KINETICS OF MUSCOVITE, PHLOGOPITE, AND BIOTITE DISSOLUTION AND ALTERATION AT PH 1-4, ROOM TEMPERATURE

Show simple item record

dc.contributor.author Kalinowski B.E.
dc.contributor.author Schweda P.
dc.date.accessioned 2020-11-23T10:53:31Z
dc.date.available 2020-11-23T10:53:31Z
dc.date.issued 1996
dc.identifier https://elibrary.ru/item.asp?id=491608
dc.identifier.citation Geochimica et Cosmochimica Acta, 1996, , 3, 367-385
dc.identifier.issn 0016-7037
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/19397
dc.description.abstract The reaction kinetics of dioctahedral muscovite and trioctahedral phlogopite and biotite were studied in aqueous solutions at pH 1-4 and room temperature. The experiments were performed in a reactor where mineral suspensions were separated from eluent solutions with dialysis membranes. Dissolution of muscovite was close to stoichiometric. In the experiments with trioctahedral micas, a solid residual of altered 2:1 layers was formed by preferential release of cations. A preferential release of K was found with phlogopite and biotite. Also, an excess release of octahedral cations compared to tetrahedral Si was obtained in biotite experiments. Describing the dissolution rates, R, by the equationR = kH+anH+,kH+, of 1.7.10-12 for muscovite, 3.4.10-11 for phlogopite and 3.2.10-10 for biotite, in units of mol (O20(OH)4 formula units) m-2 s-1 were obtained. The corresponding exponents,n , were 0.14, 0.40, and 0.61. These values were calculated from rates that were normalized to the total mineral surface area at the start of experiments. Surface area changed during the experiments, partly due to delamination along basal surfaces, which affected the calculation of rate constants and the pH-dependence of rates. Rates that are normalized to total surface area may have little relevance for micas, since reactive sites probably are concentrated on edge surfaces which comprise a small fraction of total surface. Biotite Fe2+ was found to reduce dissolved Fe3+, confirming previous reports about the importance of Fe-rich silicates for the redox state of dissolved species. Possible effects of nonstoichiometric release of cations on the composition of altered products are discussed.
dc.title KINETICS OF MUSCOVITE, PHLOGOPITE, AND BIOTITE DISSOLUTION AND ALTERATION AT PH 1-4, ROOM TEMPERATURE
dc.type Статья


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record