- и редкоземельных элементов тефры ст. Md-2415 (рис. 2в) дают возможность сравнивать их с туфами ("синие глины"), которые были обнаружены в Центрально-Камчатской депрессии при бурении скважины, а источник извержения связывается с плейстоценовыми извержениями вулканов Срединного хребта Камчатки.

Присутствие в составе тефры значительной примеси роговых обманок, в том числе бурой и базальтической роговой обманки, характерных индикаторов пирокластики тыловых зон островных дуг и Срединного хребта Камчатки, не противоречит сделанному выше выводу. Прослой тефры MR₄ (Pc-6R, секция XVII, гор. 96–98 см, табл. 1), расположенный стратиграфически близко к рассмотренному выше прослою пепла (MR_3) , по составу и распределению микроэлементов и REE существенно отличается от последних (рис. 26, в). По характеру распределения REE данный прослой близок к тефре поздних извержений вулкана Немо. Однако по микрокомпонентному и химическому составам она резко отличается (табл. 1). Поэтому точная идентификация данного прослоя пепла затруднена. Можно лишь предположить, что тефра связана с кальдерообразующим извержением вулкана Медный (Пра-Немо) на о. Онекотан.

В юго-западной части Охотского моря на ст. Lv-28-64 в нижней части колонки были подняты пеплы, которые по морфологии частиц вулканического стекла, химическому составу можно отнести к тефре Асо-4, принадлежащей извержению вулкана Ассо на о. Кюсю, возраст которого оценивается в 85-90 тыс. лет. Несмотря на то, что рассматриваемая тефра по петрохимическому и микроэлементному составам весьма близка составам пирокластических пород древней кальдеры вулкана Горелый на Камчатке (рис. 2д), идентифицировать ее с данным извержением не представляется возможным. Одним из важнейших аргументов в доказательстве этого является отсутствие прослоев тефры с такими свойствами в одновозрастных отложениях в колонках Охотского моря, расположенных к северо-востоку от ст. Lv-28-64, а также в почвенно-пирокластическом чехле Южной Камчатки.

Наконец, наиболее древними из изученных являются пеплы ст. Lv-32-45, поднятые на возвышенности Витязь в северной части Японского моря (врезка а, рис. 1). По своему составу (рис. 2г) они относятся к извержению вулкана Чанбайшань (Пектусан) на п-ове Корея с возрастом около 500 тыс. лет, определенным К—Аг-методом [8, 9], и сопоставимы с тефрой В-од, обнаруженной

ДОКЛАДЫ АКАДЕМИИ НАУК том 434 № 2 2010

Рис. 2. Мультикомпонентные диаграммы (спайдерграммы) элементов, нормированных к примитивной мантии [14] (номера проб соответствуют табл. 1, рис. 1). а) 1–3 – пеплы кальдеры Курильского озера (извержение 7.7 тыс. лет); 4 – пеплы вул. Тао-Русыр (7.7 тыс. лет); 5 – эталонная проба тефры вул. Тао-Русыр (~3.4–4.8 тыс. лет); б) пеплы извержения вул. Немо (о. Онекотан): 1-3-26 тыс. лет назад; 4-40-45 тыс. лет, 5-~200 тыс. лет, 6-300 тыс. лет (?); в) 1–3 – эталонные пробы пеплов вулканов Срединного хребта Камчатки (~300 тыс. лет); 4 – тефра MR₃ станции Md-2415 (гор. 1680–1681); г) 1, 2 – эталонные пробы трахитовой тефры со склонов вул. Чанбайшань (п-ов Корея), извержение 545-448 тыс. лет; 3 - пеплы ст. Lv-32-45 Татарского пролива, Японское море; д) 1 - пеплы Асо-4 извержения вул. Асо, о. Кюсю, 2 – эталонная проба из древней кальдеры вул. Горелый.

на п-ове Ога (о. Хонсю) и в скважинах глубоководного бурения Японского моря. Это наиболее северная точка распространения трахитовых пеплов вулкана, расположенного на юге Дальнего Востока.

Из анализа представленного материала можно сделать следующие выводы. Идентификация пеплов в морских осадках по микро- и редкоземельным элементам на основе сопоставления с данными составов тефры и пеплов континентальных и островодужных вулканов позволяет решать ряд задач: 1) представляется возможным по идентифицированным пеплам в морских осадках более точно определить возраст континентальных извержений в тех случаях, когда это нельзя сделать на суше по разным причинам; 2) по спектру REE пеплов в морских осадках и сопоставлениям с имеющимися в базе данных известных извержений вулканов определить источники морских пеплов; 3) оценка объемов извергнутых пеплов в окружающую среду представляется сложной задачей, особенно в морских бассейнах, так как зависит от многих факторов: направления выброса, ветрового разноса, переноса материала морскими течениями и рельефом дна. Представляется возможным провести приблизительную оценку поступления пеплов в морские бассейны на основе сопоставления результатов идентификации и анализа распределения пеплов в донных отложениях морей для каждого эпизода эксплозивного источника, что весьма важно для решения вопросов экологии окружающей среды.

Работа выполнена при финансовой поддержке ДВО РАН (проект 10–1–П16–02) и Президиума РАН (проект № 16 фундаментальных исследований по программе "Природные катастрофы. Изменение окружающей среды").

СПИСОК ЛИТЕРАТУРЫ

- 1. Stothers R.B. // Science. 1984. V. 224. № 4664. P. 1194-1198.
- 2. Self S., Rampino M. // Nature. 1981. V. 294. P. 699-704.
- 3. Адушкин В.В., Хазина В.М., Шувалов В.В. В кн.: Изменение окружающей среды и климата. Природные и связанные с ними техногенные катастрофы. М.: ИГЕМ РАН; ИФЗ РАН, 2008. Т. 2. С. 237–261.
- 4. Изменение окружающей среды и климата. Природные и связанные с ними техногенные катастрофы / Под ред. Н.П. Лаверова. М.: ИГЕМ РАН; ИРЗ PAH, 2008. T. 2. 376 c.
- 5. Деркачев А.Н., Николаева Н.А., Горбаренко С.А. // Тихоокеан. геология. 2004. Т. 23. № 1. С. 37-52.
- 6. Gorbarenko S.A., Nurnberg D., Derkachev A.N. et al. // Mar. Geol. 2002. V. 183. C. 107-129.
- 7. Скляров Е.В., Гладкозуб В.П., Донская Т.В. и др. Интерпретация геохимических данных. М.: Интермет инжиниринг, 2001. 288 с.
- 8. Сахно В.Г. // ДАН. 2008. Т. 412. № 2. С. 226-232.
- 9. Сахно В.Г. // ДАН. 2008. Т. 417. № 4. С. 528-534.
- 10. Сахно В.Г., Уткин И.В. // ДАН. 2009. Т. 428. № 5. C. 641–647.
- 11. Rollinson H.R. Using Geochemical Data: Evaluation, Presentation, Interpretation. Essex: London Group UK, 1994. 352 p.
- 12. Сахно В.Г., Базанова Л.И., Глушкова О.Ю. и др. // ДАН. 2006. Т. 411. № 4. С. 499-504.
- 13. Мелекесцев И.В., Брайцева О.А., Сулержицкий Л.Д. // ДАН. 1988. Т. 300. № 1. С. 175–181.
- 14. Wood D.A. // J. Geol. 1979. № 3. P. 499-503.
- 15. Горшков Г.С. Вулканизм Курильской островной дуги. М.: Наука, 1967. 288 с.

211