MIE SCATTERING AND CHARGE TRANSFER PHENOMENA AS CAUSES OF THE UV EDGE IN THE ABSORPTION SPECTRA OF NATURAL AND SYNTHETIC ALMANDINE GARNETS

Show simple item record

dc.contributor.author Khomenko V.M.
dc.contributor.author Langer K.
dc.contributor.author Wirth R.
dc.contributor.author Weyer B.
dc.date.accessioned 2021-06-18T05:48:31Z
dc.date.available 2021-06-18T05:48:31Z
dc.date.issued 2002
dc.identifier https://elibrary.ru/item.asp?id=14248881
dc.identifier.citation Physics and Chemistry of Minerals, 2002, 29, 3, 201-209
dc.identifier.issn 0342-1791
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/29123
dc.description.abstract The UV edge in the electronic absorption spectra of minerals, in many cases influencing their colour, is generally interpreted as the low-energy wing of very strong UV bands caused by ligand–metal charge transfer (CT) transitions (e.g. Burns 1993). However, Mie scattering theory shows that the presence of randomly distributed submicroscopic inclusions with narrow size distribution and a refractive index n i in a matrix with different refractive index n m may give rise to a λ-dependent, band-like scattering (e.g. Kortüm 1969). Such scattering bands have so far not been considered as contributing to the UV edge. Single-crystal electronic absorption spectra of eight natural almandine-rich garnets (Alm60–Alm88), two synthetic almandine samples (Alm100), all of different colours, and synthetic spessartine were studied by means of a Zeiss microscope-spectrometer in the range 40 000–20 000 cm−1. Special techniques of spectral measurements with crossed analyzer and polarizer, which enable the registration of the scattering effect directly, were used as well. Four of the above garnets were also investigated using transmission electron microscopy. Different types of inclusions, from 10 to several 100 nm in size, were observed in the garnet matrices. They are abundant in cores of synthetic garnets, but very rare in most natural almandines studied. Electronic absorption spectra of the natural almandine garnets show largely varying UV edge position and, hence, intensity at a given wavenumber which correlates with the intensities of spin-forbidden dd bands of Fe3+ ions at 27 000 and 28 000 cm−1, superimposed on the long energy slope of the UV absorption. There are also positive correlations between Ti4+ and Fe3+ content, the latter recalculated on the basis of garnet stoichiometry, and UV edge intensity. Thus, the presence of Ti4+ and Fe3+ ions in octahedra, even in very low concentrations (0.0n at. pfu), leads to CT phenomena, that probably involve Fe2+ ions in edge-shared dodecahedral position and intensifies ligand- to-metal CT. The different colours of natural almandine garnets with similar Fe2+ contents studied here are caused by this effect. Consistent with the absence of inclusions in most natural garnets studied, λ-dependent scattering plays no role in their UV absorption. In contrast, in synthetic almandine and spessartine crystals, a different intensity of UV absorption was observed in inclusion-free rims and inclusion-enriched cores. Some of the latter demonstrate typical scattering patterns when measured at crossed polarizers.
dc.title MIE SCATTERING AND CHARGE TRANSFER PHENOMENA AS CAUSES OF THE UV EDGE IN THE ABSORPTION SPECTRA OF NATURAL AND SYNTHETIC ALMANDINE GARNETS
dc.type Статья


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record