FE-MG PARTITIONING BETWEEN RINGWOODITE AND MAGNESIOWUSTITE AND THE EFFECT OF PRESSURE, TEMPERATURE AND OXYGEN FUGACITY

Show simple item record

dc.contributor.author Frost D.J.
dc.contributor.author Langenhorst F.
dc.contributor.author van Aken P.A.
dc.date.accessioned 2021-03-30T10:40:27Z
dc.date.available 2021-03-30T10:40:27Z
dc.date.issued 2001
dc.identifier https://www.elibrary.ru/item.asp?id=872523
dc.identifier.citation Physics and Chemistry of Minerals, 2001, 28, 7, 455-470
dc.identifier.issn 0342-1791
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/27171
dc.description.abstract The partitioning of Mg and Fe between magnesiowüstite and ringwoodite solid solutions has been measured between 15 and 23 GPa and 1200–1600°C using both Fe and Re capsule materials to vary the oxidation conditions. The partitioning results show a clear dependence on the capsule material used due to the variation in Fe3+ concentrations as a consequence of the different oxidation environments. Using results from experiments performed in Fe capsules, where metallic Fe was also added to the starting materials, the difference in the interaction parameters for the two solid solutions (W FeMg mw−W FeMg ring) is calculated to be 8.5±1 kJ mol−1. Similar experiments performed in Re metal capsules result in a value for W FeMg mw−W FeMg ring that is apparently 4 kJ higher, if all Fe is assumed to be FeO. Electron energy-loss near-edge structure (ELNES) spectroscopic analyses, however, show Fe3+ concentrations to be approximately three times higher in magnesiowüstite produced in Re capsules than in Fe capsules and that Fe3+ partitions preferentially into magnesiowüstite, with K D Fe3+ ring/mw estimated between 0.1 and 0.6. Using an existing activity composition model for magnesiowüstite, a least–squares fit to the partitioning data collected in Fe capsules results in a value for the ringwoodite interaction parameter (W FeMg ring) of 3.5±1 kJ mol−1. The equivalent regular interaction parameter for magnesiowüstite (W FeMg mw) is 12.1±1.8 kJ mol. These determinations take into account the Fe3+ concentrations that occur in both phases in the presence of metallic Fe. The free energy change in J mol−1 for the Fe exchange reaction can be described, over the range of experimental conditions, by 912 + 4.15 (T−298)+18.9P with T in K, P in kbar. The estimated volume change for this reaction is smaller than that predicted using current compilations of equation of state data and is much closer to the volume change at ambient conditions. These results are therefore a useful test of high pressure and temperature equation of state data. Using thermodynamic data consistent with this study the reaction of ringwoodite to form magnesiowüstite and stishovite is calculated from the data collected using Fe capsules. Comparison of these results with previous studies shows that the presence of Fe3+ in phases produced in multianvil experiments using Re capsules can have a marked effect on apparent phase relations and determined thermodynamic properties.
dc.subject RINGWOODITE
dc.subject MAGNESIOWUSTITE
dc.subject OXYGEN FUGACITY
dc.subject ELEMENT PARTITIONING
dc.subject TRANSITION ZONE
dc.subject HIGH PRESSURE
dc.title FE-MG PARTITIONING BETWEEN RINGWOODITE AND MAGNESIOWUSTITE AND THE EFFECT OF PRESSURE, TEMPERATURE AND OXYGEN FUGACITY
dc.type Статья


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record