Abstract:
Seismic refraction and reflection data were acquired in 2000 and 2003 to study the morphology and sedimentary fill of the remote El'gygytgyn crater (Chukotka, northeastern Siberia; diameter 18 km). These data allow a first insight into the deeper structure of this unique impact crater. Wide-angle data from sonobuoys reveal a five-layer model: a water layer, two lacustrine sedimentary units that fill a bowl-shaped apparent crater morphology consisting of an upper layer of fallback breccia with P-wave velocities of ~3000 m/s, and a lower layer of brecciated bedrock (velocities >3600 m/s). The lowermost layer shows a distinct anticline structure that, by analogy with other terrestrial and lunar craters of similar size, can be interpreted as a central ring structure. The El'gygytgyn crater exhibits a well-expressed morphology that is typical of craters formed in crystalline target rocks. © 2006 Geological Society of America.