INSTABILITY OF EXOGENOUS LAVA LOBES DURING INTENSE RAINFALL

Show simple item record

dc.contributor.author Simmons J.
dc.contributor.author Elsworth D.
dc.contributor.author Voight B.
dc.date.accessioned 2022-07-03T06:36:31Z
dc.date.available 2022-07-03T06:36:31Z
dc.date.issued 2004
dc.identifier https://www.elibrary.ru/item.asp?id=18383863
dc.identifier.citation Bulletin of Volcanology, 2004, 66, 8, 725-734
dc.identifier.issn 0258-8900
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/37868
dc.description.abstract On many volcanoes, there is evidence of a relationship between dome collapse and periods of high precipitation. We propose a mechanism for this relationship and investigate the conditions that optimize failure by this process. Observations of elongate lobes that evolve through exogenous growth of lava domes reveal that they commonly develop tensile fractures perpendicular to the direction of motion. These cracks can increase in depth by localized cooling and volumetric contraction. During periods of high rainfall, water can fill these cracks, and the increase in fluid pressure on the base of the lobes and within the crack can trigger the collapse of the hot exogenous lava domes. Using limit-equilibrium analysis, it is possible to calculate the water and vapor forces acting on the rear and base of the potentially unstable part of the lobe. The model presented is rectangular in cross-section, with material properties representative of andesitic dome rocks. Vapor pressures at the base of cracks are sealed by the penetrating rainfall, which forms a saturated cap within the lobe. This leads to an increase in fluid pressurization both through the underlying gas pressure and the downslope component of the liquid water cap. Fluid pressurization increases as the penetration depth increases. This rainfall penetration depth is dependent on the thermal properties of the rocks, antecedent temperature, lobe geometry, and the intensity and duration of precipitation. Dominant parameters influencing the stability of the lobe are principally lobe thickness, duration and intensity of rainfall, and antecedent lobe temperature. Our modeling reveals that thicker lobes are intrinsically more unstable due to the amplification of downslope forces in comparison to cohesive strength. The increase in the duration and intensity of rainfall events also increases the potential for collapse, as it leads to deeper liquid penetration. Deeper penetration depths are also achieved through lower antecedent temperatures since less fluid is lost through vaporization. Thus, the potential for rain-triggered collapse increases with time from emplacement.
dc.subject Instability
dc.subject Exogenous lava lobes
dc.subject Intense rainfall
dc.title INSTABILITY OF EXOGENOUS LAVA LOBES DURING INTENSE RAINFALL
dc.type Статья


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record