ПЛАНЕТА ЗЕМЛЯ

Бухарестское землетрясение 4 марта 1977 г. (эпицентр в зоне Вранча). Фото с сайта http://www.agerpres.ro/english/2014/03/04/march-4-1977-earthquake-14-38-04.

УДК 550.34(498.32)

Берри Б.Л.

Модели сейсмичности, вращения Земли, климата и солнечной активности. Пространство и время землетрясений зоны Вранча

Берри Борис Львович, доктор геолого-минералогических наук, редактор интернет-журнала "Annals of Disasters, Periodicity & Prediction" (Оттава, Канада)

ORCID ID https://orcid.org/0000-0002-8226-5971

E-mail: boris-l-berry@j-spacetime.com; borisberri@hotmail.com

Описаны модели земных и солнечных процессов и опасные периоды, связанные с природными перестройками (перегибами модельных кривых). Анализ корреляций процессов Солнца и Земли, полушарных температур и землетрясений зоны Вранча (Румыния) за 1400– 2000 гг., а также определение скорости сейсмического сигнала вдоль разлома позволили дать прогноз глубинного землетрясения в зоне Вранча с $M = 7,25 \pm 0,05$ на восточном вертикальном разломе в опасные 2016–1017 и 2024 гг. в дни перегибов скоростей вращения Земли. Это землетрясение в Москве с $M \approx 4,1$ будет представлять опасность для верхних этажей высотных зданий.

Ключевые слова: модели солнечной активности и земных процессов; зона Вранча; прогнозы; реконструкции; опасные годы и дни; скорости вращения; температуры; разломы; землетрясения; магнитуды.

Введение

Предвидеть - значит управлять.

Блез Паскаль

Изучение солнечной и тектонической активностей, климата и скоростей вращения Земли показало, что эти процессы изменяются почти синхронно, как будто ими управляют из одного центра. В упомянутой ситуации у исследователей возникает естественный соблазн приписать дирижёрские функции собственной отрасли знаний: солнечным, атмосферным, тектоническим процессам или воздействиям электромагнитных, магнитных и гравитационных полей. Но в конкурсе за место дирижёра выигрывают Солнечная система (СС) в целом¹ и набор стабильных колебаний природы².

Стабильные ритмы процессов Солнца и Земли представляют для землян основной интерес, так как знание их характеристик позволяет прогнозировать изменения условий жизни и готовиться к ним заранее. В столбце 1 табл. 1 полужирным шрифтом выделены небесные тела СС, движение которых формирует природную ритмику. Геофизические процессы связаны, в основном, с солнечной активностью, солнечно-лунными приливами и изменениями скоростей вращения Земли. Для простоты сопоставления свойств планет все параметры Земли в табл. 1 приняты равными единице, включая моменты обращения (Mrev) и приливные силы (It). Основные «действующие лица» СС имеют заметные приливные и моментные взаимодействия с Солнцем. Таблица 1

Планеты	Расстояния от Солнца, r	Периоды обращения, T _{rev}	Массы планет, т	$M_{rev} = m_j r_j^2 / T_j$	$I_t = m_j / r_j^3$
1	2	3	4	5	6
Меркурий	0,387	0,241	0,060	0,0373	1,03
Венера	0,723	0,615	0,820	0,6970	2,17
Земля	1,000	1,000	1,000	1,000	1,00
Mapc	1,524	1,880	0,110	0,1359	0,03
Юпитер	5,203	11,86	318,0	725,8	2,26
Сатурн	9,539	29,46	95,1	293,7	0,11
Уран	19,182	84,01	14,5	63,51	0,002
Нептун	30,058	164,8	17,3	94,80	0,0006

Относительные данные приливных (I_t) и моментных (M_{rev}) характеристик планет

Примечание. Курсивом выделены приливные характеристики, полужирным шрифтом – моментные

Имеются теоретические и эмпирические доказатальства того, что моментные взаимодействия Солнца и планет периодически ускоряют движения барицентра солнечной системы, Солнца, планет⁴ и создают синхронные колебания в процессах всех небесных тел. Кроме того, приливные силы Солнца и Луны периодически деформируют геоид, смещают твёрдое внутреннее ядро, изменяют момент инерции Земли, скорость её вращения⁵, все геофизичекие и тектонические процессы⁶. Моментные и приливные взаимодействия небесных тел являются причиной периодических колебаний солнечных, геодинамических, и климатических характеристик. Поэтому закономерности изменений этих процессов легче понять, если выяснить характеристики их основных колебаний: периоды, амплитуды и фазы.

Скорость вращения Земли или длина суток является наиболее точно измеряемым параметром. Ее вариации хорошо коррелируются с колебаниями глобальной сейсмичности и климата⁷, с сезонными перераспределениями атмосферных осадков. Многие задачи, связанные с взаимодействием внешних и внутренних процессов, физически до сих пор не решены. По этой причине параметры гелиогеофизических колебаний остаются теоретически непредсказуемыми и должны рассчитываться эмпирически из данных временных рядов наблюдений.

¹ Берри Б.Л. Закономерности природных ритмов и прогноз климатических изменений // Оценка и долгосрочный прогноз изменений природы гор / Ред. С.М. Мягков. М.: Изд-во МГУ, 1987. С. 80–104; Он же. Основные системы геосферно-биосферных циклов и прогноз природных условий // Биофизика. 1992. Т. 37. Вып. 3. С. 414–428.

Берри Б.Л. Гармонические колебания Вселенной. М.: ЛИБРОКОМ, 2015; Он же. Пространственно-временные колебания Вселенной и новые направления в науках о Земле // Пространство и Время. 2015. № 3 (21). С. 258–269. ³ Маров М.Я. Планеты Солнечной системы. М.: Наука, 1981.

⁴ Хлыстов А.И., Долгачёв В.П., Доможилова Л.М. Движения барицента Солнца и солнечно-земные взаимодействия // Био-физика. 1992. Т. 37. Вып. 3. С. 447–453.

Авсюк Ю. Н. Приливные силы и природные процессы. М.: ОИФЗ РАН, 1996.

⁶ Берри Б.Л. Периодичность геофизических процессов и её влияние на развитие литосферы // Эволюция геологических процессов в истории Земли / Ред. Н.П. Лаверов. М.: Наука, 1993. С. 53–62; Сидоренков Н.С. Атмосферные процессы и вращение Земли. СПб.: Гидрометеоиздат, 2002.

Берри Б.Л. Синхронные процессы в оболочках Земли и их космические причины // Вестник МГУ. Сер. 5. География. 1991. № 1. C. 20–27.

Длительная эволюция колебаний СС, связанная с приливными и моментными взаимодействиями небесных тел, привела к резонансам и соизмеримостям в периодах их движений, а также в колебаниях различных солнечных, геодинамических и климатических процессов, характеристики которых можно выделить из временных рядов гелио-геофизических наблюдений. Поэтому модели солнечных и земных процессов можно представить в виде сумм стабильных колебаний. То есть изменения природных условий физически достаточно сложны, но предсказуемы¹.

1. Первые гармонические модели солнечных и земных процессов

Решающие успехи - это периоды обобщений. Явления. казавшиеся разобщёнными, становятся разными аспектами одного и того же процесса.

Р. Фейнман

В табл. 2 приведены результаты гармонического анализа периодов (Т, годы) колебаний солнечной активности (T_{CA}), среднегодовых температур воздуха северного полушария (T_{BCI}) в ^оС, угловой скорости (v) вращения Земли (T_v), глобальной сейсмичности ($T_{\Gamma C}$). Рассматриваемый спектр ограничен периодами, которые можно выделить из 100-летних рядов наблюдений скорости вращения и сейсмичности Земли.

Таблица 2

Ν	0	K	<i>Т</i> _{<i>K</i>} , г	Т _{СА} , г	Т _{всп} , г	Т _ν , г	Тгс, г
10	6	105	7,07	7	7	7	7
16	6	111	9,17	9	9		
4	7	115	10,9	11	11	11	
8	7	119	12,97	13	13		13
11	7	122	14,77			15	
13	7	124	16,1	16			
14	7	125	16,81				17
16	7	127	18,34		18		
1	8	128	19	19		19	
4	8	131	22,0	22	22		22
5	8	132	23			23	
11	8	138	29,5	30			
12	8	139	31		31		31
14	8	141	33,4			34	
7	9	147	43,6	43	44		
9	9	152	54,16		55		
10	9	154	59,06	58		60	58

Периоды (Тк, годы) закономерности (1) природных ритмов, их номера (К), номера их октав (О) и нот (N), которые формируют модели солнечной активности (T_{CA}), температур воздуха (Твсп, °С), скоростей вращения Земли (Т_V) и глобальной сейсмичности (Тгс)²

В первых 4-х столбцах табл. 2 даны номера нот (N), октав (O), и периодов (К) 16-ти нотных природных октав геометрической прогрессии3:

$$T_K = T_0 \times 2^{K/n} = 0,075 \times 2^{K/16},\tag{1}$$

где T₀ = 27,32 суток = 0,075 года – начальный период геометрической прогрессии, равный сидерическому периоду обращения Луны (сидерический период – это промежуток времени, в течение которого какое-либо небесное тело-спутник совершает вокруг главного тела полный оборот относительно звезд); K – последовательность целых чисел и номера периодов T_K лунной прогрессии; n = 16 количество периодов (нот) в октаве T_K (1), где T_K – модельные гармонические периоды движения небесных тел СС и природных процессов, включая гелио-геофизические колебания.

Закономерное распределение периодов земных и солнечных процессов (1) было статистически обосновано данными периодов обращения планет СС и спутников Юпитера⁴. Затем стало понятно,

¹ Берри Б.Л. Спектр Солнечной системы и модели геофизических процессов // Геофизика. 2006. № 3. С. 64–68; Berry B.L. "Solar System Oscilations and Models of Natural Processes." *J. of Geodynamics* 41 (2006): 133–139; Сидоренков Н.С. Указ. соч.; Сидоренков Н.С., Сумерова К.А. Геодинамические причины декадных изменений климата. [Электронный ресурс] // Мето-дический кабинет Гидрометцентра России. 2012. Режим доступа: http://method.meteorf.ru/publ/tr/tr348/sidoren.pdf.

Берри Б.Л. Основные системы геосферно-биосферных циклов...

³ Берри Б.Л. Закономерности природных ритмов... ⁴ Berry B.L. "Regularities of Natural Cycles, Prediction of Climate and Surface Conditions." *Hydrol. Process.* 12 (1998): 2267–2278.

что гармония природы связана с физической константой времени Ридберга¹. А возможность использования в уравнениях типа (1) периода Луны или D_0 мезона просто свидетельствует об единой системе ритмов Вселенной².

В результате гармонического анализа (табл. 2) были созданы модели исследуемых процессов и дан их прогноз до 2020 г. На рис. 1 вверх направлены повышенные значения сумм периодов (Т) глобальной сейсмичности Тгс (1), уменьшения скоростей вращения Земли Т_V (2), понижения температур воздуха северного полушария Твсп, °C (3) и их модельных значений Тмвсп (4), вычисленных из годовых приростов деревьев, а также увеличения чисел Вольфа (W) в их четных циклах (5). Эти коррелируемые пространственно-временные колебания имеют разную физическую природу и энергетические масштабы. Все вместе они формируют условия нашей жизни.

Рис. 1. Синхронные вариации земных и солнечных процессов и их прогнозы3: 1 - показатель глобальной сейсмичности (С и о - среднее значение и стандартное отклонение ряда); 2 - угловая скорость вращения Земли v; 3 - среднегодовые температуры воздуха Северного полушария (ТСП) в зоне 40-75° с.ш. (t и о1 – среднее значение и стандартное отклонение ряда); 4 – модель температур Северного полушария (МТСП); 5 - ряд чисел Вольфа (W), (четные циклы - положительные, нечетные - отрицательные значения). Пунктиром показаны прогнозные участки графиков.

2. Модель среднегодовых температур воздуха северного полушария (Т_{всп})

Солнце лучше тем, что светит и греет; а месяц толь-

ко светит, и то лишь в лунную ночь!

Козьма Прутков.

Модель Т_{ВСП} 1983 г. была выделена из репрезентативного ряда (1656–1965 гг.) индексов радиального прироста лиственниц, произрастающих в сухих местообитаниях низовья р. Оби⁴ и хорошо работает уже 50 лет со времени окончания древесного ряда в 1965 г.⁵ На границе леса и тундры в сухих местах обитания деревья чувствительны к изменению Т_{ВСП} и работают почти как самописцы измерительных приборов⁶.

Коэффициенты корреляции (r) между модельными значениями $t_{1.MTCII}$ (2) и радиальным приростом деревьев равны r = 0,755 для 1659–1964 гг., между величинами $t_{1,MTCII}$ и измеренными температурами за 1844–1982 гг. r = 0,685, между *t*_{1.МТСП} и СА r = 0.37 для 1700–2001 гг. и между *t*_{1.МТСП} и ГС r = 0,602 для 1899–1983 гг. Высоко значимые корреляции (LS < 0,001) существуют и между моделями температур t_{1 МТСП} и t_{МГС}: r = -0,138 для 1400–2100 гг. и r = -0,286 для 1900–2100 гг. (рис. 2). Все перечисленные корреляции высокозначимые и могут возникнуть случайно только с вероятностью < 0,1% (уровень значимости LS < 0,001)⁷. Достоверность модели ГС (рис. 2) подтверждается подобными

¹ Берри Б.Л. Гелио-геофизические и другие процессы, периоды их колебаний и прогноз // Геофизические процессы и био-сфера. 2010. Т. 9. № 4. С. 21–66; Berry B.L. "Heliogeophysical and Outchther Natural Processes, Periods of Their Oscillations, and Forecasts." *Izvestiya Atmospheric and Oceanic Physics* 47.7 (2011): 54–86. ² Берри Б.Л. Пространственно-временные колебания Вселенной и новые направления в науках о Земле // Пространство и

Время. 2015. № 3 (21). С. 258–269. ⁴ Берри Б.Л. Синхронные процессы в оболочках Земли...; Он же. Основные системы геосферно-биосферных циклов...

⁴ Берри Б.Л. Синхронные процессы в оболочках земли..., он же. основные системы геосферно-опосферных циклов... ⁴ Берри Б.Л., Либерман А.А., Шиятов С.Г. Восстановление и прогноз температур северного полушария по колебаниям ин-дексов прироста деревьев на полярной границе леса // Вестник МГУ. Сер. 5. География. 1983. № 4. С. 41–47. ⁵ Сорру С.Д. Сонкрытие изделика в деревности и в составляет составляет системы геосферно-опосферных циклов...

Берри Б.Л. Гармонические колебания Вселенной. М.: ЛИБРОКОМ, 2015.

Берри Б.Л. Гелио-геофизические и другие процессы...

⁷ Берри Б.Л. Спектр Солнечной системы...

корреляциями с графиками скоростей вращения Земли в XX в. и содержания в воздухе вулканических аэрозолей в 1600-2000 гг.

Рис. 2. Тектонические (ГС, МГС, ВА), климатические (ТСП, МТСП) и динамические (ДС) процессы Земли для 1600-2000 гг.: ГС, МГС - глобальная сейсмичность и её модель¹. ВА - содержание вулканических аэрозолей в воздухе². Максимумы этих тектонических процессов направлены вниз. ДС - изменения длины суток³. ТСП, МТСП - аномалии температур северного полушария и их модель. Нулевая линия аномалий температур соответствует средним температурам за 1951-1975 гг.4.

Эмпирическая кривая содержания вулканических аэрозолей (ВА) в воздухе (рис. 2), которая коррелируется с представленными данными и их моделями, служит обоснованием далекой экстраполяции МГС и дополнительным подтверждением верности климатической модели $t_{1 MTCH}^{2}$:

 $t_{1,MTCII} = \sum A_J \times \cos[(2\pi \times Y/T) - \varphi_i] \pm s_n = -0, 1 + 0, 101 \times \cos[(2\pi \times (Y - 1660) / 230) - 2,787]$ $+0.06129 \times \cos[(2\pi \times (Y-1660)/105) - 4.623] + 0.09768 \times \cos[(2\pi \times (Y-1660)/73) - 1.346]$ $+0.04236 \times \cos[(2\pi \times (Y - 1660) / 55) - 4.206] + 0.0712 \times \cos[(2\pi \times (Y - 1660) / 44) - 1.57]$ $+0.04959 \times \cos[(2\pi \times (Y - 1660) / 27) - 0.143] + 0.1015 \times \cos[(2\pi \times (Y - 1660) / 22) - 4.344]$ (2) $+0.0529 \times \cos[(2\pi \times (Y - 1660) / 18) - 3.278] + 0.04172 \times \cos[(2\pi \times (Y - 1660) / 15) - 0.18]$ $+0.03811 \times \cos[(2\pi \times (Y - 1660) / 11) - 0.216] + 0.02545 \times \cos[(2\pi \times (Y - 1660) / 9) - 2.345]$ $+0.02226 \times \cos[(2\pi \times (Y - 1660) / 7) - 2.619] \pm 0.204,$

где Y – грегорианский год, A_J и T_J и φ_i – соответственно амплитуды в °C, периоды в годах и фазы в радианах, σ_n – среднее квадратическое отклонение модели $t_{1,MTC\Pi}$ от ряда ТСП

3. Долгосрочная модель температур воздуха северного полушария (Твсп)

Позвольте же вас спросить, как же может управлять человек. если он не только лишен возможности составить какой-нибудь план на смехотворно короткий срок, ну, лет, скажем, в тысячу, но не может ручаться даже за свой собственный завтрашний день?

М. Булгаков

К модели *t*_{1.*MTCII*} (2) 1983 г. в 2004 г. были добавлены две гармоники с периодами в 515 и 1029 лет⁶:

$$t_{2.MTC\Pi} = -0.3895 + 0.2 \times \cos[2\pi \times (Y - 949) / 1029] + 0.2 \times \cos[2\pi \times (Y - 987) / 515] + t_{1.MTC\Pi}$$
(3)

Модель t_{2.МТСП} сопоставлялась с долговременными реконструкциями климата. Высокозначимые корреляции (LS < 0,001) были получены между значениями *t*_{2.МТСП} и 7-летними скользящими средними ТСП (r = 0,416) для 1403–1977 гг.⁷, а также с 20-летними скользящими средними ТСП (r = 0,280) для

¹ Берри, Б. Л. Синхронные процессы в оболочках Земли... ² Zielinski G.A., Fiacco R.J., Mayewski P.A., Meeker L.D., Whitlow S.I. "Climatic limpact of the A.D. 1783 Asama (Japan) Erup-tion Was Minimal: Evidence from the GISP2 Ice Core." *Geophysical Research Letters* 21 (1994): 365–2368.

Сидоренков Н.С. Указ. соч.; Берри Б.Л., Либерман А.А., Шиятов С.Г. Указ. соч.

⁴ Винников К.Я., Гройсман П.Я., Лугина К.М., Голубев А.А. Изменения средней температуры воздуха Северного полушария за 1841–1985 гг. // Метеорология и гидрология. 1987. № 1. С. 45–55.

Берри Б.Л. Спектр Солнечной.

 ⁶ Berry B. L. "Solar System Oscillations and Models of Natural Processes." *Journal of Geodynamics* 41.1-3 (2006): 133–139.
 ⁷ Mann E.M., Bradley R.S., Hughes M.K. "Global-Scale Temperature Patterns and Climate Forcing over the Past Six Centuries." Nature 392 (1998): 779–787.

периода 1000–1992 гг.¹. Модельные и восстановленные температуры содержат общие внутри- и сверхвековые аномалии. Модель (**3**) включает в себя известные ранее природные циклы (табл. 3) и расширяет диапазоны реконструкций и прогнозов. Восстановленные температуры позволяют обоснованно не проводить совместный анализ сильных землетрясений зоны Вранча 1446, 1802 гг. и 1940, 1977 гг., так как они возникли в разных климатических условиях (рис. 3, цветная вкладка, с. 227).

Таблица 3

Ν	0	K	<i>Т_К</i> , г	Т _{ВСП} , г	Природные ритмы, Т _{ПР} , г. ²
10	6	105	7,07	7	Вращения Земли
16	6	111	9,17	9	Чисел Вольфа солнечной активности
4	7	115	10,9	11	Вращения Земли
11	7	122	14,77	15	Вращения Земли
16	7	127	18,34	18	Индексов геомагнитной возмущенности
4	8	131	22,0	22	Глобальной сейсмичности
9	8	136	27,08	27	Солнечной активности
12	8	139	31	31	Глобальной сейсмичности
7	9	147	43,6	44	Количества осадков
9	9	152	54,16	55	Движения Луны
16	9	159	73,34	73	Прироста деревьев, течения Эль-Ниньо
8	10	167	103,7	105	Чисел Вольфа, температур воздуха
10	11	185	226,2	230	Изменений климата, CA, содержания ¹⁴ C
13	12	204	515,2	515,0	Изменений климата
13	13	220	1030	1029	Изменений климата

Номера нот (N), октав (O), периодов T_K (годы) закономерности (1), периодов $t_{1.MTCII}$ модели $t_{2.MTCII}$ температур воздуха Северного полушария и других ритмов природы T_{IIP}

Современное «техногенное» потепление (1920–2035 гг.) связано с совпадением тёплых фаз стабильных периодов климата: 230, 515 и 1029 лет (табл. 3). К 2100 г ТВСП будут снова на «доиндустриальном» уровне (рис. 3, цветная вкладка, с. 227). Киотские и Парижские труды по «техногенному» потеплению климата тогда смогут принести пользу при растопке каминов³. Такие же потепления климата наблюдались в начале нашей эры и на границе первого тысячелетия. Аналогичные периоды и гармоники в 2000 лет были обнаружены в 9600-летнем ряду солнечной активности, которые повторялись много раз, начиная с 8000 г. до н.э.⁴.

Модель $t_{2.MTCH}$ (3) получена из рядов индексов годового прироста древесных колец за 1660–1965 гг. (рис. 2) и за 800–2000 гг. Ее реконструкция в прошлое на 1300 лет показана на (рис. 3, цветная вкладка, с. 227). Модель $t_{2.MTCH}$ также не противоречит восстановленным температурам последнего межледникового периода до 8000 г. до н.э. В их колебаниях легко выделяются периоды в 1000 и 2000 лет (рис. 4, цветная вкладка, с. 225).

Примитивный прогноз по линейному тренду (рис. 4, с. 227) предсказывает начало эпохи оледенения через 3000 лет, которая начнется при $t_{MTCH} \approx -1^{\circ}$ С. Но модель (3) прогнозирует эту ТВСП через 300 лет (рис. 3, с. 227). Климат ледниковой эпохи в 90000 лет⁵ формируется по другим законам. Поэтому модель t_{2MTCH} (3) после 2330 г. при $t_{MTCH} < -1^{\circ}$ С теряет свой физический смысл. Определяющим температурным фактором становится рост ледникового покрова. Последние 700 тысяч лет тёплые периоды составляют около 10%, а холодные – 90% времени в тысячелетних циклах⁶.

¹ Cook E.R., Esper J., D'Arrigo R. "Extra-Tropical Northern Hemisphere Temperature Variability over the Past 1000 Years." *Quaternary Science Reviews* 23 (2004): 2063–2074.

² Берри Б.Л. Гелио-геофизические и другие процессы...; Он же. Стабильные периоды колебаний природных, общественных и технических процессов [Электронный ресурс] // Персональный сайт Б.Л. Берри. 2010. Режим доступа: http://www.geoberri.ru/ kolebanija.html.

³ Global Warming Petition Project. 2007. N.p., n.d. Web. < http://www.petitionproject.org/>

⁴ Stuiver M., Braziunas T.F. "Evidence of Solar Activity Variations." *Climate since A.D. 1500.* Eds. R.S. Bradley and P.D. Jones. London: Routledge, 1995, pp. 593–604.

⁵ Берри Б.Л. Прогноз природных процессов и проблемы стабилизации климата // Математические методы анализа цикличности в геологии. Материалы XIII международной конференции (13 марта 2006 г.) / Под ред. С.Л. Афанасьева. Т. 13. М.: Воентехиниздат, 2006. С. 158–168.

⁶ Берри Б.Л. Гармонические колебания Вселенной.

4. Прогнозы опасных лет и сильных землетрясений широт экватора

Кирпич ни с того ни с сего никому и никогда на

Таблица 5

голову не свалится. М. Булгаков

Исследования показали, что годы активизации опасных явлений разного генезиса, включая крупные землетрясения, приурочены с точностью ± 1 год¹ к перегибам модельной кривой ТВСП (табл. 4). Таблица 4

Годы	t _{CП} °C	(t _{СП} -t _{СР})/σ	Годы	t _{сп} °С	(t _{СП} -t _{СР})/σ
1890	3,25	-1,75	2005	3,76	0,80
1899/1900	3,42	-0,90	2008	3,72	0,60
1908/1909	3,16	-2,20	2011/2012	3,78	0,90
1915	3,54	-0,30	2016/2017	3,60	0,00
1918	3,48	-0,60	2024	3,81	1,05
1923	3,64	0,20	2028/2029	3,73	0,65
1927	3,59	-0,05	2031	3,77	0,85
1935	3,90	1,50	2038	3,32	-1,40
1939	3,81	1,05	2047	3,60	0,00
1941	3,83	1,15	2056	3,33	-1,35
1951	3,42	-0,90	2067	3,91	1,55
1957/1958	3,84	1,20	2072/2073	3,57	-0,15
1966/1967	3,46	-0,70	2075/2076	3,63	0,15
1969/1970	3,51	-0,45	2083/2084	3,42	-0,90
1972	3,48	-0,60	2089	3,55	-0,25
1977 /1978	3,80	1,00	2092	3,51	-0,45
1982	3,65	0,25	2094/2095	3,53	-0,35
1985/1986	3,69	0,45	2106	3,13	-2,35
1995	3,34	-1,30	2112	3,43	-0,85

Опасные годы перегибов графика модели температур (*t*_{1.*мтсп*),} их значения в °С и отклонения от средней температуры СП за период 1951–1975 гг. в единицах стандартного отклонения (σ =0,20) модели.

Периоды активизации сильных землетрясений внутри экваториального широтного пояса (1897-1916, 1934–1951 и 1970–1987 гг.), эмпирически найденные К. Моги², вызваны максимумами (28,5°) лунного склонения (1894–1913, 1931–1950, 1968–1987 и 2005–2024 гг.) и могут быть предсказаны³. В максимумы лунного склонения замедляются изменения скоростей вращения Земли и в экваториальной зоне уменьшаются нагрузки на земную кору. Накопленные на контактах горизонтальных тектонических плит напряжения реализуются в трещины и подвижки, которые создают крупнейшие землетрясения с магнитудами М ≥ 8,5.

С учётом точности прогнозов температурной модели (±1 год) 14 из 17 крупнейших землетрясений (81%) совпали с опасными годами табл 4. Не совпали только землетрясения периода (1968–1987 гг.): 1960, 1963 и 1964 гг. (табл. 5)⁴. Их более раннее возникновение было спровоцировано сейсмическими импульсами от испытаний ядерного оружия⁵, которые активно проводились в 1960–1992 гг.⁶.

Опасные годы	1923	1927	1939	1951	1957	1966	2005	2008	2011/12
Землетрясения:									
годы	1922/23	1927	1938	1950/52	1957	1965	2004/05	2007	2010/11/12
месяцы	11/02	9	02	08/11	03	02	12/03	09	02/03/04
дни	11/03	12	01	15/04	09	04	26/28	12	27/11/11
Магнитуды	8.5/8.5	8.5	8.5	8.6/9.0	8.6	8.7	9.1/8.6	8.5	8.8/9.0/8.6

Опасные годы (табл. 4) и даты землетрясений с М ≥ 8,5 бала

Моги К. Предсказание землетрясений. М.: Мир, 1988.

¹ Берри Б.Л., Мягков С.М., Фрейдлин В.С. Синхронные изменения активности опасных явлений и их прогноз // Вестник МГУ. Сер. 5. География. 1986. № 3. С. 20–29.

² Моги К. Предсказание землетрясении. №... №ир. 1700. ³ Берри Б.Л. Гелио-геофизические и другие процессы... ⁴ "Largest Earthquakes in the World Since 1900." *USGS: U.S. Geological Survey*. U.S. Department of the Interior, U.S. Geological Survey, 14 Jan. 2015. Web. < http://earthquake.usgs.gov/earthquakes/world/10_largest_world.php>. ⁵ Николаев А.В. Инициирование землетрясений подземными ядерными взрывами // Вестник РАН. 1993. Т. 63. № 2. С. 113–117. ⁶ "Worldwide Nuclear Testing." *Wikimedia Commons*. Wikimedia Foundation, 29 Dec. 2014. Web. < https://commons.wikimedia.org/wiki/

File:Worldwide nuclear testing.png#/media/File:Worldwide nuclear testing.png>.

Рис. 3. Модель температур северного полушария (МТСП) t2.МТСП (3) и данные ряда приростов деревьев (800-2000 гг.) показаны разными линиями. МТСП даны в отклонениях от средней температуры воздуха за 1951–1975 гг.1.

Рис. 4. Аномальные температуры СП последнего межледникового периода в отклонениях от средней температуры за период 1951-1980 гг.2.

Рис. 5. Синхронные вариации земных и солнечных процессов и их прогнозы.

Берри Б.Л. Управление климатом, его прошлое и будущее // Холод'ОК. 2008. № 1(6). С.73-78.

² Клименко В. Глобальный климат: вчера, сегодня, завтра. Лекция [Электронный ресурс] // Полит.ру. 2005. 2 ноября. Режим доступа: http://www.polit.ru/article/2005/11/02/climate/.

Рис. 6. Измеренные и реконструированные магнитуды землетрясений (M ≥ 6) зоны Вранча (1) и модельные температуры Северного полушария в °С МТСП(37), нулевая линия которых соответствует 37-летнему осреднению модели (2).

Рис. 7. Корреляционные связи (1-4) между магнитудами (М) землетрясений зоны Вранча Карпат, возникших на четырех разных глубинах, и повышениями МТСП(37) в °С (рис. 6), а также их коэффициенты корреляции (0,99; 0,974; 0,96; 0,92).

Рис. 8. Корреляционные связи (1-6) между магнитудами (М) землетрясений зоны Вранча Карпат, возникшими на шести вертикальных разломах, и понижениями МТСП (-37) в °С (рис. 6), а также их коэффициенты корреляции (-0,744; -0,971; -0,978; -0,946; -0,964; -0,986).

5. Модели солнечной и сейсмической активностей

В 2006 г. автором была опубликована более простая и совершенная модель солнечной активности (І_{МСА}), выделенная из ряда индексов 22-летних циклов Хейла за 1700–2001 гг., которая описывается биением всего двух периодов колебаний: 22 г. и 18 лет (рис. 5, цветная вкладка на стр. 227)¹:

$$I_{MCA} = 2 + 86,932 \times \cos[2\pi \times (Y - 1473,8) / 22,046] + 31,0473 \times \cos[2\pi \times (Y - 1473,8) / 17,92] \pm 34,6$$
(4)

Гармонические колебания (4) с близкими периодами в 22 г. (22,046 г.) и 18 лет (17,92 г.) создают биения (не гармонические колебания) амплитуд CA (86,932 \approx 87; 31,0473 \approx 31) от величины 87 - 31 = 56 до максимального значения 87 + 31 = 118 каждые 99 и 198 лет: 22*4,5 = 18*5,5 = 99 лет и 22*9 = 18*11 = 198 лет.

Корреляция между I_{CA} и I_{MCA} равна r = 0,86 с уровнем значимости $LS \ll 0,001$ для 1700–2001 гг. Положительные участки циклов Хейла, которые соответствуют чётным циклам Вольфа, совпадают с потеплениями ТСП (рис. 5, цветная вкладка на стр. 227), а отрицательные - с похолоданиями. Похолодания совпадают и с увеличением сейсмичности Земли. Каждый третий минимум І_{мса} через 66 лет соответствует основным максимумам сейсмической активности: 1906 + 66 = 1972 г., 1972 + 66 = 2038 г., 2038 + 66 = 2104 г. Эти совпадения обусловлены периодом биения амплитуд СА в 198 лет и периодом сейсмической активности в 22 года (5). То есть модель СА (4) соответствует радиационным и гравитационным воздействиям Солнца на климатические и тектонические процессы.

В упомянутую выше статью 2006 г. включена и модель глобальной сейсмичности (МГС). Рассчитан индекс глобальной сейсмичности (S_{ГС}) и создана гармоническая модель его изменения во времени². Для каждого года ряда данных за 1897–1985 гг. индекс считался по формуле:

$$S_{\Gamma C} = R_E + \frac{(E - R_E)}{R} \quad , \tag{5}$$

где R_E – число регионов с хотя бы одним землетрясением с магнитудой M > 7,5; R = 8; E – число землетрясений за год с M > 7,5. Ряд МГС характеризует в большей степени глобальную компоненту процесса (число активных регионов). Для определения индексов земная поверхность была поделена на четыре сектора по меридианам: 0-90°, 90-180°, 180-300° и 300-360° и восемь регионов полушарий севера и юга (R).

На рис. 5 (с. 227) модель S_{MGS} представлена пятью гармониками с периодами от 13 до 63 лет:

 $S_{MGS} = \sum A_J \times \cos[(2\pi \times Y/T) - \varphi_J] \pm s_n = 0.518 \times \cos[(2\pi \times (Y - 1897)/13) - 3.5505]$ + 0,242 × cos[($2\pi \times (Y - 1897) / 17$) - 2,674] + 0,402 × cos[($2\pi \times (Y - 1897) / 22$) - 3,269] (6)+ 0,760 × cos[$(2\pi \times (Y - 1897) / 31) - 3,127$] + 0,325 × cos[$(2\pi \times (Y - 1897) / 63) - 1,230$] ± 0.384

где Y – грегорианский год, A_J , T_J и φ – соответственно амплитуды в индексах, периоды в годах и фазы в радианах, σ_n – среднее квадратическое отклонение МГС от ряда среднегодовых индексов ГС. Уровни значимости корреляции (LS < 0,001) между ГС и температурами в XX в. свидетельствуют об общих внешних причинах их вариаций.

6. Корреляции модельных температур СП и сильных землетрясений зоны Вранча

Всё будет правильно - на этом построен мир. М. Булгаков

При минимумах лунного склонения в полярных регионах формируются тектонические разрывы в вертикальных плоскостях почти меридионального направления. А в зоне средних широт (40÷50° с.ш.), в частности, в зоне Вранча (46° с.ш.), расположенной в юго-восточной области Карпат, возникают тектонические разрывы двух типов: почти горизонтальные со слабым падением на юго-восток и почти вертикальные разломы с простиранием на северо-восток. Сейсмологи установили, что сдвиги пород приурочены к четырем глубинам и шести вертикальным разломам³.

Поскольку и температура воздуха, и тектоническая активность зависят от ускорений вращения

²

¹ Berry B.L. "Solar System Oscillations..."; Берри Б.Л. Спектр Солнечной системы... ² Berry B.L. "Solar System Oscillations..." ³ Enescu D., Enescu B.D. "Possible Cause-Effect Relationships between Vrancea (Romania) Earthquakes and Some Global Geophysical Phenomena." Natural Hazards 19 (1999): 233-245.

Земли (рис. 1), то можно попытаться найти корреляционные связи между магнитудами землетрясений в зоне средних широт и изменениями модельных температур (2). Анализ реконструкций магнитуд землетрясений и модельных температур за 1400–2000 гг. (рис. 6, цветная вкладка, с. 228) позволил получить два типа корреляционных связей между этими величинами, показанными на рис. 7 и 8¹ (цветная вкладка, с. 228).

Найденные связи между литосферными и атмосферными процессами для зоны средних широт определяются воздействиями Луны и Солнца. Исследование корреляций между модельными температурами северного полушария (МТСП) и магнитудами землетрясений зоны Вранча (рис. 6) подтвердили наличие обнаруженных ранее сейсмологами четырех горизонтальных плоскостей (рис. 7) приуроченности землетрясений в зоне Вранча. Горизонтальные подвижки типичны для экваториальной зоны. Был найден и второй тип корреляций тех же величин магнитуд и температур, который показал шесть вертикальных разломов (рис. 8, цветная вкладка, с. 228), характерных для динамики полярных регионов².

Для поисков корреляций изучались землетрясения с $M \ge 6$. Они достаточно точно регистрируются на всем рассмотренном историческом интервале времени. Суммарно на рис. 7 и 8 (цветная вкладка, с. 228) показаны все экспериментальные точки. На рис. 7 не показаны 4 точки, используемые в рис. 8 (1543, 1939, 1940 – правый нижний угол, 1446 – верхняя граница рис. 8). На рис. 8 не показаны четыре землетрясения из рис. 7 (1666, 1596, 1947, 1948 – левый нижний угол). Сделано это только для того, чтобы не засорять представленные корреляции. Детальнее о попытках критики установленных связей температур полушария и землетрясений зоны Вранча, а также других результатов автором рассказано в статье³.

Уровень значимости (LS) корреляций достаточно мал (LS < 0,01) для корреляции 4 (рис. 7, верхний горизонт землетрясений) и LS < 0,05 для корреляции 1 (рис. 8, восточный вертикальный разлом). В первом случае (0,92) это связано с малой глубиной и малыми магнитудами землетрясений (6,1÷6,2). Во втором случае (-0,744) это вызвано разным генезисом землетрясений: землетрясения с $M > \approx 7,2$ связаны с глобальными, а с $M < \approx 7 - c$ региональными тектоническими процессами, о чем будет сказано ниже.

Для остальных линий коэффициенты корреляций очень велики (рис. 7, 8), а уровень значимости, соответственно, очень мал LS < 0,001. Близкие к единице корреляции между этими сериями данных свидетельствует не только об общих причинах тектонических и атмосферных процессов, но и о высоком качестве реконструкций сейсмических данных и климатических моделей.

7. Прогноз землетрясений зоны Вранча с М = 7,25 ± 0,05 в 2016/17 и в 2024 годах

з 2010/17 и в 2024 годах

Заглядывать в будущее чересчур далеко – недальновидно.

У. Черчилль

В табл. 6 дано сопоставление опасных лет с 1900 г. температурной модели (табл. 4) и землетрясений зоны Вранча (рис. 7, 8). С учётом точности прогнозов температурной модели (±1 год) с опасными годами совпали всего 7 землетрясений. Это свидетельствует о том, что большинство землетрясений зоны Вранча вызваны местными напряжениями. С увеличением глобальной нагрузки на земную кору в зоне Вранча связаны только землетрясения 1446 г. (M = 7,6), 1802 г. (M = 7,4), 1940 г. (M = 7,3) и 1977 г. (M = 7,2) гг. (рис. 7, 8). Землетрясения местного происхождения имели магнитуды $M \le 7,0$. Для прогноза ближайшего землетрясения из приведенного списка подходят только два землетрясения XX в. с M > 7,0, возникших в глубинном горизонте 2 в 1940 г. и в 1977 г. (рис. 7, 8).

Таблица 6

Опасные годы (табл. 4) и даты землетрясений зоны Вранча, прогноз землетрясения с магнитудой М ≥ 7,25 ± 0,05 после 5 ноября 2016 г. или в 2024 г.

Опасные годы	1908	1935	1939/ 40	1977	1986	2016/17	2024
Землетрясения:							
годы	1908	1934	1939/40/ 40	1977	1986	2016	
месяцы			/11	3		11	
дни			/10	4		5	
Магнитуды	6,8	6,9	6,1/6,2/ 7,3	7,2	6,9	$7,25 \pm 0,05$	$7,\!25\pm0,\!05$

¹ Kutas V.V., Rudenskaya L.M., Kalitoova I.A. "Repetition the Carpatian Earthquakes." *Geophys. J.* 23.4 (2001): 24–46; Berry B.L. "Solar System Oscillations..."

² Берри Б.Л. Гелио-геофизические и другие процессы...

³ Берри Б.Л. Гармонические модели движения Солнечной системы и гелио-геофизических процессов, реконструкции и прогнозы [Электронный ресурс] // Персональный сайт Б.Л. Берри. 2011. Режим доступа: http://geoberri.ru/garmoni4eskie%20modeli.html.

ПЛАНЕТА ЗЕМЛЯ

Ниже определим глобальные землетрясения и взрывы, которые могли бы дать начальный импульс для возникновения этих землетрясений, которые случились вблизи середины временных интервалов максимумов лунного склонения: 1931–1950 гг. и 1968–1987 гг. Землетрясения глобального уровня действительно произошли накануне упомянутых выше событий в 1939 г. и в 1976 г. В Чили было землетрясение 24 января 1939 г. с М = 8,3 балла, затем в Турции 27 декабря 1939 г. (М = 7,9), а уже после (10 ноября 1940 г.) в зоне Вранча. Большая разница во времени (11,5 месяца) между последними событиями вполне допустима, если учесть малую изученность и большой разброс данных скоростей распространения напряжений и смещений, а также необходимость преодоления сигналом из Турции границ литосферных плит (рис. 9).

Рис. 9. Литосферные плиты: Евроазиатская (1а – Китайская, 1б – Иранская, 1в – Турецкая, 1г – Эллинская, 1д – Адриатическая), Африканская (2а – Аравийская), Индо-Австралийская (3а – Фиджи, 3б – Соломонова), Тихоокеанская (4а – Наска, 4 б – Кокос, 4в – Карибская, 4г – Горда, 4д – Филиппинская, 4е – Бисмарк), Американская (5а – Северо-Американская, 5б – Южно-Американская), Антарктическая¹.

Крупнейшее из землетрясений, отмеченных на Гавайских островах после 1868 г., случилось 29 ноября 1975 г. (широта Северного тропика). Через пять месяцев землетрясение с М = 9,0 баллов прошло 8 апреля 1976 г. в Узбекистане. После первого толчка небольшой силы жители успели покинуть дома. Уникальное по мощности землетрясение в Газли является следствием техногенного (отбор газа) и естественного роста тектонических напряжений в зоне средних широт в середине периода лунного склонения (1968–1987 гг.).

Оно было инициировано испытанием атомного оружия на полигоне Капустин Яр 29 марта 1976 г.² и возникло через 10 дней после взрыва. Анализ землетрясений в Центральной Азии с 1963 по 1988 г. показал³, что все наведенные в Газли 11 землетрясений с $M \ge 5$ происходили в течение 15-дневного интервала после подземных ядерных взрывов вблизи г. Семипалатинск. Вероятность случайного совпадения этих событий составляла около 0,001.

Расстояние Семипалатинск – Газли равно 1600 км., то есть скорость распространения сигнала от ядерного взрыва, возбуждающего землетрясения, составляла 107 км/сутки или 4,5 км/час (скорость пешехода), что на порядок выше распространения сигнала от землетрясений. Средняя скорость прохождения сигнала смещений от землетрясения в Газли (8 апреля 1976 г.) до зоны Вранча (4 марта 1977 г.) на расстоянии в 3200 км составила примерно 9,6 км/сутки. Землетрясение разрушило только в Бухаресте 35 высотных зданий⁴, где погибло более 1500 человек.

Такие же простые расчеты были проведены для прогноза будущего землетрясения в зоне Вранча от сильнейшего за 80 лет землетрясения в Непале 25 апреля 2015 г. с М = 7,9. Оно произошло в Кат-

¹ Литосферные плиты [Электронный ресурс] // География. Режим доступа: https://geographyofrussia.com/litosfernye-plity/

² Johnston R. "Nuclear Tests. Databases and Other Material." *Johnston's Archive*. Wm. Robert Johnston, n.d. Web. <<u>http://www.johnstonsarchive.net/nuclear/tests/>; Idem. "Database of Nuclear Tests, USSR: part 2, 1964–1978 by Wm. Robert Johnston." *Johnston's Archive*. Wm. Robert Johnston, 15 June 2005. Web. <<u>http://www.johnstonsarchive.net/nuclear/tests/USSR-ntests2.html></u>. ³ Николаев А.В. Указ. соч.</u>

⁴ Татевосян Р.Э. Проблема однородной магнитудной классификации сейсмических событий и оценка периодов повторяемости глубоких карпатских землетрясений // Вопросы инженерной сейсмологии. 2008. Т. 35. № 3. С. 5–13.

ПРОСТРАНСТВО И ВРЕМЯ 3-4 (25-26)/2016

манду на следующий день после перегиба кривой приливных колебаний скорости вращения Земли 24 апреля 2015 г. (рис. 10). Эти внутригодовые перегибы кривой скоростей вращения Земли происходят каждые 4-8 дней и могут прогнозироваться. Н.С. Сидоренков рассчитывает эти угловые скорости для каждого будущего года¹.

Автор ждал промежуточного землетрясения от продвижения возбуждающего сигнала из Катманду по направлению к Карпатам вдоль Евроазиатского тектонического разлома. Сигнал достиг Мариуполя за 462 дня, где 7 августа 2016 г., произошло землетрясение с М = 4,7 баллов. Это случилось на следующий день после перегиба кривой скоростей вращения Земли (рис. 11).

¹ Сидоренков Н.С., Сумерова К.А. Указ. соч.; Сидоренков Н.С. Прогноз приливных колебаний скорости вращения Земли на 2016 год [Электронный ресурс] // Геоастрономические факторы и погода. Персональный сайт Н.С. Сидоренко. Режим доступа: http://www.geoastro.ru/images/tide2016.jpg. ² Сидоренков Н.С. Прогноз приливных колебаний...

Скорость продвижения сигнала от землетрясения в Непале до Мариуполя за 462 дня составила 9,96 км/сутки. Она оказалась близка к приведенным выше данным 30-летней давности, то есть характерна для этого тектонического региона. Сильное землетрясение в зоне Вранча следует ожидать, начиная с 5 ноября 2016 г. Но оно возникнет только в случае, если у внешнего сигнала хватит энергии для запуска процесса саморазвития основной трещины разрыва в вертикальной плоскости¹.

Понятно, что не все землетрясения точно совпадают с днями перегибов модельной кривой скоростей вращения Земли. Например, недавние землетрясения в Италии с магнитудами до $M = 6,2\div6,4$ произошли 24 августа 2016 г. и 26 октября 2016 г.² между точками перегибов кривой скоростей вращения Земли (рис. 11). Эти землетрясения были спровоцированы, как и землетрясение в Мариуполе, движением волн напряжений и подвижек от того же землетрясения в Непале 25 апреля 2015 г. Но они передвигались немного быстрее и более коротким путем вдоль границ Евроазиатской плиты с Индо-Австралийской и Африканской плитами, которая проходит южнее через Средиземное море и Апеннинский полуостров (рис. 9).

Волна напряжений от землетрясения 24 августа 2016 г. в Италии послужила спусковым механизмом для рядового землетрясения в зоне Вранча 24 сентября 2016 г. с магнитудой 5,6³. По времени оно опять совпало с перегибом скоростей вращения Земли (рис. 11). Скорость распространения волны на расстоянии 1300 км была 42 км/сутки.

Вблизи перегибов кривой угловые скорости вращения Земли имеют близкие к нулю ускорения. В это время между плоскостями меридиональных вертикальных разломов уменьшается сила сцепления и они могут легче перемещаться относительно друг друга. Это объясняет приуроченность исследуемых землетрясений к времени перегибов кривых внутригодовых скоростей.

Землетрясение с магнитудой 7,25 \pm 0,05 балла в зоне Вранча следует ожидать на северовосточном вертикальном разломе после 5 ноября 2016 г. в опасные дни перегибов кривой скорости вращения Земли (рис. 11). Новое землетрясение с магнитудой 7,25 \pm 0,05, если оно произойдет, будет в том же глубинном горизонте номер 2 и на том же восточном вертикальном разломе 1 (рис. 7, 8).

Если до конца 2016 г. в зоне Вранча не возникнет землетрясение с M = 7,25 ± 0,05 из-за слабости пришедшего сигнала, то подобное землетрясение может произойти и в следующие опасные годы: 2017–1018 гг. и 2024 ± 1 г. (табл. 4). Но для его возникновения будет нужен импульс от нового землетрясения глобального уровня с M ≥ 8 баллов на Евроазиатской плите (рис. 9).

Высокую вероятность возникновения сильного землетрясения с $M = 7,25 \pm 0,05$ в зоне Вранча в 2024 ± 1 г. подтверждают модели солнечной и сейсмической активности, а также модель температур СП (рис. 5). Годам прошедших землетрясений (1940 и 1978 гг.) в зоне Вранча и будущему землетрясения 2024 г. соответствуют совпадающие формы аномалий СА, МТСП, а также малый уровень глобальной сейсмичности. Это средние по амплитуде максимумы СА (\approx 100), отстоящие друг от друга, примерно, на 40 лет, а также двойные пики температур СП, расположенные под этими максимумами СА. Землетрясение 1940 г. совпадаю с понижением температур между этими пиками, а землетрясения 1978 г. и прогнозируемое 2024 г. совпадают с первым максимумом температур (рис. 5).

Заключение

Достойны удивления не те, кто предсказывает потоп, а те, кто строит ковчег.

Области равных воздействий сильных землетрясений зоны Вранча вытянуты с юго-запада на северо-восток, что соответствует направлению её вертикальных разломов. В зону четырехбальных землетрясений входят города Киев, Донецк, Курск, Тула, Москва. В Москве землетрясение зоны Вранча 4 марта 1977 г. ощущалось на уровне первых этажей столицы как колебания с интенсивностью до 4-х балов. На высоких этажах башен оно выглядело вполне серьезно. Амплитуда колебаний шпиля здания МГУ достигала двух метров⁴.

¹ Берри Б.Л. Прочность образцов снега и вопросы прогнозирования лавин // Труды Третьего Всесоюзного совещания по лавинам (г. Кировск, сентябрь1986 г.). Л.: Гидрометеоиздат, 1989. С. 72–81; Он же. . Способы оперативного прогнозирования лавин, основанные на использовании информации о начальных стадиях разрушения и движения снега // Там же. С. 171–179; Он же. Геофизический подход к оперативному прогнозированию лавин // Вестник МГУ. Сер. 5. Геология. 1989. № 2. С. 72–79.

² Землетрясение в Италии (2016) [Электронный ресурс] // Википедия: свободная энциклопедия. Режим доступа: https://ru.wikipedia.org/wiki/Землетрясение_в_Италии_(2016).

³ Землетрясение в Румынии 24 сентября 2016 [Электронный ресурс] // Космологический портал безопасности. 2016. 24 сент. Режим доступа: http://portalsafety.at.ua/news/zemletrjasenie_v_rumynii_zone_vrancha_24_sentjabrja_2016_otgoloski_zemletrjasenija_ v_ukraine_video/2016-09-24-6728. ⁴ Уломов В.И. Прогноз сейсмических проявлений в Москве при землетрясениях в зоне Вранча // Физика Земли. 2010. № 1.

⁴ Уломов В.И. Прогноз сейсмических проявлений в Москве при землетрясениях в зоне Вранча // Физика Земли. 2010. № 1. С. 3–20.

ПРОСТРАНСТВО И ВРЕМЯ 3-4 (25-26)/2016

Мы женой жили на 4-м этаже 16-ти этажного дома на проспекте Вернадского, где землетрясение ощущалось, но очень слабо. На высоких этажах его можно было наблюдать и «слышать». Мой товарищ жил на 19-м этаже башни по Ленинскому проспекту. Верхняя часть их здания колебалась в горизонтальной плоскости. Они с женой стояли напротив друг друга и их шатало из стороны в сторону, в шкафу звенела посуда. Землетрясение привело к формированию небольших трещин, наблюдаемых на стыке стен и потолков в верхних этажах дома гостиницы «Дружба», расположенной вблизи станции метро «Проспект Вернадского». Утром с улицы от нашего дома можно было видеть следы разрушений вблизи крыши этого 24-х этажного железобетонного здания.

Здания Москва-Сити и другие высотки Москвы, до которых пока не доходили подобные землетрясения, необходимо проверить и подготовить к будущему землетрясению, как и обитателей этих домов. Это относится к лифтовому и энергетическому хозяйству зданий, креплению люстр и мебели в квартирах на высоких этажах.

Руководство Румынии должно выделить ресурсы для проведения профилактических мероприятий по укреплению зданий, организации инструментального и биологического контроля за предвестниками землетрясения: регистрировать радиоволны на частоте порядка 1000 Гц и упругие колебания от процессов прорастания трещин в разломе 2, создать группы наблюдателей за поведением змей, рыб и животных, чувствующих сигналы-предвестники. К этим же предвестникам надо отнести и активизацию народных волнений в регионе предполагаемого очага землетрясения.

ЛИТЕРАТУРА

- Авсюк Ю.Н. Приливные силы и природные процессы. М.: Объединённый институт физики Земли им. О.Ю. Шмидта РАН, 1996. 186 с.
- 2. Берри Б.Л. Гармонические колебания Вселенной. М.: ЛИБРОКОМ, 2015. 122 с.
- Берри Б.Л. Гармонические модели движения Солнечной системы и гелио-геофизических процессов, реконструкции и прогнозы [Электронный ресурс] // Персональный сайт Б.Л. Берри. 2011. Режим доступа: http://geoberri.ru/garmoni4eskie %20modeli.html.
- 4. Берри Б.Л. Гелиогеофизические и другие процессы, периоды их колебаний и прогнозы // Геофизические процессы и биосфера. 2010. Т. 9. № 4. С. 21–66.
- 5. Берри Б.Л. Геофизический подход к оперативному прогнозированию лавин // Вестник МГУ. Сер. 5. География. 1989. № 2. С. 72–79.
- Берри Б.Л. Закономерности природных ритмов и прогноз климатических изменений // Оценка и долгосрочный прогноз изменений природы гор / Ред. С.М. Мягков. М.: Изд-во МГУ, 1987. С. 80–104.
- Берри Б.Л. Основные системы геосферно-биосферных циклов и прогноз природных условий // Биофизика. 1992. Т. 37. Вып. 3. С. 414–428.
- Берри Б.Л. Периодичность геофизических процессов и её влияние на развитие литосферы // Эволюция геологических процессов в истории Земли / Ред. Н.П. Лаверов. М.: Наука, 1993. С. 53–62.
- Берри Б.Л. Прогноз природных процессов и проблемы стабилизации климата // Математические методы анализа цикличности в геологии. Материалы XIII международной конференции (21 марта 2006) / Под ред. С.Л. Афанасьева. Т. 13. М.: Воентехиниздат, 2006. С. 158–168.
- 10. Берри Б.Л. Пространственно-временные колебания Вселенной и новые направления в науках о Земле // Пространство и Время. 2015. № 3 (21). С. 258–269.
- Берри Б.Л. Прочность образцов снега и вопросы прогнозирования лавин // Труды Третьего Всесоюзного совещания по лавинам (г. Кировск, сентябрь 1986 г.) Л.: Гидрометеоиздат, 1989. С. 72–81.
- Берри Б.Л. Синхронные процессы в оболочках Земли и их космические причины // Вестник МГУ. Сер. 5, География. 1991. № 1. С. 20–27.
- 13. Берри Б.Л. Спектр Солнечной системы и модели геофизических процессов // Геофизика. 2006. № 3. С. 64-68.
- Берри Б.Л. Способы оперативного прогнозирования лавин, основанные на использовании информации о начальных стадиях разрушения и движения снега // Труды Третьего Всесоюзного совещания по лавинам (г. Кировск, сентябрь 1986 г.). Л.: Гидрометеоиздат, 1989. С. 171–179.
- 15. Берри Б.Л. Стабильные периоды колебаний природных, общественных и технических процессов [Электронный ресурс] // Персональный сайт Б.Л. Берри. 2010. Режим доступа: http://www.geoberri.ru/kolebanija.html.
- 16. Берри Б.Л. Управление климатом, его прошлое и будущее // Холод'ОК. 2008. № 1 (6). С. 73-78.
- 17. Берри Б.Л., Либерман А.А., Шиятов С.Г. Восстановление и прогноз температур северного полушария по колебаниям индексов прироста деревьев на полярной границе леса // Вестник МГУ. Сер. 5 География. 1983. № 4. С. 41–47.
- Берри Б.Л., Мягков С.М., Фрейдлин В.С. Синхронные изменения активности опасных явлений и их прогноз // Вестник МГУ. Сер. 5. География. 1986. № 3. С. 20–29.
- Винников К.Я., Гройсман П.Я., Лугина К.М., Голубев А.А. Изменения средней температуры воздуха Северного полушария за 1841–1985 гг. // Метеорология и гидрология. 1987. № 1. С. 45–55.
- Землетрясение в Италии (2016) [Электронный ресурс] // Википедия: свободная энциклопедия. Режим доступа: https://ru.wikipedia.org/wiki/Землетрясение_в_Италии_(2016).
- Землетрясение в Румынии 24 сентября 2016 [Электронный ресурс] // Космологический портал безопасности. 2016. 24 сент. Режим доступа: http://portalsafety.at.ua/news/zemletrjasenie_v_rumynii_zone_vrancha_24_sentjabrja_2016_otgoloski_ zemletrjasenija_v_ukraine_video/2016-09-24-6728.
- 22. Клименко В. Глобальный климат: вчера, сегодня, завтра. Лекция [Электронный ресурс] // Полит.Ру. 2005. 2 ноября. Режим доступа: http://www.polit.ru/article/2005/11/02/climate/.
- 23. Литосферные плиты [Электронный ресурс] // География. Режим доступа: https://geographyofrussia.com/litosfernye-plity/.

- 24. Маров М.Я. Планеты Солнечной системы. М.: Наука, 1981. 256 с.
- 25. Моги К. Предсказание землетрясений. М.: Мир, 1988. 382 с.
- 26. Николаев А.В. Инициирование землетрясений подземными ядерными взрывами // Вестник РАН. 1993. Т. 63. № 2. С. 113–117.
- Сидоренков Н.С. Атмосферные процессы и вращение Земли. СПб.: Гидрометеоиздат, 2002. 200 с.
 Сидоренков Н.С. Прогноз приливных колебаний скорости вращения Земли на 2016 год [Электронный ресурс] // Геоастрономические факторы и погода. Персональный сайт Н.С. Сидоренко. Режим доступа: http://www.geoastro.ru/ images/tide2016.jpg.
- 29. Сидоренков Н.С., Сумерова К.А. Геодинамические причины декадных изменений климата. [Электронный ресурс] // Методический кабинет Гидрометцентра России. 2012. Режим доступа: http://method.meteorf.ru/publ/tr/tr348/sidoren.pdf.
- 30. Татевосян Р.Э. Проблема однородной магнитудной классификации сейсмических событий и оценка периодов повторяемости глубоких карпатских землетрясений // Вопросы инженерной сейсмологии. 2008. Т. 35. № 3. С. 5–13.
- 31. Уломов В.И. Прогноз сейсмических проявлений в Москве при землетрясениях в зоне Вранча // Физика Земли. 2010. № 1. C. 3-20
- 32. Хлыстов А.И., Долгачёв В.П., Доможилова Л.М. Движения барицента Солнца и солнечно-земные взаимодействия // Биофизика 1992. Т. 37. Вып. 3. С. 447-453.
- 33. Berry B.L. "Heliogeophysical and Outchther Natural Processes, Periods of Their Oscillations, and Forecasts." Izvestiya Atmospheric and Oceanic Physics 47.7 (2011): 54-86.
- 34. Berry B.L. "Regularities of Natural Cycles, Prediction of Climate and Surface Conditions." Hydrol. Process. 12 (1998): 2267–2278.
- 35. Berry B.L. "Solar System Oscillations and Models of Natural Processes." Journal of Geodynamics 41.1-3 (2006): 133-139.
- 36. Cook E.R., Esper J., D'Arrigo R. "Extra-Tropical Northern Hemisphere Temperature Variability over the Past 1000 Years." Quaternary Science Reviews 23 (2004): 2063-2074.
- 37. Enescu D., Enescu B.D. "Possible Cause-Effect Relationships between Vrancea (Romania) Earthquakes and Some Global Geophysical Phenomena." Natural Hazards 19 (1999): 233-245
- 38. Global Warming Petition Project. 2007. N.p., n.d. Web. http://www.petitionproject.org/>.
- 39. Johnston R. "Database of Nuclear Tests, USSR: part 2, 1964-1978 by Wm. Robert Johnston." Johnston's Archive. Wm. Robert Johnston, 15 June 2005. Web. http://www.johnstonsarchive.net/nuclear/tests/USSR-ntests2.html
- 40. Johnston R. "Nuclear Tests. Databases and Other Material." Johnston's Archive. Wm. Robert Johnston, n.d. Web. <http://www.johnstonsarchive.net/nuclear/tests/>
- 41. Kutas V.V., Rudenskaya L.M., Kalitoova I.A. "Repetition the Carpatian Earthquakes." Geophys. J. 23.4 (2001): 24-41.
- 42. "Largest Earthquakes in the World Since 1900." USGS: U.S. Geological Survey. U.S. Department of the Interior, U.S. Geological Survey, 14 Jan. 2015. Web. < http://earthquake.usgs.gov/earthquakes/world/10 largest world.php>.
- 43. Mann E.M., Bradley R S., Hughes M.K. "Global-Scale Temperature Patterns and Climate Forcing over the Past Six Centuries." Nature 392 (1998): 779-787.
- 44. Stuiver M., Braziunas T.F. "Evidence of Solar Activity Variations." Climate since A.D. 1500. Eds. R.S. Bradley and P.D. Jones. London: Routledge, 1995, pp. 593-604.
- Worldwide Nuclear Testing," Wikimedia Commons. Wikimedia Foundation, 29 Dec. 2014. Web. https://commons.wikimedia.org/ wiki/File:Worldwide nuclear testing.png#/media/File:Worldwide nuclear testing.png>
- 46. Zielinski G.A., Fiacco R.J., Mayewski P.A., Meeker L.D., Whitlow S.I. "Climatic Impact of the A.D. 1783 Asama (Japan) Eruption Was Minimal: Evidence from the GISP2 Ice Core." Geophysical Research Letters 21 (1994): 365-2368.

Цитирование по ГОСТ Р 7.0.11-2011:

Берри, Б. Л. Модели сейсмичности, вращения Земли, климата и солнечной активности. Пространство и время землетрясений зоны Вранча / Б.Л. Берри // Пространство и Время. — 2016. — № 3-4(24-25). — С. 220-235. Стационарный сетевой адрес: 2226-7271provr st3 4-25 26.2016.81.

Землетрясение. Миниатюра из Радзивиловской летописи. ХV в.