EXPERIMENTAL DETERMINATION OF THE SOLUBILITY OF AU IN SILICATE MELTS

Show simple item record

dc.contributor.author Borisov A.
dc.contributor.author Palme H.
dc.date.accessioned 2020-12-03T02:09:09Z
dc.date.available 2020-12-03T02:09:09Z
dc.date.issued 1996
dc.identifier https://elibrary.ru/item.asp?id=23985048
dc.identifier.citation Mineralogy and Petrology, 1996, , 3, 297-312
dc.identifier.issn 0930-0708
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/20200
dc.description.abstract We report here new data on the solubility of Au in silicate melts of anorthite-diopside eutectic composition at a wide range of oxygen fugacities, from pure oxygen to 10−8 atm, and at a temperature range of 1300 °C to 1480 °C. Because experiments were done with metal loops at temperatures above the Au-melting temperature, PdAu-metal-alloys had to be used. Pd-solubility data derived from the same set of experiments agree with earlier data obtained from experiments with pure Pd-metal (Borisov et al., 1994a). The results of the present experiments show that Pd-solubilities are by a factor of 2 to 6 higher than Au-solubilities. Both, Au and Pd solubilities decrease with decreasing oxygen fugacity. At oxygen fugacities below the iron-wiistite buffer (IW) Au solubility increases with decreasing fO2 probably reflecting formation of Au-silicides at such reducing conditions. Compared to Pd, Au has higher activity coefficients in Fe-metal and lower solubility in silicate melts. This leads to similar metal-silicate partition coefficients for both elements. At a temperature of 1350 °C and an oxygen fugacity corresponding to IW-2 DAu (met/sil) is about 2.5 · 107 and DPd (met/sil) about 1.6 · 107. Thus similar behavior is expected during metal separation in planetary bodies including core formation in the Earth. The metal/silicate partition coefficient of Ir is, however, by several orders of magnitudes higher (Borisov and Palme, 1995a). Equilibration with chondritic metal will therefore lead to grossly non-chondritic Pd/Ir or Au/Ir ratios in coexisting silicate phases. Chondritic ratios are thus indicative of the presence of unfractionated meteoritic components. Samples from the upper mantle of the Earth, for example, reflect the admixture of a late unfractionated (chondritic) veneer (e.g.,Kimura et al., 1974;Jagoutz et al., 1979). Solubilities of Pd and Au in silicate melts are much higher than the contents in terrestrial basalts implying that the abundances of these two elements are not buffered by residual PGE- and Au-containing alloys. The most likely process for fractionating PGEs in terrestrial magmas are mineral-melt (e.g., olivine/melt) equilibria.
dc.title EXPERIMENTAL DETERMINATION OF THE SOLUBILITY OF AU IN SILICATE MELTS
dc.type Статья


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record