INTERACTION OF COPPER AND FULVIC ACID AT THE HEMATITE-WATER INTERFACE

Show simple item record

dc.contributor.author Christl I.
dc.contributor.author Kretzschmar R.
dc.date.accessioned 2021-03-16T04:09:28Z
dc.date.available 2021-03-16T04:09:28Z
dc.date.issued 2001
dc.identifier https://www.elibrary.ru/item.asp?id=825495
dc.identifier.citation Geochimica et Cosmochimica Acta, 2001, 65, 20, 3435-3442
dc.identifier.issn 0016-7037
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/26758
dc.description.abstract The influence of surface-bound fulvic acid on the sorption of Cu(II) to colloidal hematite particles was studied experimentally and the results were compared with model calculations based on the linear additivity assumption. In the first step, proton and Cu binding to colloidal hematite particles and to purified fulvic acid was studied by batch equilibration and ion-selective electrode titration experiments, respectively. The sorption data for these binary systems were modeled with a basic Stern surface complexation model for hematite and the NICA-Donnan model for fulvic acid. In the second step, pH-dependent sorption of Cu and fulvic acid in ternary systems containing Cu, hematite, and fulvic acid in NaNO3 electrolyte solutions was investigated in batch sorption experiments. Sorption of fulvic acid to the hematite decreased with increasing pH (pH 3-10) and decreasing ionic strength (0.01-0.1 M NaNO3), while the presence of 22 μM Cu had a small effect on fulvic acid sorption, only detectable at low ionic strength (0.01 M). Sorption of Cu to the solid phase separated by centrifugation was strongly affected by the presence of fulvic acid. Below pH 6, sorption of Cu to the solid phase increased by up to 40% compared with the pure hematite. Above pH 6, the presence of fulvic acid resulted in a decrease in Cu sorption due to increasing concentrations of dissolved metal-organic complexes. At low ionic strength (0.01 M), the effects of fulvic acid on Cu sorption to the solid phase were more pronounced than at higher ionic strength (0.1 M). Comparison of the experimental data with model calculations shows that Cu sorption in ternary hematite-fulvic acid systems is systematically underestimated by up to 30% using the linear additivity assumption. Therefore, specific interactions between organic matter and trace metal cations at mineral surfaces must be taken into account when applying surface complexation models to soils or sediments which contain oxides and natural organic matter.
dc.title INTERACTION OF COPPER AND FULVIC ACID AT THE HEMATITE-WATER INTERFACE
dc.type Статья


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record