NUCLEAR MAGNETIC RESONANCE AND X-RAY PHOTOELECTRON SPECTROSCOPIC INVESTIGATION OF LITHIUM MIGRATION IN MONTMORILLONITE

Show simple item record

dc.contributor.author Theng B.K.G.
dc.contributor.author Hayashi S.
dc.contributor.author Soma M.
dc.contributor.author Seyama H.
dc.date.accessioned 2020-12-12T05:11:23Z
dc.date.available 2020-12-12T05:11:23Z
dc.date.issued 1997
dc.identifier https://elibrary.ru/item.asp?id=31670350
dc.identifier.citation Clays and Clay Minerals, 1997, , 5, 718-723
dc.identifier.issn 0009-8604
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/20612
dc.description.abstract When Li-saturated montmorillonite is heated to 200-300 ~ the Li ions migrate from inter- layer positions to sites in the layer structure. However, the identity of these sites has not been clearly established. Here we have investigated the migration of Li ions in montmorillonite, after heat treatment at 250 ~ using chemical and instrumental analyses. The latter include X-ray diffractometry (XRD), 7Li- nuclear magnetic resonance (NMR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Heating causes a large reduction in cation exchange capacity (CEC) and an almost complete loss of interlayer expansion with glycerol as shown by XRD. Static and magic angle spinning (MAS) 7Li-NMR spectros- copy shows that the quadrupole coupling constant of Li increases markedly over the corresponding value for unheated Li-montmorillonite (where Li occupies exchange sites in the interlayer space) and for hec- torite (where Li is located in the octahedral sheet). This would indicate that, in heated montmorillonite, Li occupies structural sites of low symmetry which, however, cannot be identified with octahedral va- cancies in the layer structure as is commonly assumed. XPS shows that the binding energy (BE) for Li in unheated montmorillonite is comparable to that for other exchangeable cations. Heating broadens the Li Is band and decreases the BE. The BE for Li in heated montmorillonite is significantly higher than that in either spodumene or lepidolite, where Li is known to occupy octabedral sites. The combined data suggest that heating induces Li to migrate from interlayer sites to ditrigonal cavities in the tetrahedral sheet, rather than into vacancies in the octahedral sheet, of montmorillonite.
dc.title NUCLEAR MAGNETIC RESONANCE AND X-RAY PHOTOELECTRON SPECTROSCOPIC INVESTIGATION OF LITHIUM MIGRATION IN MONTMORILLONITE
dc.type Статья


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record