BIOGENIC IRON MINERALIZATION ACCOMPANYING THE DISSIMILATORY REDUCTION OF HYDROUS FERRIC OXIDE BY A GROUNDWATER BACTERIUM - SORPTION OF MN2+ ON FECO3

Show simple item record

dc.contributor.author Fredrickson J.K.
dc.contributor.author Zachara J.M.
dc.contributor.author Kennedy D.W.
dc.contributor.author Dong H.
dc.contributor.author Onstott T.C.
dc.contributor.author Hinman N.W.
dc.contributor.author Li S.M.
dc.date.accessioned 2020-12-30T02:36:35Z
dc.date.available 2020-12-30T02:36:35Z
dc.date.issued 1998
dc.identifier https://elibrary.ru/item.asp?id=121628
dc.identifier.citation Geochimica et Cosmochimica Acta, 1998, , 19, 3239-3257
dc.identifier.issn 0016-7037
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/21684
dc.description.abstract Dissimilatory iron-reducing bacteria (DIRB) couple the oxidation of organic matter or H2 to the reduction of iron oxides. The factors controlling the rate and extent of these reduction reactions and the resulting solid phases are complex and poorly understood. Batch experiments were conducted with amorphous hydrous ferric oxide (HFO) and the DIRB Shewanella putrefaciens, strain CN32, in well-defined aqueous solutions to investigate the reduction of HFO and formation of biogenic Fe(II) minerals. Lactate-HFO solutions buffered with either bicarbonate or 1,4-piperazinediethanesulfonic acid (PIPES) containing various combinations of phosphate and anthraquinone-2,6-disulfonate (AQDS), were inoculated with S. putrefaciens CN32. AQDS, a humic acid analog that can be reduced to dihydroanthraquinone by CN32, was included because of its ability to function as an electron shuttle during microbial iron reduction and as an indicator of pe. Iron reduction was measured with time, and the resulting solids were analyzed by X-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (SAED). In HCO3- buffered medium with AQDS, HFO was rapidly and extensively reduced, and the resulting solids were dominated by ferrous carbonate (siderite). Ferrous phosphate (vivianite) was also present in HCO3- medium containing P, and fine-grained magnetite was present as a minor phase in HCO3- medium with or without P. In the PIPES-buffered medium, the rate and extent of reduction was strongly influenced by AQDS and P. With AQDS, HFO was rapidly converted to highly crystalline magnetite whereas in its absence, magnetite mineralization was slower and the final material less crystalline. In PIPES with both P and AQDS, a green rust type compound [Fe(6-x)IIFexIII(OH)12]x+[(A2-)x/2 . yH2O]x- was the dominant solid phase formed; in the absence of AQDS a poorly crystalline product was observed. The measured pe and nature of the solids identified were consistent with thermodynamic considerations. The composition of aqueous media in which microbial iron reduction occurred strongly impacted the rate and extent of iron reduction and the nature of the reduced solids. This, in turn, can provide a feedback control mechanism on microbial metabolism. Hence, in sediments where geochemical conditions promote magnetite formation, two-thirds of the Fe(III) will be sequestered in a form that may not be available for anaerobic bacterial respiration.
dc.title BIOGENIC IRON MINERALIZATION ACCOMPANYING THE DISSIMILATORY REDUCTION OF HYDROUS FERRIC OXIDE BY A GROUNDWATER BACTERIUM - SORPTION OF MN2+ ON FECO3
dc.type Статья


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record