FORMATION OF REFRACTORY INCLUSIONS BY EVAPORATION OF CONDENSATE PRECURSORS

Show simple item record

dc.contributor.author Grossman L.
dc.contributor.author Ebel D.S.
dc.contributor.author Simon S.B.
dc.date.accessioned 2021-04-13T02:40:30Z
dc.date.available 2021-04-13T02:40:30Z
dc.date.issued 2002
dc.identifier https://www.elibrary.ru/item.asp?id=841083
dc.identifier.citation Geochimica et Cosmochimica Acta, 2002, 66, 1, 145-161
dc.identifier.issn 0016-7037
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/27728
dc.description.abstract Berman's (1983) activity-composition model for CaO-MgO-Al2O3-SiO2 liquids is used to calculate the change in bulk chemical and isotopic composition during simultaneous cooling, evaporation, and crystallization of droplets having the compositions of reasonable condensate precursors of Types A and B refractory inclusions in CV3 chondrites. The degree of evaporation of MgO and SiO2, calculated to be faithfully recorded in chemical and isotopic zoning of individual melilite crystals, is directly proportional to evaporation rate, which is a sensitive function of PH2, and inversely proportional to the droplet radius and cooling rate. When the precursors are partially melted in pure hydrogen at peak temperatures in the vicinity of the initial crystallization temperature of melilite, their bulk chemical compositions evolve into the composition fields of refractory inclusions, mass-fractionated isotopic compositions of Mg, Si, and O are produced that are in the range of the isotopic compositions of natural inclusions, and melilite zoning profiles result that are similar to those observed in real inclusions. For droplets of radius 0.25 cm evaporating at PH2 = 10-6 bar, precursors containing 8 to 13 wt.% MgO and 20 to 23% SiO2 evolve into objects similar to compact Type A inclusions at cooling rates of 2 to 12 K/h, depending on the precise starting composition. Precursors containing 13 to 14 wt.% MgO and 23 to 26% SiO2 evolve into objects with the characteristics of Type B1 inclusions at cooling rates of 1.5 to 3 K/h. The relatively SiO2-poor members of the Type B2 group can be produced from precursors containing 14 to 16 wt.% MgO and 27 to 33% SiO2 at cooling rates of <1 kh. type b2's containing 27 to 35 wt.% sio2 and <12% MgO require precursors with higher SiO2/MgO ratios at MgO > 15% than are found on any condensation curve. The characteristics of fluffy Type A inclusions, including their reversely zoned melilite, can only be understood in the context of this model if they contain relict melilite.
dc.title FORMATION OF REFRACTORY INCLUSIONS BY EVAPORATION OF CONDENSATE PRECURSORS
dc.type Статья


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record