THE COMPOSITIONAL VARIATION OF SYNTHETIC SODIC AMPHIBOLES AT HIGH AND ULTRA-HIGH PRESSURES

Show simple item record

dc.contributor.author Tropper P.
dc.contributor.author Essene E.J.
dc.contributor.author Kao L.S.
dc.contributor.author Manning C.E.
dc.date.accessioned 2021-01-29T07:11:10Z
dc.date.available 2021-01-29T07:11:10Z
dc.date.issued 2000
dc.identifier https://elibrary.ru/item.asp?id=13792537
dc.identifier.citation Contributions to Mineralogy and Petrology, 2000, 139, 2, 146-162
dc.identifier.issn 0010-7999
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/24012
dc.description.abstract Sodic amphiboles in high pressure and ultra-high pressure (UHP) metamorphic rocks are complex solid solutions in the system Na2O–MgO–Al2O3–SiO2–H2O (NMASH) whose compositions vary with pressure and temperature. We conducted piston-cylinder experiments at 20–30 kbar and 700–800°C to investigate the stability and compositional variations of sodic amphiboles, based on the reaction glaucophane=2jadeite+talc, by using the starting assemblage of natural glaucophane, talc and quartz, with synthetic jadeite. A close approach to equilibrium was achieved by performing compositional reversals, by evaluating compositional changes with time, and by suppressing the formation of Na-phyllosilicates. STEM observations show that the abundance of wide-chain structures in the synthetic amphiboles is low. An important feature of sodic amphibole in the NMASH system is that the assemblage jadeite–talc ± quartz does not fix its composition at glaucophane. This is because other amphibole species such as cummingtonite (Cm), nyböite (Nyb), Al–Na-cummingtonite (Al–Na-Cm) and sodium anthophyllite (Na-Anth) are also buffered via the model reactions: 3cummingtonite+4quartz+4H2O=7talc, nyböite+3quartz=3jadeite+talc, 3Al–Na-cummingtonite + 11quartz + 2H2O=6jadeite + 5talc, and 3 sodium anthophyllite+13quartz+4H2O=3 jadeite + 7talc. We observed that at all pressures and temperatures investigated, the compositions of newly grown amphiboles deviate significantly from stoichiometric glaucophane due to varying substitutions of AlIV for Si, Mg on the M(4) site, and Na on the A-site. The deviation can be described chiefly by two compositional vectors: [NaAAlIV]<=>[ASi] (edenite) toward nyböite, and [Na(M4)AlVI]<=>[Mg(M4)MgVI] toward cummingtonite. The extent of nyböite and cummingtonite substitution increases with temperature and decreases with pressure in the experiments. Similar compositional variations occur in sodic amphiboles from UHP rocks. The experimentally calibrated compositional changes therefore may prove useful for thermobarometric applications.
dc.title THE COMPOSITIONAL VARIATION OF SYNTHETIC SODIC AMPHIBOLES AT HIGH AND ULTRA-HIGH PRESSURES
dc.type Статья


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record