— ГЕОХИМИЯ —

УДК 553.491.8+571.63

ЗОЛОТО И ПЛАТИНОИДЫ В СКАРНАХ ОЛЬГИНСКОГО И ДАЛЬНЕГОРСКОГО РУДНЫХ РАЙОНОВ ПРИМОРЬЯ И НЕКОТОРЫЕ ВОПРОСЫ МЕТАЛЛОГЕНИИ ЮЖНОЙ ЧАСТИ СИХОТЭ-АЛИНЯ

© 2007 г. В. Т. Казаченко, Е. В. Перевозникова, Н. В. Мирошниченко, А. А. Карабцов, В. А. Соляник

Представлено академиком Д.В. Рундквистом 14.06.2006 г.

Поступило 07.07.2006 г.

Триасово-юрская углеродистая толща Сихотэ-Алиня содержит металлоносные отложения – кремнисто-родохрозитовые породы и их метаморфизованные аналоги [3, 4], кремнистые породы с пирофанитом ("коричневые кремни"), оловянножелезные руды, "ильменит-биотит-полевошпатовые" (метаморфизованные глинистые) породы и "итабириты". Для них характерно высокое содержание Au, Ag, Pt, Pd [2] и повсеместное присутствие минералов этих элементов. С металлоносными отложениями, сингенетическими с вмещающими породами, ассоциируют гидротермально измененные песчаники, кремнисто-глинистые и кремнистые породы. В них присутствуют зерна Au, Ag, аргентита, Pt, палладистой Pt, итенбогаардита и других минералов благородных металлов (здесь и ниже диагностика всех минералов подтверждена определением состава на микрозонде). К другому типу гидротермальных руд относятся обогащенные Mn амфибол-пироксеновые породы. Они содержат самородные Au, Ag, палладистую Pt и другие минералы Au, Ag и платиноидов. Гидротермальные руды являются продуктами регенерации металлоносных отложений, связанной со становлением гранитоидных массивов позднемелового возраста. Амфибол-пироксеновые породы образовались по известковистым песчаникам позднетриасового(?) возраста [3].

Металлогенической особенностью южной части Сихотэ-Алиня являются многочисленные скарновые и жильные (выполнения полостей) месторождения Pb, Zn, Ag, Sn, W и Fe позднемелового возраста. Скарны отличаются высоким содержанием Mn, источником которого служили марганцевые породы [1], обогащенные, как и другие металлоносные отложения Pb, Zn, Ag, Sn, W и Fe (металлами, гидротермальные месторождения которых определяют металлогенический профиль южной части Сихотэ-Алиня). Очевидно, источником этих металлов, как и Mn, тоже были металлоносные отложения триасово-юрской углеродистой толщи.

Металлоносные отложения и ассоциирующие с ними гидротермальные породы содержат Аи и платиноиды. Ими, в частности, богаты амфиболпироксеновые породы Широкопаднинской площади Ольгинского района, являющиеся во всех отношениях аналогами расположенных рядом марганцовистых скарнов Белогорского скарново-магнетитового месторождения, с той лишь разницей, что эти породы образовались по известковистым песчаникам, а не по известнякам. Поэтому можно было ожидать присутствия Аи и элементов платиновой группы и в скарнах Белогорского месторождения, а также в скарнах других месторождений Ольгинского и Дальнегорского рудных районов. Для проверки этого предположения были изучены скарны Скальной и Благодатной залежей Белогорского месторождения, а также Дальнегорского боросиликатного и Садового скарново-полиметаллического месторождений.

Залежь Скальный Отвод сложена в основном бустамитом, мангансалитом, гранатом и манганактинолитом. Присутствуют мелкие кристаллы апатита и барита. В виде зерен микронной размерности встречаются сфалерит, галенит, англезит, арсенопирит, касситерит, вольфрамит, цинкит, бисмит, халькозин, сульфат серебра, леллингит, станнин, ильземанит и самородный Zn. Широко представлены твердые растворы разнообразных металлов, такие как Cu–Zn–Pb, Cu– Zn–Pb–Sn, Cu–Sn, Cu–Pb–Cd, W–Co–Cr–Ti, W–Co– Rh, Bi–Ag, Bi–Pb–Ag. Кроме того, присутствуют зерна так называемого медистого золота – членов изоморфного ряда Cu(Au, Ag)–Cu₂(Au, Ag)

Дальневосточный геологический институт

Дальневосточного отделения

Российской Академии наук, Владивосток

Рис. 1. "Медистое золото", самородное золото и ферроплатина (яркие участки) в пироксен-волластонитовом скарне Дальнегорского боросиликатного месторождения.

(табл. 1). Порода насыщена включениями самородного Au (d до 2.0 мкм), иногда содержащего Cu и (или) Ag, а также (более редкими) включениями (d 1–4, иногда размером до 3 × 8 мкм) самородной Pt. Кроме того, присутствуют кристаллы самородного Ag, единичные зерна киновари, колорадоита, $In_{0.91}(PO_4)_{1.09}$ палладистой Pt и самородного(?) рения. Несмотря на недостаток суммы в некоторых анализах (иногда значительный), связанный с небольшим размером зерен и наличием в прилегающей области многочисленных полостей или карбоната, они хорошо пересчитываются на стехиометрические формулы минералов.

Залежь Благодатная, сложенная первоначально главным образом Mn- и Sn-содержащим гранатом, марганцовистым клинопироксеном и небольшим количеством Zn-содержащего магнетита, была переработана гидротермальными растворами [1]. Относительно слабо измененный пироксен-гранатовый скарн этой залежи содержит карбонат, кварц, гнезда висмутовых минералов и апатита. В виде включений микронной размерности встречаются вольфрамит, шеелит, касситерит, барит, халькопирит, пирит, арсенопирит, гудмундит, антимонит, самородные Fe и Ni, твердый раствор Cu–Zn, $Ag_{1.02}Cu_{1.90}Sb_{1.08}S_{4.01}$ и другие соединения Cu, Ag, Pb и Sb (см. табл. 1). Порода содержит Ад главным образом в виде аргентита. Встречаются зерна Ru(Pb, Ag)₂Bi₄, самородной Pt (нередко с Cu), самородного Au, не содержащего примесей или с Cu, Ag, Co, реже с Pt.

Дальнегорское боросиликатное месторождение представлено залежами пироксен-волластонитового скарна, участками замещенного данбурит-датолитовой рудой. В пироксен-волластонитовом скарне в виде выделений размерностью микроны-десятки микрон встречаются барит, вольфрамит, шеелит, касситерит, циркон, монацит, баделлиит, самородные W и Zn, твердые растворы Cu–Zn, Cu–Zn–Pb, Cu– Zn-Si, Cu-Sn, Co-W, Ni-Cu. Присутствуют зерна киновари, уранинита, ваэсита, $CuAg_6S_4$, интерметаллических соединений Ni₂(Fe, Cr) и "медистого золота" (рис. 1). Порода содержит Ад, главным образом в самородном состоянии и в виде аргентита. Встречаются зерна самородного Аи, не содержащего примесей или обогащенного Ag, и ферроплатины (табл. 2).

Садовое месторождение – типичный представитель группы Дальнегорских скарновополиметаллических месторождений. В геденбергитовом скарне присутствуют включения галенита, пирротина, вольфрамита, шеелита, касситерита, циркона, барита, оксидов Zr, Ti, Sc, Sr, Ce и Th. Широко представлены самородные Fe, Sb, Zn, W; интерметаллические соединения Fe₃(Cr, Ni), (Fe, V, Cr)₂Ti, Fe₂Ce и твердые растворы Cu-Zn, Cu-Zn-Pb, Cu-Zn-Sn, Cu-Zn-Ni, Ni-Cr, Co-W (см. табл. 2). Встречаются зерна котунита, джемсонита и рузвельтита. Порода содержит Ад в виде аргентита и соединений $Cu_{1.00}Ag_{1.96}S_{2.04}$ и $Cu_{0.98}Ag_{3.95}S_{3.07}$, а также Au, Rh и, вероятно, другие элементы платиновой группы. Золото присутствует в виде "медистого золота" и в самородном состоянии.

ДОКЛАДЫ АКАДЕМИИ НАУК том 414 № 5 2007

ЗОЛОТО И ПЛАТИНОИДЫ В СКАРНАХ ОЛЬГИНСКОГО

№ п. п.	0	Mg	Al	Si	S	Ca	Cr	Mn	Fe	Cl
Скальная залежь										
1	42.67		8.88	15.36		16.73		2.71	2.62	
2	0.99	0.34		1.12					0.67	
3	13.72	0.99		6.07		3.28	3.02	1.16	11.99	
4	14.88	0.74	3.73	7.02		10.35	2.35	1.26	4.01	
5	42.20	1.53		31.27	2.86	2.78		0.89	5.47	
6	12.49			3.36		1.30	1.04		16.52	
7	14.91			1.95		1.26	2.22	0.90	3.54	1.05
8	35.56			31.77		0.64			0.45	
9	13.51			1.51		26.74	1.45	1.64	0.83	
				Благод	атная з	алежь				
10	29.06	0.24	0.72	0.92		28.43		0.31	0.46	
11	28.13	2.24		4.86		10.54		6.55	2.46	
12	10.72					10.64		1.82	1.15	
13	26.55					21.78		3.09	0.71	
14	30.24	0.55	1.29	13.55	5.31	2.69			0.87	1.43
15	7.54				20.14				12.54	
16	2.64				11.57	0.30			0.50	
17					15.50					
18	17.41		0.26	0.33		0.87			39.01	
19	16.29					0.22	0.58		45.12	
№ п. п.	Cu	Zn	Ag	Re	Pd	Pt	Au	Pb	Bi	Сумма
№ п. п.	Cu	Zn	Ag	Re Скал	Рd ьная за	Pt лежь	Au	Pb	Bi	Сумма
№ п. п. 1	Cu	Zn	Ag	Re Скал	Рd ьная за 3.66	Рt лежь 7.81	Au	Pb	Bi	Сумма 100.44
№ п. п. 1 2	Cu	Zn	Ag 101.33	Re Скал	Рd ьная за 3.66	Рt лежь 7.81	Au	Pb	Bi	Сумма 100.44 104.45
№ п. п. 1 2 3	Cu	Zn 1.38	Ag 101.33	Re Скал	Рd ьная за 3.66	Рt лежь 7.81 59.62	Au	Pb	Bi	Сумма 100.44 104.45 101.23
№ п. п. 1 2 3 4	Cu 8.98	Zn 1.38	Ag 101.33 2.19	Re Скал	Рd ьная за 3.66	Рt лежь 7.81 59.62	Au 16.6	Pb	Bi	Сумма 100.44 104.45 101.23 72.11
№ п. п. 1 2 3 4 5	Cu 8.98	Zn 1.38	Ag 101.33 2.19 1.00	Re Скал	Рd ьная за 3.66	Рt лежь 7.81 59.62	Au 16.6	Pb 6.04	Bi 9.35	Сумма 100.44 104.45 101.23 72.11 103.39
№ п. п. 1 2 3 4 5 6	Cu 8.98	Zn 1.38 3.32	Ag 101.33 2.19 1.00	Re Скал	Рd ьная за 3.66	Рt лежь 7.81 59.62	Au 16.6 62.17	Pb 6.04	Bi 9.35	Сумма 100.44 104.45 101.23 72.11 103.39 100.20
№ п. п. 1 2 3 4 5 6 7	Cu 8.98	Zn 1.38 3.32	Ag 101.33 2.19 1.00 2.46	Re Скал	Рd ьная за 3.66	Рt л е ж ь 7.81 59.62	Au 16.6 62.17 71.01	Pb 6.04	Bi 9.35	Сумма 100.44 104.45 101.23 72.11 103.39 100.20 99.30
№ п. п. 1 2 3 4 5 6 7 8	Cu 8.98	Zn 1.38 3.32	Ag 101.33 2.19 1.00 2.46 1.31	Re Скал	Рd ьная за 3.66	Рt лежь 7.81 59.62	Au 16.6 62.17 71.01	Рb 6.04	Bi 9.35 16.68	Сумма 100.44 104.45 101.23 72.11 103.39 100.20 99.30 86.41
№ п. п. 1 2 3 4 5 6 7 8 9	Cu 8.98	Zn 1.38 3.32	Ag 101.33 2.19 1.00 2.46 1.31	Re Скал 7.33	Рd ьная за 3.66	Рt лежь 7.81 59.62	Au 16.6 62.17 71.01	Рb 6.04	Bi 9.35 16.68	Сумма 100.44 104.45 101.23 72.11 103.39 100.20 99.30 86.41 53.01
№ п. п. 1 2 3 4 5 6 7 8 9	Cu 8.98	Zn 1.38 3.32	Ag 101.33 2.19 1.00 2.46 1.31	Re Скал 7.33 Благод	Рd ьная за 3.66	Рt лежь 7.81 59.62	Au 16.6 62.17 71.01	Рb 6.04	Bi 9.35 16.68	Сумма 100.44 104.45 101.23 72.11 103.39 100.20 99.30 86.41 53.01
№ п. п. 1 2 3 4 5 6 7 8 9 10 11	Cu 8.98	Zn 1.38 3.32	Ag 101.33 2.19 1.00 2.46 1.31	Re Скал 7.33 Благод	Рd ьная за 3.66 атная з	Рt лежь 7.81 59.62 алежь 0.81	Au 16.6 62.17 71.01	Pb 6.04	Bi 9.35 16.68	Сумма 100.44 104.45 101.23 72.11 103.39 100.20 99.30 86.41 53.01 91.46 07.72
№ п. п. 1 2 3 4 5 6 7 8 9 10 11 12	Cu 8.98	Zn 1.38 3.32	Ag 101.33 2.19 1.00 2.46 1.31	Re Скал 7.33 Благод	Рd 5 ная за 3.66 атная з	Рt лежь 7.81 59.62 алежь 0.81	Au 16.6 62.17 71.01 12.64 42.95	Рb 6.04	Bi 9.35 16.68	Сумма 100.44 104.45 101.23 72.11 103.39 100.20 99.30 86.41 53.01 91.46 97.73 97.66
№ п. п. 1 2 3 4 5 6 7 8 9 10 11 12 12	Cu 8.98 1.54	Zn 1.38 3.32	Ag 101.33 2.19 1.00 2.46 1.31 5.48	Re Скал 7.33 Благод	Рd ьная за 3.66	Рt лежь 7.81 59.62 алежь 0.81	Au 16.6 62.17 71.01 12.64 42.95 66.31	Pb 6.04	Bi 9.35 16.68	Сумма 100.44 104.45 101.23 72.11 103.39 100.20 99.30 86.41 53.01 91.46 97.73 97.66 102.24
№ п. п. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Cu 8.98 1.54	Zn 1.38 3.32	Ag 101.33 2.19 1.00 2.46 1.31 5.48 2.12 20.23	Re Скал 7.33 Благод	Рd ьная за 3.66	Рt лежь 7.81 59.62 алежь 0.81	Au 16.6 62.17 71.01 12.64 42.95 66.31	Рb 6.04 12.05	Bi 9.35 16.68 32.09	Сумма 100.44 104.45 101.23 72.11 103.39 100.20 99.30 86.41 53.01 91.46 97.73 97.66 102.04 100.20
№ п. п. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Cu 8.98 1.54	Zn 1.38 3.32	Ag 101.33 2.19 1.00 2.46 1.31 5.48 2.12 39.23 16.24	Re Скал 7.33 Благод	Рd 5.66 атная з	Рt лежь 7.81 59.62 алежь 0.81	Au 16.6 62.17 71.01 12.64 42.95 66.31	Pb 6.04 12.05	Bi 9.35 16.68 32.09	Сумма 100.44 104.45 101.23 72.11 103.39 100.20 99.30 86.41 53.01 91.46 97.73 97.66 102.04 100.00 08.11
№ п. п. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Cu 8.98 1.54 19.46	Zn 1.38 3.32	Ag 101.33 2.19 1.00 2.46 1.31 5.48 2.12 39.23 16.34 8.00	Re Скал 7.33 Благод	Рd ьная за 3.66	Рt лежь 7.81 59.62 алежь 0.81	Au 16.6 62.17 71.01 12.64 42.95 66.31	Pb 6.04 12.05	Bi 9.35 16.68 32.09	Сумма 100.44 104.45 101.23 72.11 103.39 100.20 99.30 86.41 53.01 91.46 97.73 97.66 102.04 100.00 98.11 92.50
№ п. п. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Cu 8.98 1.54 19.46	Zn 1.38 3.32	Ag 101.33 2.19 1.00 2.46 1.31 5.48 2.12 39.23 16.34 8.09 0.84	Re Скал 7.33 Благод	Рd ьная за 3.66	Рt лежь 7.81 59.62 алежь 0.81	Au 16.6 62.17 71.01 12.64 42.95 66.31	Pb 6.04 12.05 33.88 25.27	Bi 9.35 16.68 32.09 35.65	Сумма 100.44 104.45 101.23 72.11 103.39 100.20 99.30 86.41 53.01 91.46 97.73 97.66 102.04 100.00 98.11 93.50 102.88
№ п. п. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Cu 8.98 1.54 19.46	Zn 1.38 3.32 1.01 3.35	Ag 101.33 2.19 1.00 2.46 1.31 5.48 2.12 39.23 16.34 8.09 9.84	Re Скал 7.33 Благод	Рd ьная за 3.66	Рt лежь 7.81 59.62 алежь 0.81	Au 16.6 62.17 71.01 12.64 42.95 66.31	Pb 6.04 12.05 33.88 25.37	Bi 9.35 16.68 32.09 35.65 49.82	Сумма 100.44 104.45 101.23 72.11 103.39 100.20 99.30 86.41 53.01 91.46 97.73 97.66 102.04 100.00 98.11 93.50 103.88 00.27
№ п. п. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 10	Cu 8.98 1.54 19.46 0.66	Zn 1.38 3.32 1.01 3.35	Ag 101.33 2.19 1.00 2.46 1.31 5.48 2.12 39.23 16.34 8.09 9.84	Re Скал 7.33 Благод	Рd ьная за 3.66	Рt лежь 7.81 59.62 алежь 0.81 41.43	Au 16.6 62.17 71.01 12.64 42.95 66.31	Pb 6.04 12.05 33.88 25.37	Bi 9.35 16.68 32.09 35.65 49.82	Сумма 100.44 104.45 101.23 72.11 103.39 100.20 99.30 86.41 53.01 91.46 97.73 97.66 102.04 100.00 98.11 93.50 103.88 99.97 100.25

Таблица 1. Результаты изучения минералогии скарнов Белогорского месторождения с помощью микроанализатора

Примечание. Анализировавшиеся минералы: $1 - Pd_{0.46}Pt_{0.54}$; 2 - самородное Ag; 3 - самородная платина; 4 - медистое золото Cu_{0.57}Au_{0.35}Ag_{0.08}; 5 - Ag_{1.86}Pb_{5.93}Bi_{9.07}S_{18.14}; 6 - золото Au_{1.00}; 7 - золото Au_{0.94}Ag_{0.06}; 8 - Bi_{0.87}Ag_{0.13}; 9 - самородный(?) Re; 10 - золото Au_{0.94}Pt_{0.06} (кроме того, в анализе 13.10 мас. % P, 3.96 F и 0.83 Na); 11, 12 - золото Au_{1.00} и Au_{0.82}Ag_{0.12}Cu_{0.06}; 13 - Ru_{0.98}(Pb_{1.54}Ag_{0.49})_{2.03}Bi_{3.99} (3.65 Ru); 14 - аргентит Ag_{2.06}S_{0.94} (0.52 Ti, 4.32 Na); 15 - Ag_{5.02}Cu_{10.15}Sb_{6.01}S_{20.82} (22.09 Sb); 16 - Ag_{0.88}Pb_{1.91}Bi_{1.99}S_{4.22}; 17 - бенджаминит Ag_{0.76}Pb_{1.02}Bi_{1.98}S_{4.00}; 18 - платина Pt_{0.95}Cu_{0.05}; 19 - золото Au_{0.83}Cu_{0.17}. Здесь и ниже (табл. 2) из-за малой размерности анализировавшихся зерен состав нередко относится и к окружающей их области породы. В таких случаях формулы рассчитаны из валового состава. Наличие Cr в анализах во многих случаях обусловлено примесью Cr₂O₃, использовавшейся при полировке. Анализы выполнены в ДВГИ ДВО РАН на микроанализаторе JXA8100 с тремя волновыми спектрометрами и энергодисперсионным спектрометром INCAx-sight.

ДОКЛАДЫ АКАДЕМИИ НАУК том 414 № 5 2007

КАЗАЧЕНКО и др.

№ п.п.	0	Mg	Al	Si	S	Ca	Mn	Fe	Ni	Cu	Zn	Ag	Rh	Ce	Pt	Au	W	Pb	Сумма
	Пироксен-волластонитовый скарн Дальнегорского боросиликатного месторожления																		
1	9.79			5.96		5.59	1.24	1.59				70.07							94.24
2	17.45	0.34		8.82	8.34	7.60	1.97	3.18		0.81		45.49							94.00
3	6.05			2.20		3.06	0.51	7.34							80.17				99.33
4	32.98		0.43	19.37		19.98	3.55	4.31				2.64				16.08			99.34
5	23.43	0.24		20.42		26.53	3.61	4.71								16.14			97.08
6	21.41		0.90	16.79		17.16	2.29	2.95		14.33		2.53				21.23			99.59
7	21.63			21.19		1.42	0.56	0.95									54.17		99.92
8	11.58			13.63		10.01	2.12	3.52	47.17	3.75									91.78
9	7.29			3.30	12.97	3.32	0.74	0.91		6.45		64.54							99.52
			Ман	нган	геде	нбер	гил	овы	й ск	арн	Сад	овог	о м	есто	рож	дени	гя		
10	28.59	0.32	0.43	8.28	8.53	5.72	1.24	6.16				49.55							109.28
11	15.49	0.29	0.30	10.87		9.66	2.10	10.32								35.81			84.84
12	17.77		2.63	10.07		8.04	2.01	12.40		12.75						18.80			84.47
13	21.30		1.51	10.58		5.21	1.25	6.70		18.87		5.43				35.74			106.60
14	10.46			2.77		2.17	0.65	2.96					1.03					55.75	76.44
15	8.99		0.77	1.36		1.03				33.39	33.82							13.11	92.47
16	10.47	0.36	0.73	10.82		4.35	2.37	6.28	6.25	29.88	28.92								101.80
17	15.61		2.11			2.67	0.64	3.91									72.70		103.46
18	8.74		0.47	7.59		4.03		35.69						41.22					98.01

Таблица 2. Результаты изучения минералогии скарнов Дальнегорского рудного района с помощью микроанализатора

Примечание. Анализировавшиеся минералы: 1– серебро; 2 – аргентит $(Ag_{1.82}Cu_{0.05})_{1.87}S_{1.12}$; 3 – ферроплатина $(Pt_{0.76}Fe_{0.24})$ в волластоните; 4 – золото $Au_{0.77}Ag_{0.23}$; 5 – золото $Au_{1.00}$; 6 – медистое золото $Cu_{0.63}Au_{0.30}Ag_{0.07}$; 7 – вольфрам; 8 – $Ni_{0.93}Cu_{0.07}$ в пироксене; 9 – $Cu_{1.01}Ag_{5.96}S_{4.03}$; 10 – аргентит $Ag_{1.90}S_{1.10}$ (кроме того, в анализе 0.45 мас. % Na); 11 – золото; 12 – медистое золото $Cu_{0.67}Au_{0.33}$; 13 – медистое золото $Cu_{0.56}Au_{0.34}Ag_{0.10}$; 14 – сурик(?) в пироксене (0.64 Cl); 15 – $Cu_{0.48}Zn_{0.47}Pb_{0.05}$; 16 – $Cu_{0.46}Zn_{0.43}Ni_{0.11}$ (0.26 К и 1.11 Cl); 17 – $Co_{0.20}W_{0.80}$ (5.82 Co); 18 – $Fe_{1.94}Ce_{1.06}$ (0.26 Cl).

Таблица 3. Результаты анализа (г/т) скарнов и марганцевых пород Ольгинского и Дальнегорского рудных районов атомно-абсорбционным методом

№ п.п.	№ пробы	Au	Pt	Pd	Pd/Au + Pt	Au + Pt + Pd
1	Сд-1	0.54*	0.83	5.34	3.90	6.71
2	Бс-1	0.73	0.81	1.78	1.16	3.32
3	Б-79-22	0.20	0.84	0.78	0.75	1.82
4	Б-79-86	0.91	1.54	2.35	0.96	4.80
5	C-8	0.19	1.50	0.19	0.11	1.88
6	C-10	0.35	0.51	Не обн.	0.00	0.86
7	C-11	0.38	0.49	Не обн.	0.00	0.87
8	C-13	2.48	11.27	2.12	0.15	15.87

Примечание. 1–4 – скарн Садового (1), Дальнегорского боросиликатного (2) и Благодатной залежи Белогорского (3 и 4) месторождений; 5–8 – марганцевые породы, обнажающиеся на площади Садового месторождения. Звездочка – по данным пробирного анализа (лаборатория анализа благородных металлов ДВГИ ДВО РАН) содержание Au составляет 3.35 г/т. Методические особенности – кислотное разложение проб, восстановление благородных металлов SnCl₂, концентрирование на металлическом теллуре, определение в графитовой кювете. Аналитики: В.Ф. Занина, В.Н. Залевская.

ДОКЛАДЫ АКАДЕМИИ НАУК том 414 № 5 2007

Таким образом, скарны Ольгинского и Дальнегорского рудных районов Приморья независимо от вещественного состава присутствующих в них руд (железные, полиметаллические, борные) содержат минералы Аи, Ад и элементов платиновой группы. По результатам атомно-абсорбционного анализа они богаты Au, Pt и Pd^{*}. От металлоносных отложений скарны отличаются высоким отношением Pd к сумме Au и Pt (табл. 3). Эти обстоятельства, очевидно, требуют оценки скарновых месторождений Приморья на содержание в них Аи и платиноидов независимо от типа основного оруденения. При этом интерес представляют в первую очередь неизмененные и слабо измененные разности скарнов. Для скарнов и металлоносных отложений характерно наличие органического вещества, широкое распространение NaCl и KCl, восстановленных форм металлов (20 элементов в самородном состоянии, более 100 разновидностей твердых растворов и интерметаллических соединений, в том числе фосфиды, силициды, нитриды и, возможно, бориды) и "медистого золота". Можно полагать, что при образовании скарновых месторождений Мп был заимствован из марганцевых пород, а Fe, возможно, главным образом из "итабиритов". Источником Pb, Zn, Sn, W, Ag, Au и платиноидов служили, очевидно, металлоносные отложения всех типов, присутствующие в триасово-юрской углеродистой толще Сихотэ-Алиня.

Работа выполнена при поддержке РФФИ (проект 06–05–96043) и Президиума ДВО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Казаченко В.Т.* Петрология и минералогия гидротермальных марганцевых пород Востока России. Владивосток: Дальнаука, 2002. 250 с.
- 2. Казаченко В.Т., Мирошниченко Н.В., Перевозникова Е.В. и др. // ДАН. 2006. Т. 407. № 4. С. 516– 520.
- 3. *Казаченко В.Т., Сапин В.И.* Минералогия и генезис железо-марганцевого оруденения Прибрежной зоны Приморья. Владивосток: ДВО АН СССР, 1990. 248 с.
- 4. Казаченко В.Т., Чубаров В.М., Соляник В.А., Нарнов Г.А. // ДАН. 2005. Т. 400. № 6. С. 785–788.

^{*} После сдачи в набор данного сообщения в скарне Скальной залежи обнаружен собственный минерал Pd – Pd₃Ag (по анализу – Pd_{2.98}Ag_{1.02}).