MICROBIAL EXTRACELLULAR POLYSACCHARIDES AND PLAGIOCLASE DISSOLUTION

Show simple item record

dc.contributor.author Welch S.A.
dc.contributor.author Barker W.W.
dc.contributor.author Banfield J.F.
dc.date.accessioned 2021-01-15T04:55:26Z
dc.date.available 2021-01-15T04:55:26Z
dc.date.issued 1999
dc.identifier https://elibrary.ru/item.asp?id=31782845
dc.identifier.citation Geochimica et Cosmochimica Acta, 1999, 63, 9, 1405-1419
dc.identifier.issn 0016-7037
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/23093
dc.description.abstract Bytownite feldspar was dissolved in batch reactors in solutions of starch (glucose polymer), gum xanthan (glucose, mannose, glucuronic acid), pectin (poly-galacturonic acid), and four alginates (mannuronic and guluronic acid) with a range of molecular weights (low, medium, high and uncharacterized) to evaluate the effect of extracellular microbial polymers on mineral dissolution rates. Solutions were analyzed for dissolved Si and Al as an indicator of feldspar dissolution.At neutral pH, feldspar dissolution was inhibited by five of the acid polysaccharides, gum xanthan, pectin, alginate low, alginate medium, alginate high, compared to an organic-free control. An uncharacterized alginate substantially enhanced both Si and Al release from the feldspar. Starch, a neutral polysaccharide, had no apparent effect. Under mildly acidic conditions, initial pH ≈ 4, all of the polymers enhanced feldspar dissolution compared to the inorganic controls. Si release from feldspar in starch solution exceeded the control by a factor of three. Pectin and gum xanthan increased feldspar dissolution by a factor of 10, and the alginates enhanced feldspar dissolution by a factor of 50 to 100. Si and Al concentrations increased with time, even though solutions were supersaturated with respect to several possible secondary phases. Under acidic conditions, initial pH ≈ 3, below the pKa of the carboxylic acid groups, dissolution rates increased, but the relative increase due to the polysaccharides is lower, approximately a factor of two to ten.Microbial extracellular polymers play a complex role in mineral weathering. Polymers appear to inhibit dissolution under some conditions, possibly by irreversibly binding to the mineral surfaces. The extracellular polysaccharides can also enhance dissolution by providing protons and complexing with ions in solution.
dc.title MICROBIAL EXTRACELLULAR POLYSACCHARIDES AND PLAGIOCLASE DISSOLUTION
dc.type Статья


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record