CORE FORMATION IN THE EARTH AND MOON: NEW EXPERIMENTAL CONSTRAINTS FROM V, CR, AND MN

Show simple item record

dc.contributor.author Chabot N.L.
dc.contributor.author Agee C.B.
dc.date.accessioned 2021-12-25T04:56:58Z
dc.date.available 2021-12-25T04:56:58Z
dc.date.issued 2003
dc.identifier https://www.elibrary.ru/item.asp?id=1484194
dc.identifier.citation Geochimica et Cosmochimica Acta, 2003, 67, 11, 2077-2091
dc.identifier.issn 0016-7037
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/33820
dc.description.abstract The mantles of the Earth and Moon are similarly depleted in V, Cr, and Mn relative to the concentrations of these elements in chondritic meteorites. The similar depletions have been used as evidence that the Moon inherited its mantle from the Earth after a giant impact event. We have conducted liquid metal-liquid silicate partitioning experiments for V, Cr, and Mn from 3 to 14 GPa and 1723 to 2573 K to understand the behavior of these elements during planetary core formation. Our experiments have included systematic studies of the effects of temperature, silicate composition, metallic S-content, metallic C-content, and pressure. Temperature has a significant effect on the partitioning of V, Cr, Mn, with all three elements increasing their partitioning into the metallic liquid with increasing temperature. In contrast, pressure is not observed to affect the partitioning behavior. The experimental results show the partitioning of Cr and Mn are hardly dependent on the silicate composition, whereas V partitions more strongly into depolymerized silicate melts. The addition of either S or C to the metallic liquid causes increased metal-silicate partition coefficients for all three elements. Parameterizing and applying the experimental data, we find that the Earth's mantle depletions of V, Cr, and possibly Mn can be explained by core formation in a high-temperature magma ocean under oxygen fugacity conditions about two log units below the iron-wustite buffer, though the depletion of Mn may be due entirely to its volatility. However, more oxidizing conditions proposed in recent core formation models for the Earth cannot account for any of the depletions. Additionally, because we observe no pressure effect on the partitioning behavior, the data do not require the mantle of the Moon to be derived from the Earth's mantle, although this is not ruled out. All that is required to create depletions of V, Cr, and Mn in a mantle is a planetary body that is hot enough and reducing enough during its core formation. Such conditions could have existed on the Moon-forming impactor.
dc.title CORE FORMATION IN THE EARTH AND MOON: NEW EXPERIMENTAL CONSTRAINTS FROM V, CR, AND MN
dc.type Статья


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record