EFFECTS OF CLIMATE ON CHEMICAL WEATHERING IN WATERSHEDS

Show simple item record

dc.contributor.author White A.F.
dc.contributor.author Blum A.E.
dc.date.accessioned 2020-11-26T08:24:17Z
dc.date.available 2020-11-26T08:24:17Z
dc.date.issued 1995
dc.identifier https://elibrary.ru/item.asp?id=661697
dc.identifier.citation Geochimica et Cosmochimica Acta, 1995, , 9, 1729-1747
dc.identifier.issn 0016-7037
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/19629
dc.description.abstract Climatic effects on chemical weathering are evaluated by correlating variations in solute concentrations and fluxes with temperature, precipitation, runoff, and evapotranspiration (ET) for a worldwide distribution of sixty-eight watersheds underlain by granitoid rock types. Stream solute concentrations are strongly correlated with proportional ET loss, and evaporative concentration makes stream solute concentrations an inappropriate surrogate for chemical weathering. Chemical fluxes are unaffected by ET, and SiO2 and Na weathering fluxes exhibit systematic increases with precipitation, runoff, and temperature. However, warm and wet watersheds produce anomalously rapid weathering rates. A proposed model that provides an improved prediction of weathering rates over climatic extremes is the product of linear precipitation and Arrhenius temperature functions. The resulting apparent activation energies based on SiO2 and Na fluxes are 59.4 and 62.5 kJ.mol-1, respectively. The coupling between temperature and precipitation emphasizes the importance of tropical regions in global silicate weathering fluxes, and suggests it is not representative to use continental averages for temperature and precipitation in the weathering rate functions of global carbon cycling and climatic change models.Fluxes of K, Ca, and Mg exhibit no climatic correlation, implying that other processes, such as ion exchange, nutrient cycling, and variations in lithology, obscure any climatic signal. The correlation between yearly variations in precipitation and solute fluxes within individual watersheds is stronger than the correlation between precipitation and solute fluxes of watersheds with different climatic regimes. This underscores the significance of transport-induced variability in controlling stream chemistry, and the importance of distinguishing between short-term and long-term climatic trends. No correlation exists between chemical fluxes and topographic relief or the extent of recent glaciation, implying that physical erosion rates do not have a critical influence on chemical weathering rates.
dc.title EFFECTS OF CLIMATE ON CHEMICAL WEATHERING IN WATERSHEDS
dc.type Статья


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record