PHASE RELATIONS IN THE CH4-H2O-NACL SYSTEM AT 2 KBAR, 300 TO 600°C AS DETERMINED USING SYNTHETIC FLUID INCLUSIONS

Show simple item record

dc.contributor.author Lamb W.M.
dc.contributor.author Mcshane C.J.
dc.contributor.author Popp R.K.
dc.date.accessioned 2021-09-17T06:49:06Z
dc.date.available 2021-09-17T06:49:06Z
dc.date.issued 2002
dc.identifier https://elibrary.ru/item.asp?id=1259335
dc.identifier.citation Geochimica et Cosmochimica Acta, 2002, 66, 22, 3971-3986
dc.identifier.issn 0016-7037
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/30288
dc.description.abstract Synthesis of fluid inclusions in the CH4-H2O-NaCl system was accomplished by subjecting fractured quartz or fluorite, along with known quantities of CH4, H2O, and NaCl, to a pressure of 2 kbar and temperatures of 300, 400, 500, or 600°C, in sealed Au capsules. Under the elevated P-T conditions, some of the fractures healed, trapping fluids as inclusions. Microthermometric measurements conducted on the fluid inclusions show that at 2 kbar and 400 to 600°C, there are very broad regions of fluid unmixing in the CH4-H2O-NaCl system. For those bulk fluid compositions that lie in the two-phase (i.e., immiscible fluids) field, the high-density phase is enriched in NaCl, whereas the low-density phase is enriched in CH4. For any given bulk composition, the degree of NaCl enrichment in the high-density phase increases, whereas the degree of CH4 enrichment in the low-density phase decreases, as temperature increases from 400 to 600°C. Our experimental constraints on the size of the two-phase field are generally consistent with results generated using the equation-of-state GEOFLUIDS (available at http://geotherm.ucsd.edu/geofluids/). However, when comparing the compositions of coexisting immiscible fluids, as determined experimentally vs. calculated using GEOFLUIDS, we find that some relatively small but probably significant differences exist between our experiments and this equation of state.
dc.title PHASE RELATIONS IN THE CH4-H2O-NACL SYSTEM AT 2 KBAR, 300 TO 600°C AS DETERMINED USING SYNTHETIC FLUID INCLUSIONS
dc.type Статья


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record