THE ROLE OF HYDROMECHANICAL COUPLING IN FRACTURED ROCK ENGINEERING

Show simple item record

dc.contributor.author Rutqvist J.
dc.contributor.author Stephansson O.
dc.date.accessioned 2022-01-27T05:45:00Z
dc.date.available 2022-01-27T05:45:00Z
dc.date.issued 2003
dc.identifier https://elibrary.ru/item.asp?id=5085050
dc.identifier.citation Hydrogeology Journal, 2003, 11, 1, 7-40
dc.identifier.issn 1431-2174
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/34633
dc.description.abstract This paper provides a review of hydromechanical (HM) couplings in fractured rock, with special emphasis on HM interactions as a result of, or directly connected with human activities. In the early 1960s, the coupling between hydraulic and mechanical processes in fractured rock started to receive wide attention. A series of events including dam failures, landslides, and injection-induced earthquakes were believed to result from HM interaction. Moreover, the advent of the computer technology in the 1970s made possible the integration of nonlinear processes such as stress-permeability coupling and rock mass failure into coupled HM analysis. Coupled HM analysis is currently being applied to many geological engineering practices. One key parameter in such analyses is a good estimate of the relationship between stress and permeability. Based on available laboratory and field data, it was found that the permeability of fractured rock masses tends to be most sensitive to stress changes at shallow depth (low stress) and in areas of low in-situ permeability. In highly permeable, fractured rock sections, fluid flow may take place in clusters of connected fractures which are locked open as a result of previous shear dislocation or partial cementation of hard mineral filling. Such locked-open fractures tend to be relatively insensitive to stress and may therefore be conductive at great depths. Because of the great variability of HM properties in fractured rock, and the difficulties in using laboratory data for deriving in-situ material properties, the HM properties of fractured rock masses are best characterized in situ.
dc.subject FRACTURED ROCKS
dc.subject MECHANICAL
dc.subject HYDRO-MECHANICAL COUPLING
dc.subject STRESS
dc.subject PERMEABILITY
dc.title THE ROLE OF HYDROMECHANICAL COUPLING IN FRACTURED ROCK ENGINEERING
dc.type Статья


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record