MINERALOGY OF PHYLLOSILICATE-RICH MICROMETEORITES AND COMPARISON WITH TAGISH LAKE AND SAYAMA METEORITES

Show simple item record

dc.contributor.author Noguchi T.
dc.contributor.author Nakamura T.
dc.contributor.author Nozaki W.
dc.date.accessioned 2021-09-17T06:49:03Z
dc.date.available 2021-09-17T06:49:03Z
dc.date.issued 2002
dc.identifier https://elibrary.ru/item.asp?id=1254031
dc.identifier.citation Earth and Planetary Science Letters, 2002, 202, 2, 229-246
dc.identifier.issn 0012-821X
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/30267
dc.description.abstract Four phyllosilicate-rich micrometeorites (MMs) were investigated by a synchrotron radiation X-ray diffraction technique and transmission electron microscopy. Three are saponite-rich MMs and one is a serpentine-rich one. In the saponite-rich MMs, we could not find serpentine, and vice versa in the serpentine-rich MM. In the saponite-rich MMs, major constituent minerals are saponite, Fe- and Ni-bearing sulfides, and magnetite. Two saponite-rich MMs contain fine-grained magnesiowustite-rich aggregates. The aggregates consist of <50 nm polygonal magnesiowustite coexisting with minor Fe sulfide grains. Their texture, chemical composition, and the result of heating experiments on matrix fragments of the Tagish Lake carbonaceous chondrite strongly suggest that these aggregates were formed by the breakdown of Mg- and Fe-rich carbonate grains when the MMs entered the Earth's atmosphere. The estimated major mineral assemblage of the saponite-rich MMs before entering the Earth's atmosphere is very similar to that of the Tagish Lake carbonate-rich lithology, and we suggest that the MMs and the meteorite were derived from similar asteroids. The major mineral assemblage and texture of the matrix of serpentine-rich MM are similar to the matrix of the Sayama CM2 chondrite that experienced heavy aqueous alteration. Chemical compositions of serpentine in the MM suggest that the degree of aqueous alteration of the MM is weaker than that of Sayama. In the MM, cronstedtite does not coexist with tochilinite, which is different from CM2 chondrites that experienced weak to moderate aqueous alteration. However, the possibility that the serpentine-rich MM was derived from the CM chondrite asteroid cannot be ruled out, because tochilinite can be preferentially decomposed during atmospheric entry heating due to its lower decomposition temperature than that of cronstedtite.
dc.subject MICROMETEORITES
dc.subject TAGISH LAKE METEORITE
dc.subject SAYAMA METEORITE
dc.subject TRANSMISSION ELECTRON MICROSCOPY
dc.subject SHEET SILICATES
dc.title MINERALOGY OF PHYLLOSILICATE-RICH MICROMETEORITES AND COMPARISON WITH TAGISH LAKE AND SAYAMA METEORITES
dc.type Статья


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record