LOW MELT FRACTION CONNECTIVITY OF GRANITIC AND TONALITIC MELTS IN A MAFIC CRUSTAL ROCK AT 800°C AND 1 GPA

Show simple item record

dc.contributor.author Lupulescu A.
dc.contributor.author Watson E.B.
dc.date.accessioned 2021-01-10T10:33:43Z
dc.date.available 2021-01-10T10:33:43Z
dc.date.issued 1999
dc.identifier https://elibrary.ru/item.asp?id=1012466
dc.identifier.citation Contributions to Mineralogy and Petrology, 1999, , 2, 202-216
dc.identifier.issn 0010-7999
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/22573
dc.description.abstract In the absence of an externally applied stress, the segregation of small amounts of granitic or tonalitic melts from their residual mafic crystals is possible only if the melt forms an interconnected network phase. Accordingly, this research focuses on melt connectivity at low melt fraction (<4 wt% or 5 vol.%). Connectivity of granitic and tonalitic melts in amphibole-rich rock was assessed by performing two types of piston-cylinder experiments at 1 GPa and 800°C. The first involved annealing samples that consisted of either alternating layers or homogeneous mixtures of calcic amphibole and metaluminous obsidian powder. The second type of experiment involved creating diffusion couples. Here, an upper cylinder of amphibole-saturated granitic or tonalitic melt was placed against a lower cylinder consisting of an amphibole-rich rock containing zero or a small melt (granitic or tonalitic) fraction. The upper part of the diffusion couple was doped with β emitter (151Sm or 14C) and functioned as an infinite melt reservoir. The lower part of the diffusion couple was considered to be the host rock. The experiments approached textural equilibrium which allowed us to characterize the wetting behaviour of the calcic amphibole by the hydrous silicic melt (granitic or tonalitic). These particular experiments also provided information concerning diffusive transport, because the β emitter could diffuse through the connected melt (liquid) in the amphibole-rich rock. The dihedral angle measurements show that melt connectivity was achieved. This conclusion is based on the fact that the dihedral angles, θ, consistently yielded median apparent values of 53°<θ<58° for an amphibole-rich rock/granitic melt system, and 46°<θ<48° for an amphibole-rich rock/tonalitic melt system. However, the frequency distribution of θ angles is found to be relatively broad. The results of the diffusion-couple experiments, assessed using the β radiographic technique, complement the dihedral (wetting) angle measurements by showing that melt connectivity is achieved at a melt fraction less than 4wt% (5 vol.%).
dc.title LOW MELT FRACTION CONNECTIVITY OF GRANITIC AND TONALITIC MELTS IN A MAFIC CRUSTAL ROCK AT 800°C AND 1 GPA
dc.type Статья


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record