ORIGIN OF LUNAR ULTRAMAFIC GREEN GLASSES: CONSTRAINTS FROM PHASE EQUILIBRIUM STUDIES

Show simple item record

dc.contributor.author Elkins L.T.
dc.contributor.author Fernandes V.A.
dc.contributor.author Delano J.W.
dc.contributor.author Grove T.L.
dc.date.accessioned 2021-01-23T04:01:50Z
dc.date.available 2021-01-23T04:01:50Z
dc.date.issued 2000
dc.identifier https://elibrary.ru/item.asp?id=272460
dc.identifier.citation Geochimica et Cosmochimica Acta, 2000, 64, 13, 2339-2350
dc.identifier.issn 0016-7037
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/23603
dc.description.abstract Phase equilibria experiments on an Apollo 14B green glass composition are used to develop a petrogenetic model for the Apollo 14B green glasses. New compositional data for the Apollo 14B green glasses are presented, which replace the original data set of Delano (1986). Near-liquidus phase relations of the 14B green glass are determined from 1.3 to 2.7 GPa and 1380 to 1570°C. The liquidus is saturated with olivine to 2.4 GPa and orthopyroxene above 2.4 GPa. A multiple saturation point with olivine and orthopyroxene occurs at 1560°C and 2.4 GPa. Crystallization of the ol + opx saturation boundary involves 40 wt% ol and 60 wt% opx, and occurs over a 140°C interval before cpx appears at a reaction boundary. Crystallization/melting models are developed to reproduce the compositional variations displayed by the Apollo 14B glasses using these phase equilibrium constraints. Fractional crystallization alone cannot account for the observed variation in the major element abundance of the Apollo 14B green glasses. Assimilation is also necessary, in particular, to fit variations in TiO2, FeO, Na2O and Al2O3. The 14B glasses show evidence of simultaneous high-Ti assimilation and fractional crystallization of olivine, followed by simultaneous KREEP assimilation and olivine fractionation. The data requires the high-Ti assimilant to be at a greater depth than the KREEP assimilant, but only constrains the total assimilation/fractional crystallization process to occur between approximately 2.3 and 0.5 GPa. Assimilation of a high-Ti cumulate within this depth range is consistent with an overturn/hybrid mantle remelting model. Highlands crust assimilation is precluded for the Apollo 14B green glasses.
dc.title ORIGIN OF LUNAR ULTRAMAFIC GREEN GLASSES: CONSTRAINTS FROM PHASE EQUILIBRIUM STUDIES
dc.type Статья


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record