Abstract:
Sorption processes typically control trace metal concentrations in aquatic systems. To illustrate the impact of various types of surface sites on metal ion sorption behavior, Co(II) and Sr(II) sorption by several clay minerals under a range pH and background electrolyte conditions was studied. X-ray absorption spectroscopy (XAS) was used to characterize the surface complexes formed to explain the basis for the sorption trends. At low pH, Co(II) could be displaced from the surface by increasing the Na ion concentration. XAS analysis of these samples showed that sorbed Co(II) retained the coordination structure of aqueous phase Co(II), suggesting the formation of weakly associated, outer-sphere, mononuclear Co complexes at permanent charge sites. At high pH, sorbed Co could not be displaced by increasing the Na ion concentration. The XAS analyses of these samples indicated the formation of Co coprecipitates. The results of the Sr(II) sorption experiments suggested weaker bonding between sorbed Sr and the solid surfaces, regardless of solution conditions and adsorbent. XAS analysis of Sr sorption samples revealed the formation of mononuclear, outer-sphere complexes of Sr at clay-water interfaces, similar to the outer-sphere Co sorption samples observed only at low pH.