Первые результаты исследования статистики направлений для пар эпицентров землетрясений-соседей на Камчатке

Show simple item record

dc.contributor.author Гусев Александр Александрович
dc.contributor.author Палуева Аида Александровна
dc.date.accessioned 2019-12-23T12:13:34Z
dc.date.available 2019-12-23T12:13:34Z
dc.date.issued 2016
dc.identifier https://cyberleninka.ru/article/n/pervye-rezultaty-issledovaniya-statistiki-napravleniy-dlya-par-epitsentrov-zemletryaseniy-sosedey-na-kamchatke
dc.identifier Федеральное государственное бюджетное учреждение науки Институт земной коры Сибирского отделения Российской академии наук
dc.identifier.citation Геодинамика и тектонофизика, 2016, 7, 4
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/9567
dc.description.abstract Слабые землетрясения, составляющие «фоновую сейсмичность», не распределены в пространстве-времени беспорядочно. Часто изучают пространственно-временное группирование, которое проявляется в виде афтершоковых серий и роев. Эти явления могут быть описаны как отклонение (увеличение) вероятности коротких расстояний и интервалов времени между событиями по сравнению с опорным «чисто случайным» (Пуассоновским) процессом; эта тенденция проявляется в статистике расстояний между эпицентрами. В данной работе мы изучаем статистику направлений для векторов, соединяющих пары эпицентров таких слабых землетрясений, которые близки в пространстве-времени; членов таких пар будем называть соседями. Исследование такого рода представляет интерес при установлении новых свойств статистической структуры наблюдаемых полей эпицентров, обнаружении взаимодействия между очагами землетрясений, выявлении геометрических свойств сетки активных разломов невысокого ранга. Мы показываем, что направления названных векторов заметно отклоняются от изотропии и демонстрируют вместо этого неоднородное распределение направлений, часто содержащее пики. Пары соседей строились путем обработки каталога слабых (ML=3.5-5.0) мелкофокусных землетрясений Камчатской зоны субдукции. Для выделения эпицентров-соседей использовали ограничение на расстояние (10-60 км) и на относительное запаздывание (0.5 сут) между членами пары. Перед извлечением пар рабочий каталог был прорежен с целью уменьшить пространственно-временную плотность событий в местах плотных групп. Создав каталог пар, мы построили распределения азимутов векторов, соединяющих членов пары (роза-диаграммы направлений). На рис. 3 можно видеть примеры гистограмм и соответствующих роза-диаграмм для двух 10-летних периодов (характеристики и обозначения периодов см. табл 1); обработка была проведена с использованием двух вариантов максимального запаздывания: 0.5 и 5 дней. Во всех гистограммах и роза-диаграммах использованы модифицированные азимуты v, отсчитываемые от направления с азимутом 37°, который принят как угол простирания островной дуги. До построения роза-диаграмм модифицированные азимуты приводили к диапазону [0-180°], вычитая 180°, если необходимо. Можно видеть, что при более жестком ограничении запаздывания 0.5 сут гистограммы и роза-диаграммы показывают более выраженные отклонения от однородного (изотропного) распределения углов. В обоих вариантах ограничения запаздывания проявляются пары, ориентированные вдоль дуги (на углах вблизи 0° и 180°). При менее жестком ограничении (5 сут) это направление начинает доминировать. Его появление можно было ожидать: оно отражает преимущественное распределение эпицентров в относительно узкой полосе (хорошо заметной на рис. 1). Эта тенденция никак не связана со спецификой поведения именно «соседей». Чтобы подавить вклад этого мешающего направления, была проведена специальная нормализация угловых гистограмм. Подобные гистограммы рассчитали для больших задержек, 100-150 дней (обозначены Т), и рассматривали их как проявление чистого эффекта геометрии поля эпицентров. Значения исходных R-гистограмм были разделены (поточечно) на соответствующие значения T-гистограмм. Таким путем получали нормализованные N-гистограммы. Считали, что они наилучшим образом характеризуют предпочтительные направления пар соседей. Для исключения субъективных результатов выполняли статистический контроль гипотезы «N-гистограмма отличается от постоянной»; для этого проверяли эквивалентную гипотезу «R-гистограмма отличается от T-гистограммы». Использовали критерий c2 Пирсона. Уровень значимости, Q, обозначен на графиках, в основном, он ниже 0.1 %. Таковы методические основы работы, используемые при анализе данных. N-гистограммы были определены для трех кругов радиуса 150 км, показанных на рис. 1, и для пяти десятилетних периодов. Соответствующие R-, Tи N гистограммы и роза-диаграммы см. на рис. 5, 4 и 6. Можно видеть выраженное и почти везде значимое отклонение от изотропии; вместо этого во многих случаях заметны узкие лепестки. На рис. 7 и 8 приводятся примеры, поясняющие, чему соответствуют эти лепестки на исходной карте. Из этого материала можно сделать следующие выводы. (1) Наблюдаемое распределение азимутов пар существенно отличается от равномерного закона; во многих случаях это отклонение проявляется в виде узких лепестков направленности. (2) В роза-диаграммах вида N часто присутствует выраженный лепесток, ориентированный поперек островной дуги и вдоль оси наибольшего сжатия. Возникновение такого лепестка трудно объяснить с позиций геомеханики. (3) Имеет место очевидное различие между роза-диаграммами для двух южных кругов SK и SP, расположенных в основной части островной дуги, и таковыми для круга KG, расположенного вблизи стыка Курило-Камчатской и Алеутской дуг. (4) Имеются явные вариации роза-диаграмм во времени, что может указывать на кратковременные изменения параметров сейсмотектонической деформации («сейсмического течения горных масс» по Б.В. Кострову [Kostrov, 1974, 1975]). Мы полагаем, что наблюдаемая картина может быть объяснена на основе представления о распространении вдоль вторичных разломов импульсов асейсмического скольжения. Такие импульсы сопровождаются слабыми землетрясениями. Таким образом, возникает картина множества ориентированных пар эпицентров, она близка к идее миграции эпицентров. Расположение ориентированных пар привязано к нескольким гипотетическим системам субпараллельных (эшелонированных) разломов, каждая такая система проявляет себя в формировании индивидуального лепестка роза-диаграммы. Эта интерпретация понятна из рис. 7 и 8, где можно видеть, как отдельный лепесток роза-диаграммы соотносится с множеством субпараллельных пар эпицентров, которые его сформировали. Результат исследования разработка и опробование новой методики определения скрытой угловой анизотропии поля эпицентров, обнаружение временных вариаций выявленных особенностей. В перспективе методика имеет потенциал для задачи слежения за активными процессами в литосфере.
dc.publisher Федеральное государственное бюджетное учреждение науки Институт земной коры Сибирского отделения Российской академии наук
dc.subject EPICENTER
dc.subject BACKGROUND SEISMICITY
dc.subject SPACE-TIME
dc.subject GEOMETRY
dc.subject DIRECTION
dc.subject LINEAMENT
dc.subject EN-ECHELON FAULT
dc.subject MIGRATION
dc.subject ROSE DIAGRAM
dc.subject ЭПИЦЕНТР
dc.subject ФОНОВАЯ СЕЙСМИЧНОСТЬ
dc.subject ПРОСТРАНСТВО-ВРЕМЯ
dc.subject ГЕОМЕТРИЯ
dc.subject НАПРАВЛЕНИЕ
dc.subject ЛИНЕАМЕНТ
dc.subject ЭШЕЛОНИРОВАННЫЙ РАЗЛОМ
dc.subject МИГРАЦИЯ
dc.subject РОЗА-ДИАГРАММА
dc.subject ВРЕМЕННЫЕ ВАРИАЦИИ
dc.title Первые результаты исследования статистики направлений для пар эпицентров землетрясений-соседей на Камчатке
dc.type text
dc.type Article


Files in this item

This item appears in the following Collection(s)

Show simple item record