CLINOPYROXENE GEOBAROMETRY OF MAGMATIC ROCKS. PART 2. STRUCTURAL GEOBAROMETERS FOR BASIC TO ACID, THOLEIITIC AND MILDLY ALKALINE MAGMATIC SYSTEMS

Show simple item record

dc.contributor.author Nimis P.
dc.date.accessioned 2021-01-10T10:33:40Z
dc.date.available 2021-01-10T10:33:40Z
dc.date.issued 1999
dc.identifier https://elibrary.ru/item.asp?id=1012485
dc.identifier.citation Contributions to Mineralogy and Petrology, 1999, , 1, 62-74
dc.identifier.issn 0010-7999
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/22558
dc.description.abstract The crystal structures of 212 experimentally synthesized, igneous clinopyroxenes were modeled from electronprobe chemical data. The coexisting melts span a wide range of petrologically relevant, dry and hydrous compositions, characterized by variable enrichment in silica and alkalis. Experimental conditions pertain to Earth's crust and uppermost mantle (P = 0-24 kbar; garnet absent) and a variety of fO2 values (from CCO-buffered to air-buffered) and mineral assemblages (Cpx ± Opx ± Pig ± Ol ± Plag ± Spl ± Mt ± Amp ± Ilm). Unit-cell volume (Vcell) versus M1-polyhedron volume (VM1) relations were investigated over a range of pressures and temperatures using data derived from structure modeling and corrected for thermal expansivity and compressibility. The relationships between pressure and clinopyroxene structural parameters were found to be dependent on the nature of the coexisting melt. To reduce compositional effects, only clinopyroxenes belonging to mildly alkaline (MA) and tholeiitic (TH) series were considered. Pressure was modeled as a linear function of Vcell, VM1, and Mg/(Mg + Fe2+)Cpx ratio. A calibration based on the whole data set (MA + TH) reproduced the experimental pressures within 1.4 kbar at the 1-σ level. The maximum residuals were 3.5 kbar and 3.9 kbar for MA- and TH-clinopyroxenes, respectively. Better statistics were obtained by considering MA- and TH-clinopyroxenes separately. A calibration based on the 69 MA-clinopyroxenes reproduced the experimental pressures within 1.1 kbar (1σ) and with a maximum residual of 2.7 kbar. A calibration based on the 143 TH-clinopyroxenes reproduced the experimental pressures within 1.0 kbar (1σ) and with a maximum residual of 3.4 kbar. When these geobarometers are applied to natural samples for which P is unknown, the correction for compressibility is necessarily made through a trial-and-error procedure. This expedient propagates an additional error that increases the above uncertainties and residuals by a factor of about 2. Applications to natural, igneous rocks for which the pressures of crystallization could be constrained based on experimental, petrological or geological evidence yielded pressure estimates that reproduced the expected values to within ca. 2 kbar. Compared to the MA-formulation, the TH-formulation appears to be less robust to variations in magma composition. When applied to high-pressure (>10 kbar) clinopyroxenes synthesized from very low Na (Na2O < 1.5%) melts, the latter geobarometer can underestimate P by as much as 6 kbar. Calculation of P through the present geobarometers requires clinopyroxene major-element composition and an independent, accurate estimate of crystallization T. Underestimating T by 20 °C propagates into a 1-kbar increase in calculated P. The proposed geobarometers are incorporated in the CpxBar software program, which is designed to retrieve the pressure of crystallization from a clinopyroxene chemical analysis.
dc.title CLINOPYROXENE GEOBAROMETRY OF MAGMATIC ROCKS. PART 2. STRUCTURAL GEOBAROMETERS FOR BASIC TO ACID, THOLEIITIC AND MILDLY ALKALINE MAGMATIC SYSTEMS
dc.type Статья


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record