QUANTITATIVE ANALYSIS OF VARIATIONS IN DEPOSITIONAL SEQUENCE THICKNESS FROM SUBMARINE CHANNEL LEVEES

Show simple item record

dc.contributor.author Skene K.I.
dc.contributor.author Piper D.J.W.
dc.contributor.author Hill P.S.
dc.date.accessioned 2021-06-03T06:25:21Z
dc.date.available 2021-06-03T06:25:21Z
dc.date.issued 2002
dc.identifier https://elibrary.ru/item.asp?id=1422032
dc.identifier.citation Sedimentology, 2002, 49, 6, 1411-1430
dc.identifier.issn 0037-0746
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/28822
dc.description.abstract Thickness variations across-levee and downchannel in acoustically defined depositional sequences from six submarine channel-levee systems show consistent and quantifiable patterns. The thickness of depositional sequences perpendicular to the channel trend, i.e. across the levee, decreases exponentially, as characterized by a spatial decay constant, k. Similarly, the thickness of sediment at the levee crest decreases exponentially down the upper reaches of submarine channels and can be characterized by a second spatial decay constant, λ. The inverse of these decay constants has units of length and defines depositional length scales such that k -1 is a measure of levee width and λ-1 is a measure of levee length. Quantification of levee architecture in this way allowed investigation of relationships between levee architecture and channel dimensions. It was found that these measures of levee e-folding width and levee e-folding length are directly related to channel width and relief. The dimensions of channels and levees are thus intimately related, thereby limiting the range of potential channel-levee morphologies, regardless of allocyclic forcing. A simple sediment budget model relates the product of the levee e-folding width and e-folding length to through-channel volume discharge. A classification system based on the quantitative downchannel behaviour of levee architecture allows identification of a 'mid-channel' reach, where sediment is passively transferred from the through-channel flow to the levees as an overspilling flow. Downstream from this reach, the channel gradually looses its control on guiding turbidity currents, and the resulting flow can be considered as an unconfined or spreading flow.
dc.subject SUBMARINE CHANNEL LEVEES
dc.subject TURBIDITY CURRENTS
dc.title QUANTITATIVE ANALYSIS OF VARIATIONS IN DEPOSITIONAL SEQUENCE THICKNESS FROM SUBMARINE CHANNEL LEVEES
dc.type Статья


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record