ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ АКУСТИЧЕСКИХ СВОЙСТВ ГИДРАТОСОДЕРЖАЩИХ И МЕРЗЛЫХ ПОРОД^{*}

Альберт Дмитриевич Дучков

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, доктор геолого-минералогических наук, главный научный сотрудник, тел. (383)330-25-91, e-mail: DuchkovAD@ipgg.sbras.ru

Никита Александрович Голиков

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, кандидат технических наук, научный сотрудник, тел. (383)333-31-38, e-mail: GolikovNA@ipgg.sbras.ru

Антон Альбертович Дучков

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, кандидат физико-математических наук, заведующий лабораторией, тел. (383)333-34-18, e-mail: DuchkovAA@ipgg.sbras.ru

Андрей Юрьевич Манаков

Институт неорганической химии им. А. В. Николаева СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Лаврентьева, 3, доктор химических наук, заведующий лабораторией, тел. (383)316-53-46, e-mail: manakov@niic.nsc.ru

Михаил Евгеньевич Пермяков

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, кандидат технических наук, и.о. заведующего лабораторией, тел. (383)330-25-91, e-mail: PermyakovME@ipgg.sbras.ru

Аркадий Николаевич Дробчик

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, младший научный сотрудник, тел. (383) 333-14-18, e-mail: DrobchikAN@ipgg.sbras.ru

Сконструирована и изготовлена аппаратура, позволяющая в лабораторных условиях моделировать гидратосодержащие искусственные образцы и измерять их акустические свойства (скорости волн, их поглощение/затухание). Проведена серия успешных тестовых экспериментов по формированию образцов, содержащих гидраты метана, и по измерению скоростей акустических волн в консолидированных (оргстекло, песчаник) и неконсолидированных (кварцевый песок) образцах при разных давлениях и температурах.

Ключевые слова: гидраты метана, гидратосодержащие и мерзлые породы, акустические свойства пород, аппаратура для моделирования гидратосодержащих образцов и измерения их акустических свойств.

^{*} Исследование выполнено за счет гранта Российского научного фонда (проект №14-14-00511) в ИНГГ и ИНХ СО РАН.

LABORATORY SETTING FOR THE STUDY OF ACOUSTIC PROPERTIES OF GAS HYDRATE-BEARING AND FROZEN ROCKS

Albert D. Duchkov

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, Doctor of Sciece, Principal Scientist, tel. (383)330-25-91, e-mail: DuchkovAD@ipgg.sbras.ru

Nikita A. Golikov

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, Ph. D., Scientist, tel. (383)333-31-38, e-mail: GolikovNA@ipgg.sbras.ru

Anton A. Duchkov

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, Ph. D., Head of the Laboratory, tel. (383)333-34-18, e-mail: DuchkovAA@ipgg.sbras.ru

Andrei Yu. Manakov

Nikolaev Institute of Inorganic Chemistry SB RAS, 630090, Russia, Novosibirsk, 3 Lavrentiev Prospect, Doctor of Science, Head of the Laboratory, tel. (383)316-53-46, e-mail: manakov@niic.nsc.ru

Mikhail E. Permyakov

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, Ph. D., Head of the Laboratory, tel. (383)330-25-91, e-mail: PermyakovME@ipgg.sbras.ru

Arkadii N. Drobchik

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Russia, 630090, Novosibirsk, Koptyug Prospect, 3, Junior Researcher, tel. (383)333-14-18, e-mail: DrobchikAN@ipgg.sbras.ru

Equipment, allowing in laboratory the hydrate-bearing samples simulation and measuring their acoustic properties (velocity of the waves, their absorption/attenuation) have been designed and manufactured. A series of successful test experiments of the hydrate-bearing samples simulation and measuring of the acoustic waves velocity in the consolidated (plexiglas, sandstone) and unconsolidated (quartz sand) samples at different pressures and temperatures was carried out.

Key words: methane hydrates, hydrate-bearing and frozen rocks, acoustic properties of rocks, equipment for simulating hydrate-bearing samples and measuring their acoustic properties.

Сведения о физических свойствах горных пород, содержащих газовые гидраты, необходимы для калибровки дистанционных геофизических методов (главным образом, сейсмических и электромагнитных) поисков и разведки скоплений газогидратов в донных осадках глубоких водоемов и в мерзлых породах криолитозоны. Обычно физические свойства гидратосодержащих пород изучаются в лабораторных условиях. За границей основное внимание уделяется акустическим свойствам, т. к. именно сейсмические методы в основном применяются при поисках и разведке скоплений газовых гидратов в морских осадках [1–3]. В России только в последнее десятилетие геологическими мето-

дами (подводное бурение, пробоотбор грунтовыми трубками) выявлено более 50 скоплений гидратов метана в поддонных осадках оз. Байкал [4] и Охотского моря [5]. Несомненно, что в ближайшие годы будут обнаружены гидратные месторождения в арктических окраинных морях. Весьма вероятно наличие реликтовых скоплений гидратов метана в криолитозоне Сибири [6]. Для поисков и оконтуривания гидратных тел в этих районах целесообразно использовать сейсмические методы, что, однако, требует предварительного изучения акустических свойств пород. Такая задача была поставлена в 2014 г. перед авторским коллективом. В итоге нами сконструирована и построена лабораторная установка, позволяющая моделировать гидратосодержащие образцы и измерять их акустические свойства (скорости продольных и поперечных волн). Аппаратура и результаты тестовых экспериментов описаны в данной статье. Схема установки показана на рис. 1.

Рис. 1. Принципиальная схема установки (пунктирным овалом отмечена камера высокого давления)

Основным узлом установки является камера высокого давления, в которой размещается исследуемый образец. Установка включает также блоки создания внешнего (осевого и бокового) давления на образец (насосная установка, переключатель потока, вентили, манометры), доставки газа/жидкости в образец, термостатирования и измерительную систему, предназначенную для возбуждения и приема акустических волн. Камера состоит из стального цилиндра с внутренней резиновой манжетой и двух пуансонов с акустическими датчиками. Размеры камеры позволяют работать с образцами диаметром 30 мм и высотой 10–50 мм. Камера рассчитана на максимальное давление 45 МПа. Источником давления в магистрали служит насосная установка. Для охлаждения камеры до температуры, необходимой для образования в образце гидратов или льда, используется термостат Huber Ministat. Измерительная система установки состоит из генератора высоковольтных импульсов АКИП-3305, цифрового осциллографа АКИП-72208А, излучателя и приемника ультразвуковых импульсов. Последние имеют одинаковую конструкцию и вмонтированы в верхний и нижний пуансоны. Датчики продольных (Р) волн сделаны из дисков пьезокерамики ЦТС-9 диаметром 18 мм и толщиной 2 мм, поляризованной по толщине диска, датчики поперечных (S) волн – из дисков, поляризованных по диаметру.

Основными измеряемыми акустическими параметрами являются скорости Р и S волн. Источник ультразвуковых волн (генератор АКИП-3305) генерирует в излучателе прямоугольный импульс длительностью 1мкс и амплитудой 150 В, который после прохождения образца фиксируется приемником и поступает на один из каналов (В) цифрового осциллографа. Одновременно генератор вырабатывает синхроимпульс, который подается на другой канал (А) и служит точкой отсчета при измерениях времени прихода волны. Такая методика позволяет избежать ошибок, связанных с возможной нестабильностью синхронизации осциллографа. Частота дискретизации сигнала 250 МГц, т. е. шаг записи равен 4 нсек. Скорости Р- и S-волн рассчитываются по формуле: $V = L/(t_u - t_3)$, где L – длина образца, t_u – время прихода ультразвукового импульса в приемник, t_3 – время задержки импульса в акустическом тракте «источник - приемник». Для нашей установки $t_3^P = 5.04$ мкс для P-волны и $t_3^S = 8.68$ мкс для S-волны.

Для проверки работоспособности установки выполнены тестовые измерения скоростей прохождения акустических волн через консолидированные образцы (оргстекло и кварцевый песчаник) и образцы кварцевого песка (сухого, влажного, замороженного и содержащего гидраты).

Первым объектом измерений был эталонный образец из оргстекла. Измерения проводились при внешнем давлении 5 МПа и комнатной температуре. Получены значения скоростей Vp=2704 м/с, Vs=1373 м/с, которые практически совпадали со справочными данными (Vp = 2724 м/с и Vs = 1365 м/с). Более высокие значения скоростей получены при тестовых измерениях образца сцементированного мелкозернистого песчаника, отобранного с глубины 2700 м из пласта одного из нефтяных месторождений Западной Сибири. В данном случае измерения акустических скоростей проводились при комнатной температуре и внешнем давлении 5, 10 и 15 МПа. Зафиксирован заметный (в пределах 10 %) рост скоростей Vp (от 4133 до 4511 м/с) и Vs (от 2607 до 2941 м/с) при увеличении давления от 5 до 15 МПа. При давлении 15 МПа значения скоростей оказались практически идентичными (различие не более 1 %) полученным ранее на другой установке.

С наихудшими условиями для возбуждения акустического сигнала пришлось столкнуться в процессе измерений образцов сухого кварцевого песка при температуре 15[°]С и давлении 5, 10, 15 МПа. Удалось отчетливо зафиксировать влияние внешнего давления на форму импульса и скорости распространения P- и S-волн в сухом песке. Скорость P-волны заметно изменяется (от 1069 до 1410 м/с) при увеличении давления от 5 до 15 МПа. Скорость S-волны стабилизируется на уровне 799–868 м/с при давлении более 10 МПа. Эксперименты с сухим песком позволили определить минимальное давление (10–15 МПа) обжатия, которое обеспечивает необходимое сцепление датчиков с неконсолидированными образцами.

Мокрый песок измерялся при температурах 15° C и - 7° C и при давлениях 5, 10 и 15 МПа. При положительных температурах насыщение песка водой не сказывалось заметно на скорости прохождения акустического сигнала. При замерзании воды скорости акустических волн резко увеличивались (примерно до уровня скоростей в образце консолидированного песчаника) и практически не изменялись с ростом давления. На записях хорошо заметно увеличение амплитуды сигнала при замерзании песка, что свидетельствует о повышении добротности образца. На записях Р-волны также фиксировался длинный цуг реверберационных помех (переотражения, резонансы и т.д. от всех границ как внутри датчиков, так и внутри установки).

Выполнено несколько успешных экспериментов по формированию песчаных образцов, содержащих гидраты метана. Для наработки метангидрата влажный песчаный образец подвергался многократным (4 цикла) изменениям температуры образца от 2 до -8⁰C и одновременно «промывался» метаном под давлением 8 МПа. Акустические измерения проводились после каждого цикла «замерзания-оттаивания».

В результате выполненных исследований сконструирована и изготовлена установка, предназначенная для моделирования гидратосодержащих образцов и измерения их акустических свойств. Проведено тестирование основных блоков установки (системы герметизации, давления, термостатирования, измерительной системы) в серии экспериментов по измерению скоростей акустических волн в консолидированных (оргстекло, песчаник) и неконсолидированных (песок) образцах при разных давлениях и температурах. Тестовые эксперименты показали пригодность установки для формирования синтетических образцов, содержащих газовые гидраты, а также измерения акустических свойств гидратосодержащих и мерзлых образцов.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Waite W.F., Santamarina J.C., Cortes D.D., Dugan B., Espinoza D.N., Germaine J., Jang J., Jung J.W., Kneafsey T.J., Shin H., Soga K., Winter W.J., Yun T.-S. Physical properties of hydratebearing sediments // Reviews of Geophysics. – 2009. - 47, RG4003. - P. 1–38.

2. Gabitto J.F., Tsouris C. Physical properties of gas hydrates: A review // Journal of Thermodynamics, vol. 2010, article ID 271291, 12 pages, doi:10.1155/2010/271291

3. Riedel M., Willoughby E.C., Chopra S. (Eds.). Geophysical characterization of gas hydrates (SEG geophysical developments series; no. 14). Tulsa: Society of exploration geophysicists. - 2010. - 390 p.

4. Хлыстов О.М. Новые находки газовых гидратов в донных осадках озера Байкал // Геология и геофизика. - 2006. - Т. 47, № 8. - С. 979–981.

5. Обжиров А.И., Коровицкая Е.В., Пестрикова Н.Л., Телегин Ю.А. Нефтегазоносность и газогидраты в охотском море // Подводные исследования и робототехника. – 2012. – № 2 (14). – С. 55–62.

6. Якушев В.С. Природный газ и газовые гидраты в криолитозоне. – М.: ВНИИГАЗ, 2009. – 192 с.

© А. Д. Дучков, Н. А. Голиков, А. А. Дучков, А. Ю. Манаков, М. Е. Пермяков, А. Н. Дробчик, 2015