THE GENERATION OF GRANITIC MAGMAS BY INTRUSION OF BASALT INTO CONTINENTAL CRUST

Show simple item record

dc.contributor.author Huppert Herbert E.
dc.contributor.author Sparks R. Stephen J.
dc.date.accessioned 2020-04-07T05:17:50Z
dc.date.available 2020-04-07T05:17:50Z
dc.date.issued 1988
dc.identifier https://elibrary.ru/item.asp?id=10500475
dc.identifier.citation JOURNAL OF PETROLOGY, 1988, 29, 3, 599
dc.identifier.issn 0022-3530
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/16246
dc.description.abstract When basalt magmas are emplaced into continental crust, melting and generation of silicic magma can be expected. The fluid dynamical and heat transfer processes at the roof of a basaltic sill in which the wall rock melts are investigated theoretically and also experimentally using waxes and aqueous solutions. At the roof, the low density melt forms a stable melt layer with negligible mixing with the underlying hot liquid. A quantitative theory for the roof melting case has been developed. When applied to basalt sills in hot crust, the theory predicts that basalt sills of thicknesses from 10 to 1500 m require only 1 to 270 y to solidify and would form voluminous overlying layers of convecting silicic magma. For example, for a 500 m sill with a crustal melting temperature of 850 °C, the thickness of the silicic magma layer generated ranges from 300 to 1000 m for country rock temperatures from 500 to 850 °C. The temperatures of the crustal melt layers at the time that the basalt solidifies are high (900-950 °C) so that the process can produce magmas representing large degrees of partial fusion of the crust. Melting occurs in the solid roof and the adjacent thermal boundary layer, while at the same time there is crystallization in the convecting interior. Thus the magmas formed can be highly porphyritic. Our calculations also indicate that such magmas can contain significant proportions of restite crystals. Much of the refractory components of the crust are dissolved and then re-precipitated to form genuine igneous phenocrysts. Normally zoned plagioclase feldspar phenocrysts with discrete calcic cores are commonly observed in many granitoids and silicic volcanic rocks. Such patterns would be expected in crustal melting, where simultaneous crystallization is an inevitable consequence of the fluid dynamics. The time-scales for melting and crystallization in basalt-induced crustal melting (10 2 —10 3 y) are very short compared to the lifetimes of large silicic magma systems (>10 6 y) or to the time-scale for thermal relaxation of the continental crust (> 10 7 y). Several of the features of silicic igneous systems can be explained without requiring large, high-level, long-lived magma chambers. Cycles of mafic to increasingly large volumes of silicic magma with time are commonly observed in many systems. These can be interpreted as progressive heating of the crust until the source region is partially molten and basalt can no longer penetrate. Every input of basalt triggers rapid formation of silicic magma in the source region. This magma will freeze again in time-scales of order 10 2 —10 3 y unless it ascends to higher levels. Crystallization can occur in the source region during melting, and eruption of porphyritic magmas does not require a shallow magma chamber, although such chambers may develop as magma is intruded into high levels in the crust. For typical compositions of upper crustal rocks, the model predicts that dacitic volcanic rocks and granodiorite/tonalite plutons would be the dominant rock types and that these would ascend-from the source region and form magmas ranging from those with high temperature and low crystal content to those with high crystal content and a significant proportion of restite.
dc.title THE GENERATION OF GRANITIC MAGMAS BY INTRUSION OF BASALT INTO CONTINENTAL CRUST
dc.type Статья


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record