Show simple item record

dc.contributor.author Albora A.M.
dc.contributor.author Ucan O.N.
dc.contributor.author Ozmen A.
dc.contributor.author Ozkan T.
dc.date.accessioned 2021-02-12T04:05:05Z
dc.date.available 2021-02-12T04:05:05Z
dc.date.issued 2001
dc.identifier https://www.elibrary.ru/item.asp?id=599052
dc.identifier.citation Journal of Applied Geophysics, 2001, 46, 2, 129-142
dc.identifier.issn 0926-9851
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/24772
dc.description.abstract In this paper, a modern image-processing technique, the Cellular Neural Network (CNN) has been firstly applied to Bouguer anomaly map of synthetic examples and then to data from the Sivas-Divrigi Akdag region. CNN is an analog parallel computing paradigm defined in space and characterized by the locality of connections between processing neurons. The behaviour of the CNN is defined by two template matrices and a template vector. We have optimised the weight coefficients of these templates using the Recurrent Perceptron Learning Algorithm (RPLA). After testing CNN performance on synthetic examples, the CNN approach has been applied to the Bouguer anomaly of Sivas-Divrigi Akdag region and the results match drilling logs done by Mineral Research and Exploration (MTA).
dc.subject CELLULAR NEURAL NETWORK (CNN)
dc.subject SIVAS-DIVRIGI
dc.subject AKDAG BOUGUER ANOMALY
dc.title SEPARATION OF BOUGUER ANOMALY MAP USING CELLULAR NEURAL NETWORK
dc.type Статья


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record