CARBON-SULFUR-IRON SYSTEMATICS OF THE UPPERMOST DEEP-WATER SEDIMENTS OF THE BLACK SEA

Show simple item record

dc.contributor.author Lyons T.W.
dc.contributor.author Berner R.A.
dc.date.accessioned 2020-11-09T07:48:54Z
dc.date.available 2020-11-09T07:48:54Z
dc.date.issued 1992
dc.identifier https://elibrary.ru/item.asp?id=35764908
dc.identifier.citation Chemical Geology, 1992, , 1, 1-27
dc.identifier.issn 0009-2541
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/18743
dc.description.abstract Box cores recovered during Leg 4 of the 1988 R/V “Knorr” Black Sea Oceanographic Expedition from deep-water regions of the basin were dominated by coccolith-rich, microlaminated (Unit 1) sediment and muddy, gray turbidite layers. Both organic carbon (OC) and pyrite sulfur values for Unit 1 display narrow ranges, with mean concentrations of 5.3 ± 1.1 (1σ) wt% and 1.3 ± 0.3 wt%, respectively. Unit 1 is not enriched in pyrite-S relative to sediments deposited under oxygenated bottom waters (normal marine sediments) with comparable OC concentrations. Carbon-sulfur relationships (evaluated on a calcium carbonate-free basis to avoid spurious correlations resulting from dilution effects) demonstrate that OC and pyrite-S are essentially decoupled. These observations, combined with the persistence of elevated pore-water sulfide to depth and a strong correlation between pyrite-S and the detrital Fe component argue strongly for limitation of pyrite formation in Unit 1 by the availability of reactive Fe. Unit-1 Fe limitation is further indicated by degree-of-pyritization (DOP) studies (a measure of the extent to which the original potentially reactive Fe has been transformed to pyrite). These studies show sulfidation of reactive Fe ranging from 57% to 78%, with DOP values independent of OC concentration. Unit-1 DOP profiles suggest that the majority of the pyrite is formed in the sulfidic water column and/or very close to the sediment-water interface. Pyrite-S concentrations of Unit 1, when compared with the particulate reduced sulfur fluxes measured in time-series sediment traps, are compatible with predominantly water-column pyrite formation. Because of the limitations in the supply of reactive Fe associated with the comparatively high supply of OC, the microlaminated sediment is characterized by C/S ratios greater than those typical of Holocene oxically deposited sediments.
dc.subject Holocene en
dc.title CARBON-SULFUR-IRON SYSTEMATICS OF THE UPPERMOST DEEP-WATER SEDIMENTS OF THE BLACK SEA
dc.type Статья
dc.subject.age Cenozoic::Quaternary::Holocene en
dc.subject.age Кайнозой::Четвертичная::Голоцен ru


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record