CRYSTAL CHEMISTRY OF TREMOLITE-TSCHERMAKITE SOLID SOLUTIONS

Show simple item record

dc.contributor.author Najorka J.
dc.contributor.author Gottschalk M.
dc.date.accessioned 2022-02-13T04:46:11Z
dc.date.available 2022-02-13T04:46:11Z
dc.date.issued 2003
dc.identifier https://elibrary.ru/item.asp?id=5082460
dc.identifier.citation Physics and Chemistry of Minerals, 2003, 30, 2, 108-124
dc.identifier.issn 0342-1791
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/35290
dc.description.abstract Tremolite-tschermakite solid solutions have been synthesized between 700 and 850 °C and 200 and 2000 MPa. The starting materials were oxide-hydroxide mixtures and an additional 0.1-1.8 molal CaBr2 solution. The run products were characterized using SEM, HRTEM, EMP, XRD and FTIR. The synthesized Al tremolites formed needles and lath-shaped crystals of up to 300 × 20 μm. HRTEM investigations showed that the majority of the amphiboles were well ordered. The EMP analysis revealed that the Al tremolites were solid solutions in the ternary tremolite-tschermakite-cummingtonite. The highest observed Al content was close to the composition of magnesiohornblende (Xts=0.54). Different cummingtonite concentrations (Xcum=0.00-0.18) were observed, which generally increased with Al content. Rietveld refinements of the lattice constants showed a linear decrease of the cell parameters a and b with increasing Al content, whereas c and β increased. Small deviations from the linear behaviour were caused by variable amounts of the cummingtonite component. For pure tschermakite lattice parameters of a=9.7438(11) A, b=17.936(14) A, c=5.2995(3) A, β=105.68(9)° and V=891.7 ± 1.4 A3 were extrapolated by least-squares regression. Using the a and β lattice parameters for tremolite, tschermakite and cummingtonite, it was possible to derive amphibole compositions using powder XRD. IR spectra of the Al tremolites showed a total of 12 individual bands. The FWHMs of all bands increased with increasing Al content. According to their FWHMs, these bands were grouped into three band systems at 3664-3676 cm-1 (I), 3633-3664 cm-1 (II) and 3526-3633 cm-1 (III). Assuming [6]Al substitution at M2 and/or M3 and [4]Al at T1, three principal different configurational groups could be assigned as local environments for the proton. I: only Si4+ at T1 and one or two Al3+ at M2 and/or M3far, II: one Al3+ at T1 and one to three Al3+ at M2 and/or at M3far, III: either Al3+ on M3near and/or two Al3+ on T1 and additional one to four Al3+ at M2. It is assumed that these three configurational groups correspond to the three groups of observed bands. This was quantitativly supported by Monte-Carlo simulations. A model with random distribution at M2 and M3 including Al avoidance at tetrahedral and octahedral sites yielded the best agreement with the spectroscopical results.
dc.subject AMPHIBOLE
dc.subject TREMOLITE
dc.subject TSCHERMAKITE
dc.subject RIETVELD REFINEMENT
dc.subject IR SPECTROSCOPY
dc.title CRYSTAL CHEMISTRY OF TREMOLITE-TSCHERMAKITE SOLID SOLUTIONS
dc.type Статья


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record